1
|
Xu C, Li Z, Kang M, Chen Y, Sheng R, Aghaloo T, Lee M. Hydrogel-integrated exosome mimetics derived from osteogenically induced mesenchymal stem cells in spheroid culture enhance bone regeneration. Biomaterials 2025; 317:123088. [PMID: 39756271 DOI: 10.1016/j.biomaterials.2025.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/14/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) offer a promising alternative to traditional cell-based therapies for tissue repair by mitigating risks associated with the transplantation of living cells. However, insufficient osteogenic capacity of exosomes diminishes their potential in bone tissue regeneration. Here, we report novel osteogenically induced exosome mimetics (EMs) integrated into injectable hydrogel carriers for improved bone regeneration. EMs were produced by a serial extrusion of MSCs cultured as spheroids during osteogenic induction. The prepared EMs were chemically anchored on a self-healing hydrogel assembled by guanidinylated hyaluronic acid and silica-rich nanoclays for sustained release of EMs. The administration of hydrogel-integrated EMs into mouse calvarial defects resulted in robust bone tissue regeneration. miRNA sequencing revealed altered expression of specific miRNAs in the EMs related to Wnt/β-catenin and Notch signaling pathways. Our study provides new insights into the development of advanced exosome-based cell-free therapies for bone tissue engineering.
Collapse
Affiliation(s)
- Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Minjee Kang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Yiqing Chen
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Ruoyu Sheng
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Min Lee
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Murali A, Parameswaran R. Alkaline etching assisted polydopamine coating for enhanced cell-material interactions on 3D printed polylactic acid scaffolds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-26. [PMID: 39674952 DOI: 10.1080/09205063.2024.2436691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
The implant surface chemistry and topography are primary factors regulating the success and survival of bone scaffold. Surface modification is a promising alternative to enhance the biocompatibility and tissue response to augment the osteogenic functionalities of polyesters like PLA. The study employed the synergistic effect of alkaline hydrolysis and polydopamine (PDA) functionalization to enhance the cell-material interactions on 3D printed polylactic acid (PLA) scaffold. Comprehensive characterization of the modified PLA highlights the improvements in the physical, chemical and cell-material interactions upon two-step surface modification. The X-ray photoelectron spectroscopy (XPS) analysis substantiated enhanced PDA deposition with a ∼8.2% increase in surface N composition after surface etching due to homogeneous PDA deposition compared to the non-etched counterpart. The changes in surface chemistry and morphology upon dual surface modification complemented the human osteoblast (HOS) attachment and proliferation, with distinct cell morphology and spreading on PDA coated etched PLA (Et-PLAPDA) scaffolds. Moreover, substantial improvement in osteogenic differentiation of UMR-106 cells on etched PLA (Et-PLA) and Et-PLAPDA highlights the suitability of alkali etching-mediated PDA deposition to improve mineralization on PLA. Overall, the present work opens insights to modify scaffold surface composition, topography, hydrophilicity and roughness to regulate local cell adhesion to improve the osteogenic potential of PLA.
Collapse
Affiliation(s)
- Athira Murali
- Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ramesh Parameswaran
- Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
3
|
Park J, Hia EM, Maharjan B, Park CH. Cotton-like antibacterial polyacrylonitrile nanofiber-reinforced chitosan scaffold: Physicochemical, mechanical, antibacterial, and MC3T3-E1 cell viability study. Int J Biol Macromol 2024; 281:136602. [PMID: 39406322 DOI: 10.1016/j.ijbiomac.2024.136602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/20/2024]
Abstract
Bio-scaffolds, while mimicking the morphology of native tissue and demonstrating suitable mechanical strength, enhanced cell adhesion, proliferation, infiltration, and differentiation, are often prone to failure due to microbial infections. As a result, tissue engineers are seeking ideal scaffolds with antibacterial properties. In this study, silver nanoparticles (AgNPs) were integrated into cotton-like polyacrylonitrile nanofibers via a polydopamine (PDA) interlayer (Ag@p-PAN). These Ag@p-PAN nanofibers were then incorporated into the chitosan (CS) matrix, developing an antibacterial CS/Ag@p-PAN composite scaffold. The composite scaffold features an interconnected porous morphology with fiber-infused pore walls, improved water absorption and swelling properties, a controlled degradation profile, enhanced porosity, better mechanical strength, strong antibacterial properties, and excellent MC3T3-E1 cell viability, adhesion, proliferation, and infiltration. This study presents a novel method for reinforcing CS-based scaffolds by incorporating bioactive nanofibers, offering potential applications in tissue engineering and other biomedical fields.
Collapse
Affiliation(s)
- Jeesoo Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| | - Esensil Man Hia
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| | - Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea.
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
4
|
Choudhury S, Joshi A, Agrawal A, Nain A, Bagde A, Patel A, Syed ZQ, Asthana S, Chatterjee K. NIR-Responsive Deployable and Self-Fitting 4D-Printed Bone Tissue Scaffold. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49135-49147. [PMID: 39226455 DOI: 10.1021/acsami.4c10385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The treatment of irregular-shaped and critical-sized bone defects poses a clinical challenge. Deployable, self-fitting tissue scaffolds that can be implanted by minimally invasive procedures are a promising solution. Toward this, we fabricated NIR-responsive and programmable polylactide-co-trimethylene carbonate (PLMC) scaffolds nanoengineered with polydopamine nanoparticles (PDA) by extrusion-based three-dimensional (3D) printing. The 3D-printed scaffolds demonstrated excellent (>99%), fast (under 30 s), and tunable shape recovery under NIR irradiation. PLMC-PDA composites demonstrated significantly higher osteogenic potential in vitro as revealed by the significantly enhanced alkaline phosphatase (ALP) secretion and mineral deposition in contrast to neat PLMC. Intraoperative deployability and in vivo bone regeneration ability of PLMC-PDA composites were demonstrated, using self-fitting scaffolds in critical-sized cranial bone defects in rabbits. The 3D-printed scaffolds were deformed into compact shapes that could self-fit into the defect shape intraoperatively under low power intensity (0.76 W cm-2) NIR. At 6 and 12 weeks postsurgical implantation, near-complete bone regeneration was observed in PLMC-PDA composites, unlike neat PLMC through microcomputed tomography (micro-CT) analysis. The potential clinical utility of the 3D-printed composites to secure complex defects was confirmed through self-fitting of the scaffolds into irregular defects in ex vivo models of rabbit tibia, mandible, and tooth models. Taken together, the composite scaffolds fabricated here offer an innovative strategy for minimally invasive deployment to fit irregular and complex tissue defects for bone tissue regeneration.
Collapse
Affiliation(s)
- Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Akshat Joshi
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Akhilesh Agrawal
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Amit Nain
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Ashutosh Bagde
- Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| | - Aditya Patel
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| | - Zahiruddin Quazi Syed
- Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| | - Sonal Asthana
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Department of Hepatobiliary and Multi-Organ Transplantation Surgery, Aster CMI Hospital, Bangalore 560024, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
- Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442001, India
| |
Collapse
|
5
|
Hernández-Hatibi S, Guerrero PE, García-Aznar JM, García-Gareta E. Polydopamine Interfacial Coating for Stable Tumor-on-a-Chip Models: Application for Pancreatic Ductal Adenocarcinoma. Biomacromolecules 2024; 25:5169-5180. [PMID: 39083627 PMCID: PMC11323005 DOI: 10.1021/acs.biomac.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Addressing current challenges in solid tumor research requires advanced in vitro three-dimensional (3D) cellular models that replicate the inherently 3D architecture and microenvironment of tumor tissue, including the extracellular matrix (ECM). However, tumor cells exert mechanical forces that can disrupt the physical integrity of the matrix in long-term 3D culture. Therefore, it is necessary to find the optimal balance between cellular forces and the preservation of matrix integrity. This work proposes using polydopamine (PDA) coating for 3D microfluidic cultures of pancreatic cancer cells to overcome matrix adhesion challenges to sustain representative tumor 3D cultures. Using PDA's distinctive adhesion and biocompatibility, our model uses type I collagen hydrogels seeded with different pancreatic cancer cell lines, prompting distinct levels of matrix deformation and contraction. Optimizing the PDA coating enhances the adhesion and stability of collagen hydrogels within microfluidic devices, achieving a balance between the disruptive forces of tumor cells on matrix integrity and the maintenance of long-term 3D cultures. The findings reveal how this tension appears to be a critical determinant in spheroid morphology and growth dynamics. Stable and prolonged 3D culture platforms are crucial for understanding solid tumor cell behavior, dynamics, and responses within a controlled microenvironment. This advancement ultimately offers a powerful tool for drug screening, personalized medicine, and wider cancer therapeutics strategies.
Collapse
Affiliation(s)
- Soraya Hernández-Hatibi
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Department
of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Aragon, Spain
| | - Pedro Enrique Guerrero
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Department
of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Aragon, Spain
| | - José Manuel García-Aznar
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon
Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - Elena García-Gareta
- Multiscale
in Mechanical & Biological Engineering Research Group, Aragon
Institute of Engineering Research (I3A), School of Engineering and
Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon
Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
- Division
of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6BT, U.K.
| |
Collapse
|
6
|
Sun S, Liang B, Yin Z, Pan S, Shi C, Guo C, Huang Z, Chu C, Dong Y. Mineralization, degradation and osteogenic property of polylactide multicomponent porous composites for bone repair: In vitro and in vivo study. Int J Biol Macromol 2024; 271:132378. [PMID: 38750853 DOI: 10.1016/j.ijbiomac.2024.132378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Gelatin and hydroxyapatite were assembled into polylactide porous matrix to prepare multicomponent porous composites for bone repair (PLA-gH). PLA-gH possessed a superior ability of mineralization. During simulated body fluids (SBF), the spherical Ca-P depositions on surface of PLA-gH became bulk as Ca/P decreased, while they locally turned into the rod with different variation in Ca/P during SBF containing bovine serum albumin (SBF-BSA), indicating that the mineralization of PLA-gH could be regulated by BSA. Meanwhile, PLA-gH possessed good degradation behaviour, especially in SBF-BSA, the degradation of PLA porous matrix was higher than that in SBF after 14-day immersion, whose crystallinity (Xc) decreased to a slightly lower level. Gelatin and hydroxyapatite endowed PLA-gH with good osteogenic property, characterized by obvious osteogenic differentiation and bone regeneration. In terms of predicting the cytocompatibility, osteogenic differentiation and new bone mineralization of PLA-gH by in vitro methods, applying SBF-BSA may be more reliable than SBF.
Collapse
Affiliation(s)
- Shanyun Sun
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189, China
| | - Bin Liang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zhaowei Yin
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Shaowei Pan
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chen Shi
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chao Guo
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189, China
| | - Zhihai Huang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189, China
| | - Yinsheng Dong
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189, China.
| |
Collapse
|
7
|
Shi W, Jiang Y, Wu T, Zhang Y, Li T. Advancements in drug-loaded hydrogel systems for bone defect repair. Regen Ther 2024; 25:174-185. [PMID: 38230308 PMCID: PMC10789937 DOI: 10.1016/j.reth.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Bone defects are primarily the result of high-energy trauma, pathological fractures, bone tumor resection, or infection debridement. The treatment of bone defects remains a huge clinical challenge. The current treatment options for bone defects include bone traction, autologous/allogeneic bone transplantation, gene therapy, and bone tissue engineering amongst others. With recent developments in the field, composite scaffolds prepared using tissue engineering techniques to repair bone defects are used more often. Among the various composite scaffolds, hydrogel exhibits the advantages of good biocompatibility, high water content, and degradability. Its three-dimensional structure is similar to that of the extracellular matrix, and as such it is possible to load stem cells, growth factors, metal ions, and small molecule drugs upon these scaffolds. Therefore, the hydrogel-loaded drug system has great potential in bone defect repair. This review summarizes the various natural and synthetic materials used in the preparation of hydrogels, in addition to the latest research status of hydrogel-loaded drug systems.
Collapse
Affiliation(s)
- Weipeng Shi
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tingyu Wu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
9
|
Ma T, Wang CX, Ge XY, Zhang Y. Applications of Polydopamine in Implant Surface Modification. Macromol Biosci 2023; 23:e2300067. [PMID: 37229654 DOI: 10.1002/mabi.202300067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Indexed: 05/27/2023]
Abstract
There is great clinical demand for orthopedic and dental implant surface modification methods to prevent osseointegration failure and improve implant biological functions. Notably, dopamine (DA) can be polymerized to form polydopamine (PDA), which is similar to the adhesive proteins secreted by mussels, to form a stable bond between the bone surface and implants. Therefore, PDA has the potential to be used as an implant surface modification material with good hydrophilicity, roughness, morphology, mechanical strength, biocompatibility, antibacterial activity, cellular adhesion, and osteogenesis. In addition, PDA degradation releases DA into the surrounding microenvironment, which is found to play an important role in regulating DA receptors on both osteoblasts and osteoclasts during the bone remodeling process. Furthermore, the adhesion properties of PDA suggest its use as an intermediate layer in assisting other functional bone remodeling materials, such as nanoparticles, growth factors, peptides, and hydrogels, to form "dual modifications." The purpose of this review is to summarize the recent progress in research on PDA and its derivatives as orthopedic and dental implant surface modification materials and to analyze the multiple functions of PDA.
Collapse
Affiliation(s)
- Ting Ma
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Chen-Xi Wang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yu Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| |
Collapse
|
10
|
Guo W, Xu H, Liu D, Dong L, Liang T, Li B, Meng B, Chen S. 3D-Printed lattice-inspired composites for bone reconstruction. J Mater Chem B 2023; 11:7353-7363. [PMID: 37522170 DOI: 10.1039/d3tb01053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Mechanical performance is crucial for biomedical applications of scaffolds. In this study, the stress distribution of six lattice-inspired structures was investigated using finite element simulations, and scaffolds with pre-designed structures were prepared using selective laser sintering (SLS) technology. The results showed that scaffolds with face-centered cubic (FCC) structures exhibited the highest compressive strength. Moreover, scaffolds composed of polylactic acid/anhydrous calcium hydrogen phosphate (PLA/DCPA) showed good mechanical properties and bioactivity. An in vitro study showed that these scaffolds promoted cell proliferation significantly and showed excellent osteogenic performance. Composite scaffolds with FCC structures are promising for bone tissue engineering.
Collapse
Affiliation(s)
- Wenmin Guo
- Mechanical and Energy Engineering College, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Huanhuan Xu
- Mechanical and Energy Engineering College, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Li Dong
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Ting Liang
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Bin Meng
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Song Chen
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
11
|
Liu B, Wu J, Sun X, Meng Q, Zhang J. Sustained delivery of osteogenic growth peptide through injectable photoinitiated composite hydrogel for osteogenesis. Front Bioeng Biotechnol 2023; 11:1228250. [PMID: 37614629 PMCID: PMC10444198 DOI: 10.3389/fbioe.2023.1228250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
One of the most challenging clinical issues continues to be the effective bone regeneration and rebuilding following bone abnormalities. Although osteogenic growth peptide (OGP) has been proven to be effective in promoting osteoblast activity, its clinical application is constrained by abrupt release and easily degradation. We developed a GelMA/HAMA dual network hydrogel loaded with OGP based on a combination of physical chain entanglement and chemical cross-linking effects to produce an efficient long-term sustained release of OGP. The hydrogel polymers were quickly molded under ultraviolet (UV) light and had the suitable physical characteristics, porosity structure and biocompatibility. Significantly, the GelMA/HAMA-OGP hydrogel could promote cell proliferation, adhesion, increase osteogenic-related gene and protein expression in vitro. In conclusion, the OGP sustained-release system based on GelMA/HAMA dual network hydrogel offers a fresh perspective on bone regeneration therapy.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Jiannan Wu
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Xiaodi Sun
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Qingxun Meng
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Jian Zhang
- Department of Oral Implantology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| |
Collapse
|
12
|
Porous surface with fusion peptides embedded in strontium titanate nanotubes elevates osteogenic and antibacterial activity of additively manufactured titanium alloy. Colloids Surf B Biointerfaces 2023; 224:113188. [PMID: 36773409 DOI: 10.1016/j.colsurfb.2023.113188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
It is still a big challenge in orthopedics to treat infected bone defects properly using medical metals. The use of three-dimensional (3D) scaffold materials that simultaneously mimic the skeletal hierarchy and induce sustainable osteogenic and antibacterial functions are a promising solution with an increasing appeal. In this study, we first designed a bifunctional fusion peptide (HHC36-RGD, HR) by linking antimicrobial peptide (HHC36) and arginine-glycine-aspartate (RGD) peptide via 6-aminohexanoic acid. Then the 3D scaffold was fabricated by additive manufacturing, and the strontium titanate nanotube structure (3D-STN) was constructed on its surface. Finally, the HR was anchored to the 3D-STN with the aid of polydopamine (PDA, P), forming the 3D-STN-P-HR scaffold. The results showed that the scaffold exhibited an ordered 3D porous structure, and that the surface was covered by a dense HHC36-RGD layer. Expectedly, the adsorption of PDA effectively slowed down the release of HR. Moreover, the functionalized scaffold had a significant inhibitory effect on Staphylococcus aureus and Escherichia coli, and its antibacterial rate could reach more than 95%. The results of in vitro cell culture experiments demonstrated that the 3D-STN-P-HR scaffold possessed excellent cytocompatibility and could promote the transcription of osteogenic differentiation-related genes and the expression of related proteins. In conclusion, the functionally modified 3D porous titanium alloy scaffold (3D-STN-P-HR) has a balanced antibacterial and osteogenic function, which bodes well for future potential in the customized functional reconstruction of complex-shaped infected bone defects.
Collapse
|
13
|
Nguyen M, Tong A, Volosov M, Madhavarapu S, Freeman J, Voronov R. Addressable microfluidics technology for non-sacrificial analysis of biomaterial implants in vivo. BIOMICROFLUIDICS 2023; 17:024103. [PMID: 37035100 PMCID: PMC10076065 DOI: 10.1063/5.0137932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
Tissue regeneration-promoting and drug-eluting biomaterials are commonly implanted into animals as a part of late-stage testing before committing to human trials required by the government. Because the trials are very expensive (e.g., they can cost over a billion U.S. dollars), it is critical for companies to have the best possible characterization of the materials' safety and efficacy before it goes into a human. However, the conventional approaches to biomaterial evaluation necessitate sacrificial analysis (i.e., euthanizing a different animal for measuring each time point and retrieving the implant for histological analysis), due to the inability to monitor how the host tissues respond to the presence of the material in situ. This is expensive, inaccurate, discontinuous, and unethical. In contrast, our manuscript presents a novel microfluidic platform potentially capable of performing non-disruptive fluid manipulations within the spatial constraints of an 8 mm diameter critical calvarial defect-a "gold standard" model for testing engineered bone tissue scaffolds in living animals. In particular, here, addressable microfluidic plumbing is specifically adapted for the in vivo implantation into a simulated rat's skull, and is integrated with a combinatorial multiplexer for a better scaling of many time points and/or biological signal measurements. The collected samples (modeled as food dyes for proof of concept) are then transported, stored, and analyzed ex vivo, which adds previously-unavailable ease and flexibility. Furthermore, care is taken to maintain a fluid equilibrium in the simulated animal's head during the sampling to avoid damage to the host and to the implant. Ultimately, future implantation protocols and technology improvements are envisioned toward the end of the manuscript. Although the bone tissue engineering application was chosen as a proof of concept, with further work, the technology is potentially versatile enough for other in vivo sampling applications. Hence, the successful outcomes of its advancement should benefit companies developing, testing, and producing vaccines and drugs by accelerating the translation of advanced cell culturing tech to the clinical market. Moreover, the nondestructive monitoring of the in vivo environment can lower animal experiment costs and provide data-gathering continuity superior to the conventional destructive analysis. Lastly, the reduction of sacrifices stemming from the use of this technology would make future animal experiments more ethical.
Collapse
Affiliation(s)
- Minh Nguyen
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, 161 Warren Street, Newark, New Jersey 07102, USA
| | - Anh Tong
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark College of Engineering, 161 Warren Street, Newark, New Jersey 07102, USA
| | - Mark Volosov
- Helen and John C. Hartmann Department of Electrical and Computer Engineering, New Jersey Institute of Technology Newark College of Engineering, Suite 200 University Heights, Newark, New Jersey 07102, USA
| | - Shreya Madhavarapu
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Joseph Freeman
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Roman Voronov
- Author to whom correspondence should be addressed:. Tel.: +1 973 642 4762; Fax:+1 973 596 8436
| |
Collapse
|
14
|
Mahnavi A, Shahriari-Khalaji M, Hosseinpour B, Ahangarian M, Aidun A, Bungau S, Hassan SSU. Evaluation of cell adhesion and osteoconductivity in bone substitutes modified by polydopamine. Front Bioeng Biotechnol 2023; 10:1057699. [PMID: 36727042 PMCID: PMC9885973 DOI: 10.3389/fbioe.2022.1057699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Bones damaged due to disease or accidents can be repaired in different ways. Tissue engineering has helped with scaffolds made of different biomaterials and various methods. Although all kinds of biomaterials can be useful, sometimes their weakness in cellular activity or osteoconductivity prevents their optimal use in the fabrication of bone scaffolds. To solve this problem, we need additional processes, such as surface modification. One of the common methods is coating with polydopamine. Polydopamine can not only cover the weakness of the scaffolds in terms of cellular properties, but it can also create or increase osteoconductivity properties. Polydopamine creates a hydrophilic layer on the surface of scaffolds due to a large number of functional groups such as amino and hydroxyl groups. This layer allows bone cells to anchor and adheres well to the surfaces. In addition, it creates a biocompatible environment for proliferation and differentiation. Besides, the polydopamine coating makes the surfaces chemically active by catechol and amine group, and as a result of their presence, osteoconductivity increases. In this mini-review, we investigated the characteristics, structure, and properties of polydopamine as a modifier of bone substitutes. Finally, we evaluated the cell adhesion and osteoconductivity of different polydopamine-modified bone scaffolds.
Collapse
Affiliation(s)
- Ali Mahnavi
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | | | - Mostafa Ahangarian
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Amir Aidun
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran,Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Amir Aidun, ; Simona Bungau, ; Syed Shams ul Hassan,
| |
Collapse
|
15
|
Polydopamine constructed interfacial molecular bridge in nano-hydroxylapatite/polycaprolactone composite scaffold. Colloids Surf B Biointerfaces 2022; 217:112668. [PMID: 35810612 DOI: 10.1016/j.colsurfb.2022.112668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022]
Abstract
Nano-hydroxylapatite (nano-HAP)/polycaprolactone (PCL) composite scaffold is proved to possess great potential for bone tissue engineering application since the biocompatibility of PCL and the osteoinduction ability of nano-HAP. However, the interfacial bonding between nano-HAP and PCL is weak by reason of the difference in thermodynamic properties. Herein, nano-HAP was modified by polydopamine (PDA) and then added to the PCL matrix to enhance their interface bonding in bone scaffold manufactured by selective laser sintering (SLS). The results indicated that PDA acted as an interfacial molecular bridge between PCL and nano-HAP. On one hand, the amino groups of PDA formed hydrogen bonding with the hydroxyl groups of nano-HAP, and on the other hand, the catechol groups of PDA formed hydrogen bonding with the ester groups of PCL. Compared with the HAP/PCL scaffolds, the tensile and compressive strength of the P-HAP/PCL scaffolds loading 12 wt% P-HAP were increased by 10% and 16%, respectively. Meanwhile, the scaffold possessed great bioactivity and cytocompatibility that could accelerate the formation of apatite layers and promote the cell adhesion, proliferation and differentiation.
Collapse
|
16
|
Zheng Z, Wang R, Lin J, Tian J, Zhou C, Li N, Li L. Liquid Crystal Modified Polylactic Acid Improves Cytocompatibility and M2 Polarization of Macrophages to Promote Osteogenesis. Front Bioeng Biotechnol 2022; 10:887970. [PMID: 35782509 PMCID: PMC9247145 DOI: 10.3389/fbioe.2022.887970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Liquid crystalline phases (LC phases) are widely present in an organism. The well-aligned domain and liquidity of the LC phases are necessary for various biological functions. How to stabilize the floating LC phases and maintain their superior biology is still under study. In addition, it is unclear whether the exogenous LC state can regulate the immune process and improve osteogenesis. In this work, a series of composite films (PLLA/LC) were prepared using cholesteryl oleyl carbonate (COC), cholesteryl pelargonate (CP), and polylactic acid (PLLA) via a controlled facile one-pot approach. The results showed that the thermo-responsive PLLA/LC films exhibited stable LC phases at human body temperature and the cytocompatibility of the composites was improved significantly after modification by the LC. In addition, the M2 polarization of macrophages (RAW264.7) was enhanced in PLLA/LC films, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was improved as co-cultured with macrophages. The in vivo bone regeneration of the materials was verified by calvarial repair, in which the amount of new bone in the PLLA-30% LC group was greater than that in the PLLA group. This work revealed that the liquid crystal-modified PLLA could promote osteogenesis through immunomodulation.
Collapse
Affiliation(s)
- Zexiang Zheng
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Renqin Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Jianjun Lin
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Jinhuan Tian
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
| | - Na Li
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Na Li, ; Lihua Li,
| | - Lihua Li
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou, China
- *Correspondence: Na Li, ; Lihua Li,
| |
Collapse
|
17
|
Petre DG, Leeuwenburgh SCG. The Use of Fibers in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:141-159. [PMID: 33375900 DOI: 10.1089/ten.teb.2020.0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone tissue engineering aims to restore and maintain the function of bone by means of biomaterial-based scaffolds. This review specifically focuses on the use of fibers in biomaterials used for bone tissue engineering as suitable environment for bone tissue repair and regeneration. We present a bioinspired rationale behind the use of fibers in bone tissue engineering and provide an overview of the most common fiber fabrication methods, including solution, melt, and microfluidic spinning. Subsequently, we provide a brief overview of the composition of fibers that are used in bone tissue engineering, including fibers composed of (i) natural polymers (e.g., cellulose, collagen, gelatin, alginate, chitosan, and silk, (ii) synthetic polymers (e.g., polylactic acid [PLA], polycaprolactone, polyglycolic acid [PGA], polyethylene glycol, and polymer blends of PLA and PGA), (iii) ceramic fibers (e.g., aluminium oxide, titanium oxide, and zinc oxide), (iv) metallic fibers (e.g., titanium and its alloys, copper and magnesium), and (v) composite fibers. In addition, we review the most relevant fiber modification strategies that are used to enhance the (bio)functionality of these fibers. Finally, we provide an overview of the applicability of fibers in biomaterials for bone tissue engineering, with a specific focus on mechanical, pharmaceutical, and biological properties of fiber-functionalized biomaterials for bone tissue engineering. Impact statement Natural bone is a complex composite material composed of an extracellular matrix of mineralized fibers containing living cells and bioactive molecules. Consequently, the use of fibers in biomaterial-based scaffolds offers a wide variety of opportunities to replicate the functional performance of bone. This review provides an overview of the use of fibers in biomaterials for bone tissue engineering, thereby contributing to the design of novel fiber-functionalized bone-substituting biomaterials of improved functionality regarding their mechanical, pharmaceutical, and biological properties.
Collapse
Affiliation(s)
- Daniela Geta Petre
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Liu C, Qin W, Wang Y, Ma J, Liu J, Wu S, Zhao H. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair. Int J Nanomedicine 2021; 16:8417-8432. [PMID: 35002236 PMCID: PMC8722573 DOI: 10.2147/ijn.s339500] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Bone tissue engineering (BTE) is a new strategy for bone defect repair, but the difficulties in the fabrication of scaffolds with personalized structures still limited their clinical applications. The rapid development in three-dimensional (3D) printing endows it capable of controlling the porous structures of scaffolds with high structural complexity and provides flexibility to meet specific needs of bone repair. METHODS In this study, sodium alginate (SA)/gelatin (Gel) hydrogel scaffolds doped with different contents of nano-attapulgite were fabricated via 3D printing. The surface microstructure, hydrophilicity and mechanical properties were fully evaluated. Furthermore, mouse bone marrow-derived mesenchymal stem cells (BMSCs) were cultured with the composite hydrogels in vitro, and proliferation and osteoblastic differentiation were assessed. A rabbit tibia plateau defect model was used to evaluate the osteogenic potential of the composite hydrogel in vivo. RESULTS When increasing nano-ATP content, the Gel/SA/nano-ATP composite hydrogels showed better mechanical property and printability. Moreover, Gel/SA/nano-ATP composite hydrogels showed excellent bioactivity, and a significant mineralization effect was observed on the surface after being incubated in simulated body fluid (SBF) for 14 days. The Gel/SA/nano-ATP composite hydrogel also showed good biocompatibility and promoted the osteogenesis of BMSCs. Finally, histological analysis demonstrates that the Gel/SA/nano-ATP composite hydrogels could effectively enhance bone regeneration in vivo. CONCLUSION These properties render the Gel/SA/nano-ATP composite hydrogel scaffolds an ideal bone tissue engineering material for the repair of bone defects.
Collapse
Affiliation(s)
- Chun Liu
- Medical Research Centre, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Wen Qin
- Medical Research Centre, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Yan Wang
- Department of Clinical Laboratory, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Jiayi Ma
- Medical Research Centre, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Jun Liu
- Medical Research Centre, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Siyu Wu
- Medical Research Centre, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Hongbin Zhao
- Medical Research Centre, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| |
Collapse
|
19
|
Vimalraj S, Sekaran S. Commentary: "Silver Nanoparticles Coated Poly(L-Lactide) Electrospun Membrane for Implant Associated Infections Prevention". Front Pharmacol 2021; 12:759304. [PMID: 34776977 PMCID: PMC8580876 DOI: 10.3389/fphar.2021.759304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, India
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, India
| | - Saravanan Sekaran
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai, India
| |
Collapse
|
20
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
21
|
Safari B, Davaran S, Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. Int J Biol Macromol 2021; 175:544-557. [PMID: 33571587 DOI: 10.1016/j.ijbiomac.2021.02.052] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
Abstract
The growing need for treatment of the impaired bone tissue has resulted in the quest for the improvement of bone tissue regeneration strategies. Bone tissue engineering is trying to create bio-inspired systems with a coordinated combination of the cells, scaffolds, and bioactive factors to repair the damaged bone tissue. The scaffold provides a supportive matrix for cell growth, migration, and differentiation and also, acts as a delivery system for bioactive factors. Bioactive factors including a large group of cytokines, growth factors (GFs), peptides, and hormonal signals that regulate cellular behaviors. These factors stimulate osteogenic differentiation and proliferation of cells by activating the signaling cascades related to ossification and angiogenesis. GFs and bioactive peptides are significant parts of the bone tissue engineering systems. Besides, the use of the osteogenic potential of hormonal signals has been an attractive topic, particularly in osteoporosis-related bone defects. Due to the unstable nature of protein factors and non-specific effects of hormones, the engineering of scaffolds to the controlled delivery of these bioactive molecules has paramount importance. This review updates the growth factors, engineered peptides, and hormones that are used in bone tissue engineering systems. Also, discusses how these bioactive molecules may be linked to accelerating bone regeneration.
Collapse
Affiliation(s)
- Banafsheh Safari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Biazar E, Kamalvand M, Avani F. Recent advances in surface modification of biopolymeric nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1857383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Avani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
23
|
A simple route to functionalising electrospun polymer scaffolds with surface biomolecules. Int J Pharm 2021; 597:120231. [PMID: 33484930 DOI: 10.1016/j.ijpharm.2021.120231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Surface functionalisation of polymeric electrospun scaffolds with therapeutic biomolecules is often explored in regenerative medicine and tissue engineering. However, the bioconjugation method must be carefully selected to prevent partial or full loss of activity of the biomolecule following chemical manipulation. Perfluorophenyl azide bearing a N-hydroxysuccinimide (PFPA-NHS) active ester group is a versatile tool for UV-initiated covalent coupling of amine-containing molecules to hydrocarbon-based polymers, such as polydioxanone or polycaprolactone (PCL). This study therefore explored the feasibility of PFPA-NHS functionalisation of electrospun PCL scaffolds with model biomolecules. Protein conjugation was extensively explored using fluorescence staining and attachment studies, confirming the retention of amine coupling capability following photografting of PFPA-NHS to the PCL surface. The effect of the washing method used to remove unreacted PFPA was explored in Caco-2 cell viability studies, and it was determined that sonication washing is required to avoid cell death. A model enzyme, catalase, was then successfully attached to the surface of PCL scaffolds for potential applications in oncological photodynamic therapy. Catalase retained its enzymatic activity following attachment to the fibres and the majority of the enzyme (~60%) remained bound to the fibre after incubation in an aqueous environment for six days. The anticipated prolonged presentation and sustained release of proteins as a result of PFPA-NHS conjugation could be advantageous in progressing protein-based therapies.
Collapse
|
24
|
Dziemidowicz K, Sang Q, Wu J, Zhang Z, Zhou F, Lagaron JM, Mo X, Parker GJM, Yu DG, Zhu LM, Williams GR. Electrospinning for healthcare: recent advancements. J Mater Chem B 2021; 9:939-951. [DOI: 10.1039/d0tb02124e] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This perspective explores recent developments and innovations in the electrospinning technique and their potential applications in biomedicine.
Collapse
Affiliation(s)
| | - Qingqing Sang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Jinglei Wu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Ziwei Zhang
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | - Fenglei Zhou
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
- Centre for Medical Image Computing, UCL Computer Science
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology
- Spanish Council for Scientific Research
- Valencia 46100
- Spain
| | - Xiumei Mo
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, UCL Computer Science
- University College London
- London WC1V 6LJ
- UK
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Li-Min Zhu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | | |
Collapse
|
25
|
Arrabito G, Aleeva Y, Ferrara V, Prestopino G, Chiappara C, Pignataro B. On the Interaction between 1D Materials and Living Cells. J Funct Biomater 2020; 11:E40. [PMID: 32531950 PMCID: PMC7353490 DOI: 10.3390/jfb11020040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
One-dimensional (1D) materials allow for cutting-edge applications in biology, such as single-cell bioelectronics investigations, stimulation of the cellular membrane or the cytosol, cellular capture, tissue regeneration, antibacterial action, traction force investigation, and cellular lysis among others. The extraordinary development of this research field in the last ten years has been promoted by the possibility to engineer new classes of biointerfaces that integrate 1D materials as tools to trigger reconfigurable stimuli/probes at the sub-cellular resolution, mimicking the in vivo protein fibres organization of the extracellular matrix. After a brief overview of the theoretical models relevant for a quantitative description of the 1D material/cell interface, this work offers an unprecedented review of 1D nano- and microscale materials (inorganic, organic, biomolecular) explored so far in this vibrant research field, highlighting their emerging biological applications. The correlation between each 1D material chemistry and the resulting biological response is investigated, allowing to emphasize the advantages and the issues that each class presents. Finally, current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Dipartimento di Fisica e Chimica—Emilio Segrè, University of Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy;
| | - Yana Aleeva
- INSTM UdR Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy; (Y.A.); (C.C.)
| | - Vittorio Ferrara
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Giuseppe Prestopino
- Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata”, Via del Politecnico 1, I-00133 Roma, Italy;
| | - Clara Chiappara
- INSTM UdR Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy; (Y.A.); (C.C.)
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica—Emilio Segrè, University of Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy;
| |
Collapse
|
26
|
Mirza S, Jolly R, Zia I, Saad Umar M, Owais M, Shakir M. Bioactive Gum Arabic/κ-Carrageenan-Incorporated Nano-Hydroxyapatite Nanocomposites and Their Relative Biological Functionalities in Bone Tissue Engineering. ACS OMEGA 2020; 5:11279-11290. [PMID: 32478215 PMCID: PMC7254512 DOI: 10.1021/acsomega.9b03761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/03/2020] [Indexed: 06/01/2023]
Abstract
The present frontiers of bone tissue engineering are being pushed by novel biomaterials that exhibit phenomenal biocompatibility and adequate mechanical strength. In this work, we fabricated a ternary system incorporating nano-hydroxyapatite (n-HA)/gum arabic (GA)/κ-carrageenan (κ-CG) with varying concentrations, i.e., 60/30/10 (CHG1), 60/20/20 (CHG2), and 60/10/30 (CHG3). A binary system with n-HA and GA was also prepared with a ratio of 60/40 (HG) and compared with the ternary system. A rapid mineralization of the apatite layer was observed for the ternary systems after incubation in simulated body fluid (SBF) for 15 days as corroborated by scanning electron microscopy (SEM). CHG2 exhibited the maximum apatite layer deposition. Further, the nanocomposites were physicochemically analyzed by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and mechanical testing. Their results revealed a substantial interaction among the components, appropriate crystallinity, and significantly enhanced compressive strength and modulus for the ternary nanocomposites. The greatest mechanical strength was achieved by the scaffold containing equal amounts of GA and κ-CG. The cytotoxicity was evaluated by culturing osteoblast-like MG63 cells, which exhibited the highest cell viability for the CHG2 nanocomposite system. It was further supported by confocal microscopy, which revealed the maximum cell proliferation for the CHG2 scaffold. In addition, enhanced antibacterial activity, protein adsorption, biodegradability, and osteogenic differentiation were observed for the ternary nanocomposites. Osteogenic gene markers, such as osteocalcin (OCN), osteonectin (ON), and osteopontin (OPN), were present in higher quantities in the CHG2 and CHG3 nanocomposites as confirmed by western blotting. These results substantiated the pertinence of n-HA-, GA-, and κ-CG-incorporated ternary systems to bone implant materials.
Collapse
Affiliation(s)
- Sumbul Mirza
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Reshma Jolly
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Iram Zia
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Saad Umar
- Molecular
Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Molecular
Immunology Group Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Shakir
- Inorganic
Chemistry Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
27
|
Hwang TI, Kim JI, Lee J, Moon JY, Lee JC, Joshi MK, Park CH, Kim CS. In Situ Biological Transmutation of Catalytic Lactic Acid Waste into Calcium Lactate in a Readily Processable Three-Dimensional Fibrillar Structure for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18197-18210. [PMID: 32153182 DOI: 10.1021/acsami.9b19997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A bioinspired three-dimensional (3D) fibrous structure possesses biomimicry, valuable functionality, and performance to scaffolding in tissue engineering. In particular, an electrospun fibrous mesh has been studied as a scaffold material in various tissue regeneration applications. We produced a low-density 3D polycaprolactone/lactic acid (LA) fibrous mesh (3D-PCLS) via the novel lactic-assisted 3D electrospinning technique exploiting the catalytic properties of LA as we reported previously. In the study, we demonstrated a strategy of recycling the LA component to synthesize the osteoinductive biomolecules in situ, calcium lactate (CaL), thereby forming a 3D bioactive PCL/CaL fibrous scaffold (3D-SCaL) for bone tissue engineering. The fiber morphology of 3D-PCLS and its packing degree could have been tailored by modifying the spinning solution and the collector design. 3D-SCaL demonstrated successful conversion of CaL from LA and exhibited the significantly enhanced biomineralization capacity, cell infiltration and proliferation rate, and osteoblastic differentiation in vitro with two different cell lines, MC3T3-e1 and bone marrow stem cells. In conclusion, 3D-SCaL proves to be a highly practical and accessible strategy using a variety of polymers to produce 3D fibers as a potential candidate for future regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Tae In Hwang
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
- Department of Medical Practicing, Woori Convalescent Hospital, Jeonju, Jeonbuk 54914, South Korea
| | - Jeong In Kim
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - Joshua Lee
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - Joon Yeon Moon
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - Jeong Chan Lee
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - Mahesh Kumar Joshi
- Department of Chemistry, Tribhuvan University, Tri-Chandra Multiple Campus, Kathmandu 44605, Nepal
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Jeonbuk 561-756, South Korea
| |
Collapse
|
28
|
Domaschke S, Morel A, Kaufmann R, Hofmann J, Rossi RM, Mazza E, Fortunato G, Ehret AE. Predicting the macroscopic response of electrospun membranes based on microstructure and single fibre properties. J Mech Behav Biomed Mater 2020; 104:103634. [DOI: 10.1016/j.jmbbm.2020.103634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 01/29/2023]
|
29
|
Sabra S, Ragab DM, Agwa MM, Rohani S. Recent advances in electrospun nanofibers for some biomedical applications. Eur J Pharm Sci 2020; 144:105224. [DOI: 10.1016/j.ejps.2020.105224] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
|
30
|
Investigation of the Oxidation Mechanism of Dopamine Functionalization in an AZ31 Magnesium Alloy for Biomedical Applications. COATINGS 2019. [DOI: 10.3390/coatings9090584] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Implant design and functionalization are under significant investigation for their ability to enhance bone-implant grafting and, thus, to provide mechanical stability for the device during the healing process. In this area, biomimetic functionalizing polymers like dopamine have been proven to be able to improve the biocompatibility of the material. In this work, the dip coating of dopamine on the surface of the magnesium alloy AZ31 is investigated to determine the effects of oxygen on the functionalization of the material. Two different conditions are applied during the dip coating process: (1) The absence of oxygen in the solution and (2) continuous oxygenation of the solution. Energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) are used to analyze the composition of the formed layers, and the deposition rate on the substrate is determined by molecular dynamic simulation. Electrochemical analysis and cell cultivation are performed to determine the corrosion resistance and cell’s behavior, respectively. The high oxygen concentration in the dopamine solution promotes a homogeneous and smooth coating with a drastic increase of the deposition rate. Also, the addition of oxygen into the dip coating process increases the corrosion resistance of the material.
Collapse
|