1
|
Wang M, Yin F, Kong L, Yang L, Sun H, Sun Y, Yan G, Han Y, Wang X. Chinmedomics: a potent tool for the evaluation of traditional Chinese medicine efficacy and identification of its active components. Chin Med 2024; 19:47. [PMID: 38481256 PMCID: PMC10935806 DOI: 10.1186/s13020-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
As an important part of medical science, Traditional Chinese Medicine (TCM) attracts much public attention due to its multi-target and multi-pathway characteristics in treating diseases. However, the limitations of traditional research methods pose a dilemma for the evaluation of clinical efficacy, the discovery of active ingredients and the elucidation of the mechanism of action. Therefore, innovative approaches that are in line with the characteristics of TCM theory and clinical practice are urgently needed. Chinmendomics, a newly emerging strategy for evaluating the efficacy of TCM, is proposed. This strategy combines systems biology, serum pharmacochemistry of TCM and bioinformatics to evaluate the efficacy of TCM with a holistic view by accurately identifying syndrome biomarkers and monitoring their complex metabolic processes intervened by TCM, and finding the agents associated with the metabolic course of pharmacodynamic biomarkers by constructing a bioinformatics-based correlation network model to further reveal the interaction between agents and pharmacodynamic targets. In this article, we review the recent progress of Chinmedomics to promote its application in the modernisation and internationalisation of TCM.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
2
|
Zhou M, Li J, Xiao X, Lim J, Tian Z, Wang D, Zhang N, Xu Z. Research Status and Trends of Traditional Chinese Medicine Therapeutic Formulae for Coronary Heart Disease Scientometrics Research. Int J Gen Med 2024; 17:971-983. [PMID: 38495923 PMCID: PMC10944307 DOI: 10.2147/ijgm.s450876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Aim of the Study This study analyzes research on TCM formulae in CHD over the past 30 years, using VOSviewer and CiteSpace. It aims to highlight key trends and hotspots in the field. Materials and Methods The core database of Web of Science was collected, and the search time range was from the establishment of the database to the present (August 2023) for the literature related to the study of TCM prescriptions in CHD, and the information on the number of literature, countries, journals, authors, institutions, keywords were summarized by applying the software VOSviewer and CiteSpace. Results A total of 135 kinds of literature were included. The number of published journal papers on research on TCM therapeutic formulae for CHD showed an upward trend; China was the most prolific country in this field; the largest number of papers were published in Evid Based Complement Alternat Med, MEDICINE; the average number of citations for authors and institutional analysis revealed that Xu Hao of China Academy of Traditional Chinese Medicine, Mao Jingyuan of Tianjin University of Traditional Chinese Medicine, and Shang Hongcai of Beijing University of Traditional Chinese Medicine constituted the core team of researchers studying the study of TCM formulae for CHD; the keyword analysis suggests that there are mainly 42 specifically named TCM formulae for the treatment of CHD, which are classified into a total of 7 major categories, and the research direction is mainly in the clinical efficacy study of different TCM therapeutic formulae and other aspects. Conclusion This study shows that there are more types of TCM therapeutic formulae for CHD, and the related research has a good prospect. It is foreseeable that more relevant research results will rely on the study of network pharmacology, signalling pathways, and action targets of TCM therapeutic formulae.
Collapse
Affiliation(s)
- Mi Zhou
- College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jieyun Li
- College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Xinang Xiao
- College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jiekee Lim
- College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhikui Tian
- College of Rehabilitation Medicine, Qilu Medical University, Zibo, 255000, People’s Republic of China
| | - Dongjun Wang
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, 063210, People’s Republic of China
| | - Naijin Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Zhaoxia Xu
- College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Shanghai Key Laboratory of Health Identification and Assessment, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
3
|
Fei C, Ji D, Tong H, Li Y, Su L, Qin Y, Bian Z, Zhang W, Mao C, Li L, Lu T. Therapeutic mechanism of Curcuma aromatica Salisb. rhizome against coronary heart disease based on integrated network pharmacology, pharmacological evaluation and lipidomics. Front Pharmacol 2022; 13:950749. [PMID: 36016561 PMCID: PMC9396035 DOI: 10.3389/fphar.2022.950749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Curcuma aromatica Salisb. rhizome (CASR) has multifunctional characteristics worldwide and a long history of use as a botanical drug with. Currently, it is often used clinically to treat coronary heart disease (CHD) caused by blood stasis syndrome. However, the therapeutic mechanism of CASR in the treatment of CHD remains poorly understood. In study, the main chemical constituents of CASR were analyzed using UPLC-Q-TOF-MS/MS. Then, its potential therapeutic mechanism against CHD was predicted. Subsequently, pharmacological evaluation was performed using CHD rat model. Finally, a lipidomics approach was applied to explore the different lipid metabolites to verify the regulation of CASR on lipid metabolism disorders in CHD. A total of 35 compounds was identified from CASR. Seventeen active components and 51 potential targets related to CHD were screened by network pharmacology, involving 13 key pathways. In vivo experiments showed that CASR could significantly improve myocardial infarction, blood stasis, and blood lipid levels and regulate the PI3K/AKT/mTOR signaling pathway in CHD rats. Lipidomics further showed that CASR could regulate abnormal sphingolipid, glycerophospholipid, and glycerolipid metabolism in CHD rats. The therapeutic mechanism of CASR against CHD was initially elucidated and included the regulation of lipid metabolism. Its effects may be attributed to active ingredients, such as curzerene, isoprocurcumenol, and (+)-curcumenol. This study reveals the characteristics of multi-component and multi-pathway of CASR in the treatment of CHD, which provides a basis for the follow-up development and utilization of CASR.
Collapse
Affiliation(s)
- Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - De Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huangjin Tong
- Department of Pharmacy, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwen Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenhua Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacy, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Wei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Chunqin Mao, ; Lin Li, ; Tulin Lu,
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Chunqin Mao, ; Lin Li, ; Tulin Lu,
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Chunqin Mao, ; Lin Li, ; Tulin Lu,
| |
Collapse
|
4
|
Zhang DY, Peng RQ, Wang X, Zuo HL, Lyu LY, Yang FQ, Hu YJ. A network pharmacology-based study on the quality control markers of antithrombotic herbs: Using Salvia miltiorrhiza - Ligusticum chuanxiong as an example. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115197. [PMID: 35331879 DOI: 10.1016/j.jep.2022.115197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza (Danshen, DS), the dried root and rhizome of Salvia miltiorrhiza Bunge and Ligusticum chuanxiong (Chuanxiong, CX), the dried rhizomes of Ligusticum striatum DC are effective in invigorating blood circulation and eliminating stasis which is highly related with cardiovascular disease (CVD). AIM OF STUDY The identification of activity-based chemical markers is very important, but the complex mechanism of "multi-component, multi-target, and multi-effect" within traditional Chinese medicine (TCM) poses a great challenge to this work. In this study, we combined network pharmacological prediction with experimental validation of the DS and CX to explore an effective method for discovering quality control (QC) of antithrombotic herbs by clarifying the intermediate layer "module/cluster" between the whole complex system and a single component. MATERIALS AND METHODS Based on structural similarity analysis of compound and the thrombosis network published before, we firstly modularized two layers called chemical cluster (CC) network and functional module (FM) network respectively and linked them into one bilayer modularized compound target (BMCT) network. "Two-step" calculation was applied on identifying the significant compounds as the potential QC markers from CC. The in vitro inhibitory activity of selected QC marker compounds on thrombin was evaluated to partially verify their pharmacological activities. HPLC was used to determine contents. RESULTS According to the network-based analysis, nine compounds with great importance in the BMCT network were identified as QC markers of DS-CX, including tanshinone I, tanshinone IIA, cryptotanshinone, salvianolic acid B, ferulic acid, salvianolic acid A, rosmarinic acid, chlorogenic acid, and coniferyl ferulate. Enzyme inhibitory test partially verified the activity of tanshinone I and tanshinone IIA. Chemical profiling indicated that the nine marker compounds are the main components in the herbal pair. CONCLUSIONS This study identified activity-based QC markers of DS-CX herbal pair and provided a new methodology that can be used in the QC of other herbs, herbal pairs, or formulas.
Collapse
Affiliation(s)
- Dai-Yan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Ruo-Qian Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Xu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Hua-Li Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China; Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Li-Yang Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China; DPM, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| |
Collapse
|
5
|
He Y, Zhang M, Li T, Tan Z, Zhang A, Ou M, Huang D, Wu F, Wang X. Metabolomics Analysis Coupled With UPLC/MS on Therapeutic Effect of Jigucao Capsule Against Dampness-Heat Jaundice Syndrome. Front Pharmacol 2022; 13:822193. [PMID: 35153793 PMCID: PMC8831696 DOI: 10.3389/fphar.2022.822193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dampness-heat Jaundice Syndrome (DHJS) is a complex Chinese medicine syndrome, while Jigucao capsule (JGCC) is an effective compound preparation of Chinese medicine for the treatment of DHJS about liver and gallbladder, but its mechanism is not clear yet. The purpose of this study is to clarify the pathogenesis of DHJS and the treatment mechanism of JGCC. We used ultra-high performance liquid chromatography/mass spectrometry (UPLC/MS) combined with pattern recognition, accompanied the advanced software and online database for the urine metabolomics of rats. The potential biomarkers disturbing metabolism were identified and the metabolic pathway was analyzed. We investigated the callback of biomarkers after treatment with JGCC. Finally, A total of 25 potential urine biomarkers were identified, including Arachidonic acid, Phenylpyruvic acid, L-Urobilin and so on, and 14 related metabolic pathways were disturbed. After treatment with JGCC, the clinical biochemical indexes and histopathological were significantly improved, and the disturbed biomarkers were also obviously adjusted. It is proved that JGCC has remarkable effect on the treatment of DHJS.
Collapse
Affiliation(s)
- Yanmei He
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengli Zhang
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Taiping Li
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhien Tan
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Min Ou
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Danna Huang
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Muyumba N, Mutombo S, Sheridan H, Nachtergael A, Duez P. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Tian JS, Zhao HL, Gao Y, Wang Q, Xiang H, Xu XP, Huang S, Yan DL, Qin XM. Branched-Chain Amino Acids Catabolism Pathway Regulation Plays a Critical Role in the Improvement of Leukopenia Induced by Cyclophosphamide in 4T1 Tumor-Bearing Mice Treated With Lvjiaobuxue Granule. Front Pharmacol 2021; 12:657047. [PMID: 34759816 PMCID: PMC8573099 DOI: 10.3389/fphar.2021.657047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Cyclophosphamide is a common tumor chemotherapy drug used to treat various cancers. However, the resulting immunosuppression leads to leukopenia, which is a serious limiting factor in clinical application. Therefore, the introduction of immunomodulators as adjuvant therapy may help to reduce the hematological side effects of cyclophosphamide. Lvjiaobuxue granule has been widely used in the clinical treatment of gynecological diseases such as anemia and irregular menstruation. Recently, it has been found to increase the function of white blood cells, but its mechanism of action is still unclear. We aimed to reveal the mechanisms of Lvjiaobuxue granule against acute leukopenia by an integrated strategy combining metabolomics with network pharmacology. Methods: Subcutaneously inoculated 4T1 breast cancer cells to prepare tumor-bearing mice, intraperitoneal injection of cyclophosphamide to establish a 4T1 tumor-bearing mice leukopenia animal model, using pharmacodynamic indicators, metabolomics, network pharmacology and molecular biology and other technical methods. To comprehensively and systematically elucidate the effect and mechanism of Lvjiaobuxue granule in improving cyclophosphamide-induced leukopenia in 4T1 tumor-bearing mice. Results: Lvjiaobuxue granule can improve the blood routine parameters and organ index levels of the leukopenia model of 4T1 tumor-bearing mice. Metabolomics studies revealed that 15 endogenous metabolites in the spleen of mice were considered as potential biomarkers of Lvjiaobuxue granule for their protective effect. Metabonomics and network pharmacology integrated analysis indicated that Lvjiaobuxue granule exerted the leukocyte elevation activity by inhibiting the branched-chain amino acids (BCAAs) degradation pathway and increasing the levels of valine, leucine and isoleucine. The results of molecular biology also showed that Lvjiaobuxue granule can significantly regulate the key enzymes in the catabolism of BCAAs, which further illustrates the importance of BCAAs in improving leukopenia. Conclusion: Lvjiaobuxue granule exerts obvious pharmacological effects on the leukopenia model of 4T1 tumor-bearing mice induced by cyclophosphamide, which could be mediated by regulating the branched-chain amino acid degradation pathway and the levels of valine, leucine and isoleucine.
Collapse
Affiliation(s)
- Jun-sheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Jiuzhitang Co. Ltd., Changsha, China
| | - Hui-liang Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Qi Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Huan Xiang
- School of Physical Education, Shanxi University, Taiyuan, China
| | | | - Sheng Huang
- Jiuzhitang Co. Ltd., Changsha, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
8
|
Guo N, Wang P, Yang J, Yang X, van der Voet M, Wildwater M, Wei J, Tang X, Wang M, Yang H. Serum Metabolomic Analysis of Coronary Heart Disease Patients with Stable Angina Pectoris Subtyped by Traditional Chinese Medicine Diagnostics Reveals Biomarkers Relevant to Personalized Treatments. Front Pharmacol 2021; 12:664320. [PMID: 34194326 PMCID: PMC8236985 DOI: 10.3389/fphar.2021.664320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
To improve the treatment of patients with coronary heart disease (CHD), personalized treatments based on potential biomarkers could make a difference. To investigate if such potential biomarkers could be found for CHD inhomogeneous, we combined traditional Chinese medicine based diagnosis with untargeted and targeted metabolomics analyses. Shi and Xu patient subtype groups of CHD with angina pectoris were identified. Different metabolites including lipids, fatty acids and amino acids were further analyzed with targeted metabolomics and mapped to disease-related pathways. The long-chain unsaturated lipids ceramides metabolism, bile acid metabolism were differentially affected in the Xu subtype groups. While, Shi-subtype patients seemed to show inflammation, anomalous levels of bioactive phospholipids and antioxidant molecules. Furthermore, variations in the endothelial damage response and energy metabolism found based on ELISA analysis are the key divergence points between different CHD subtypes. The results showed Xu subtype patients might benefit from long-chain unsaturated lipids ceramides as therapeutic targets. Shi subtype patients might benefit more from levels of polyunsaturated fatty acid consumption and treatments that help in restoring energy balance. Metabolic differences can be essential for treatment protocols. Thus, patient group specific differences can serve as important information to refine current treatment approaches in a personalized manner.
Collapse
Affiliation(s)
- Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Center for Post-doctoral Research, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peili Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaying Yang
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaofang Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Wang XX, Yu PC, Li J. High-Throughput Metabolomics for Identification of Metabolic Pathways and Deciphering the Effect Mechanism of Dioscin on Rectal Cancer From Cell Metabolic Profiles Coupled With Chemometrics Analysis. Front Pharmacol 2020; 11:68. [PMID: 32180713 PMCID: PMC7059176 DOI: 10.3389/fphar.2020.00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/24/2020] [Indexed: 01/05/2023] Open
Abstract
High-throughput liquid chromatography-mass spectrometry (LC-MS)-based metabolomics can provide the holistic analysis of the low molecular weight endogenous metabolites in cells and reflect the changes of cellular regulation and metabolic pathways. Our study designed to reveal the potentially pharmacological effects of dioscin on SW480 rectal cancer cells using nontargeted metabolomics method to probe into small molecular metabolites and pathway changes. After the cell assay of proliferation, apoptosis, migration, and invasion, the dioscin-treated cell samples were prepared for nontargeted metabolomics analysis based on LC-MS tool to describe the metabolic profiles. Dioscin has prevented cell proliferation and accelerated cell apoptosis, and it also inhibited the SW480 rectal cancer cells' migration and invasion. A total of 22 metabolites were selected as promising biomarkers of pharmacological reaction of dioscin to rectal cancer, and eight highly correlated pathways including D-glutamine and D-glutamate metabolism, pyruvate metabolism, arachidonic acid metabolism, phenylalanine metabolism, tryptophan metabolism, glycolysis or gluconeogenesis, citrate cycle (TCA cycle), and butanoate metabolism were identified. It showed that strategies based on cell metabolomics are helpful tools to discover the small molecular metabolites to elucidate the action mechanism of drug.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Heilongjiang Province Land Reclamation Headquarters General Hospital, Heilongjiang Agriculture and Reclamation Bureau, Harbin, China
| | - Peng-cheng Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Jun Li
- Department of Orthopedics, The Affiliated First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Ren JL, Zhang AH, Kong L, Han Y, Yan GL, Sun H, Wang XJ. Analytical strategies for the discovery and validation of quality-markers of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153165. [PMID: 31954259 DOI: 10.1016/j.phymed.2019.153165] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/23/2019] [Accepted: 12/28/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Quality control of traditional Chinese medicine (TCM) is the basis of clinical efficacy. Due to the complexity of TCM, it is difficult to unify the quality control, and hinders the further implementation of the quality standardization of TCM. As a new concept, quality-marker (Q-marker) plays a powerful role in promoting the standardization of quality control system of TCM. HYPOTHESIS/PURPOSE The present review aims to provide reference and scientific basis for further development of Q-marker and assist standardization of quality control of TCM. METHODS Extensive search of various documents and electronic databases such as Pubmed, Royal Society of Chemistry, Science Direct, Springer, Web of Science, and Wiley, etc., were used to search scientific contributions. Other online academic libraries, e.g. Google Scholars, Scopus and national pharmacology literature were also been employed to learn more relevant information about Q-marker. RESULTS Q-markers play vital role in promoting the standardization of quality control of TCM. The factors that affect the quality of TCM, the advantages and disadvantages of the analytical techniques commonly used in Q-marker research were reviewed, as well as the systematic research strategies, which were verified by practices. CONCLUSION The proposal of Q-marker not only provided a new perspective to break through the bottleneck of current quality control, but also can be used in the evaluation of pharmacological efficiency, therapeutic discovery, toxicology, etc. In addition, the Q-marker analysis strategies summarized in this paper is helpful to standardize the quality control of TCM and promote the internationalization of TCM.
Collapse
Affiliation(s)
- Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ling Kong
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, Guangxi, China.
| |
Collapse
|
11
|
Jiang YC, Li YF, Zhou L, Zhang DP. Comparative metabolomics unveils molecular changes and metabolic networks of syringin against hepatitis B mice by untargeted mass spectrometry. RSC Adv 2020; 10:461-473. [PMID: 35492557 PMCID: PMC9048208 DOI: 10.1039/c9ra06332c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Untargeted metabolomics technology was used to discover the metabolic pathways and biomarkers for revealing the potential biological mechanism of syringin on hepatitis B virus. Serum samples were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based comparative metabolomics coupled with pattern recognition methods and network pathway. In addition, the histopathology, HBV DNA detection of liver tissue, and biochemical indicators of liver function change were also explored for investigating the antiviral effect of syringin. In comparison to the model group, the metabolic profiles of the turbulence in transgenic mice tended to recover to the same as the control group after syringin therapy. A total of 33 potential biomarkers were determined to explore the metabolic disorders in the hepatitis B animal model, of which 25 were regulated by syringin, and 8 metabolic pathways, such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, were involved. Syringin markedly reduced the liver pathology change, inhibited HBV DNA replication, and improved liver function. Amino acid metabolism is a potential target for the treatment of hepatitis B. The hepatoprotective effect of syringin may contribute to ameliorating oxidative stress and preventing protein and DNA replication. Comparative metabolomics is a promising tool for discovering metabolic pathways and biomarkers of the hepatitis B animal model as targets to reveal the effects and mechanism of syringin, which benefits the development of natural products and advances the treatment of diseases. Untargeted metabolomics technology was used to discover the metabolic pathways and biomarkers for revealing the potential biological mechanism of syringin on hepatitis B virus.![]()
Collapse
Affiliation(s)
- Yi-chang Jiang
- Third Department of Orthopedics
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Yuan-feng Li
- Third Department of Orthopedics
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Ling Zhou
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Da-peng Zhang
- Third Department of Orthopedics
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| |
Collapse
|
12
|
Sun YC, Han SC, Yao MZ, Liu HB, Wang YM. Exploring the metabolic biomarkers and pathway changes in crucian under carbonate alkalinity exposure using high-throughput metabolomics analysis based on UPLC-ESI-QTOF-MS. RSC Adv 2020; 10:1552-1571. [PMID: 35494719 PMCID: PMC9047290 DOI: 10.1039/c9ra08090b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
The aims of this study is to explore the metabolomic biomarker and pathway changes in crucian under carbonate alkalinity exposures using high-throughput metabolomics analysis based on ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS) for carrying out adaptive evolution of fish in environmental exposures and understanding molecular physiological mechanisms of saline–alkali tolerance in fishes. Under 60 day exposure management, the UPLC-ESI-QTOF-MS technology, coupled with a pattern recognition approach and metabolic pathway analysis, was utilized to give insight into the metabolic biomarker and pathway changes. In addition, biochemical parameters in response to carbonate alkalinity in fish were detected for chronic impairment evaluation. A total of twenty-seven endogenous metabolites were identified to distinguish the biochemical changes in fish in clean water under exposure to different concentrations of carbonate alkalinity (CA); these mainly involved amino acid synthesis and metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism and the citrate cycle (TCA cycle). Compared with the control group, CA exposure increased the level of blood ammonia; TP; ALB; Gln in the liver and gills; GS; urea in blood, the liver and gills; CREA; CPS; Glu and LDH; and decreased the level of weight gain rate, oxygen consumption, discharge rate of ammonia, SOD, CAT, ALT, AST and Na+/K+-ATPase. At low concentrations, CA can change the normal metabolism of fish in terms of changing the osmotic pressure regulation capacity, antioxidant capacity, ammonia metabolism and liver and kidney function to adapt to the CA exposure environment. As the concentration of CA increases, various metabolic processes in crucian are inhibited, causing chronic damage to the body. The results show that the metabolomic strategy is a potentially powerful tool for identifying the mechanisms in response to different environmental exposomes and offers precious information about the chronic response of fish to CA. We explore the metabolic biomarker and pathway changes accompanying the adaptive evolution of crucian subjected to carbonate alkalinity exposure, using UPLC-ESI-QTOF-MS, in order to understand the molecular physiological mechanisms of saline–alkali tolerance.![]()
Collapse
Affiliation(s)
- Yan-chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Shi-cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Ming-zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Hong-bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Yu-mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| |
Collapse
|
13
|
Qiu S, Zhang AH, Guan Y, Sun H, Zhang TL, Han Y, Yan GL, Wang XJ. Functional metabolomics using UPLC-Q/TOF-MS combined with ingenuity pathway analysis as a promising strategy for evaluating the efficacy and discovering amino acid metabolism as a potential therapeutic mechanism-related target for geniposide against alcoholic liver disease. RSC Adv 2020; 10:2677-2690. [PMID: 35496090 PMCID: PMC9048633 DOI: 10.1039/c9ra09305b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolomics has been used as a strategy to evaluate the efficacy of and potential targets for natural products.
Collapse
Affiliation(s)
- Shi Qiu
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Yu Guan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Tian-lei Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Ying Han
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Xi-jun Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| |
Collapse
|
14
|
Xu J, Jiang ZH, Liu XB, Ma Y, Ma W, Ma L. Ultra-performance liquid chromatography-mass spectrometry-based metabolomics reveals Huangqiliuyi decoction attenuates abnormal metabolism as a novel therapeutic opportunity for type 2 diabetes. RSC Adv 2019; 9:39858-39870. [PMID: 35541427 PMCID: PMC9076227 DOI: 10.1039/c9ra09386a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022] Open
Abstract
Background: As a typical chronic metabolic disease, type 2 diabetes mellitus causes a heavy health-care burden to society. In this study, we applied the metabolomics strategy to explore the potential molecular mechanism of the Huangqiliuyi decoction (HQLYD) for type-2 diabetes (T2D). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) combined with pattern recognition methods was utilized to select specific metabolites closely associated with HQLYD. Biomarker pathway analysis and biological network were utilized to uncover the therapeutic effect and action mechanism related to HQLYD. A total of twenty-five biomarkers were identified in the animal model, in which sixteen biomarkers are associated with HQLYD treatment for T2D. They attenuated the abnormalities of metabolic pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and the citrate cycle. HQLYD also significantly elevated the serum FINS and SOD, GSP-x level in the liver and kidney, and reduced the serum TC, TG, HDL, LDL, urea, Scr, AST, ALT, FBG, IRS, MDA, and CAT level. We found that the therapeutic mechanism of HQLYD against T2D affected amino acid metabolism, glucose metabolism and lipid metabolism. Metabolomics revealed that the Huangqiliuyi decoction attenuates abnormal metabolism as a novel therapeutic opportunity for type 2 diabetes.
Collapse
Affiliation(s)
- Jiao Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
- College of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Zhe-Hui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
| | - Xiu-Bo Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Yan Ma
- School of Business Administration, Harbin University of Commerce Harbin 150040 China
| | - Wei Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
- College of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Ling Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
| |
Collapse
|
15
|
Zhao FJ, Zhang ZB, Ma N, Teng X, Cai ZC, Liu MX. Untargeted metabolomics using liquid chromatography coupled with mass spectrometry for rapid discovery of metabolite biomarkers to reveal therapeutic effects of Psoralea corylifolia seeds against osteoporosis. RSC Adv 2019; 9:35429-35442. [PMID: 35528068 PMCID: PMC9074708 DOI: 10.1039/c9ra07382e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022] Open
Abstract
Liquid chromatography coupled with mass spectrometry has been used as metabolomics profiling tool to discover and identify the metabolites in metabolic diseases. Osteoporosis (OP) syndrome is a chronic metabolic disease characterized by bone mass reduction and changes in bone microstructure. Psoralea corylifolia Linn. seeds (PCS) have a therapeutic effect on osteoporosis, but their action mechanism and therapeutic target are still unclear. This study aims to explore the metabolic changes of the urine profile in glucocorticoid-induced OP model rats and the therapeutic effect of PCS. High-throughput metabolomics based on the liquid chromatography coupled with mass spectrometry quadrupole time-of-flight mass spectrometry and multivariate data analysis were used to analyze the urine metabolites. The results showed that has an obvious separation between model and control groups. OPLS-DA was used to further analyze and discover substances that contributed to the separation. 42 potential biomarkers and 12 related metabolic pathways were identified in combination with network databases. After the intervention of PCS, 24 biomarkers were significantly regulated, mainly with glycone, serine and threonine metabolism, glutathione metabolism and purine metabolism and other metabolic pathways are related and discovered. This study has proved that PCS has therapeutic effect against OP by regulating that metabolic pathways disturbed in the OP. It provided a basis for the research and future development of new drugs for OP treatment. Liquid chromatography coupled with mass spectrometry has been used as metabolomics profiling tool to discover and identify the metabolites in metabolic diseases.![]()
Collapse
Affiliation(s)
- Fu-Jiang Zhao
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Zhao-Bo Zhang
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Ning Ma
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Xiao Teng
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Zhen-Cheng Cai
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Ming-Xi Liu
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| |
Collapse
|
16
|
Gao X, Hu X, Zhang Q, Wang X, Wen X, Wang Y, Zhang Y, Sun W. Characterization of chemical constituents and absorbed components, screening the active components of gelanxinning capsule and an evaluation of therapeutic effects by ultra‐high performance liquid chromatography with quadrupole time of flight mass spectrometry. J Sep Sci 2019; 42:3439-3450. [DOI: 10.1002/jssc.201900942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Gao
- Department of Pharmacognosy, School of PharmacyXi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Xiaohu Hu
- Xi'an Chiho Pharmaceutical Co., Ltd Xi'an Shaanxi P. R. China
| | - Qiong Zhang
- Xi'an Chiho Pharmaceutical Co., Ltd Xi'an Shaanxi P. R. China
| | - Xijing Wang
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Xiuhong Wen
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Yuan Wang
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Yanxia Zhang
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| | - Wenjun Sun
- Xi'an Xintong Pharmaceutical Research Co., Ltd Xi'an Shaanxi P. R. China
| |
Collapse
|
17
|
Xie J, Zhang AH, Qiu S, Zhang TL, Li XN, Yan GL, Sun H, Liu L, Wang XJ. Identification of the perturbed metabolic pathways associating with prostate cancer cells and anticancer affects of obacunone. J Proteomics 2019; 206:103447. [PMID: 31326558 DOI: 10.1016/j.jprot.2019.103447] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/22/2019] [Accepted: 07/14/2019] [Indexed: 12/01/2022]
Abstract
Functional metabolomics could bring correlative information about specific cell types under different conditions for exploring cell properties and functions. In this study, we adopt a non-targeted cell metabolomics strategy to reveal the proliferation inhibition mechanism of obacunone on 22RV1 prostate cancer cells. Using high-throughput liquid chromatography-high definition mass spectrometry combined with pattern recognition methods was performed to analyze the cell metabolic profiles and pathway of obacunone on prostate cancer. A total of twenty one proposed metabolites in prostate cancer cell and nine vital metabolic pathways such as nicotinate and nicotinamide metabolism, phenylalanine metabolism as well as tryptophan metabolism were identified from large amounts of data. Then, we have built an overall metabolic description network of obacunone to defense prostate cancer. In addition, morphological observation, cell proliferation and apoptosis analysis of 22RV1 human prostate cancer cells were performed to better understand physiopathologic changes after obacunone treatment. Functional metabolomics is a valuable tool that insight into the natural product mechanisms and contributes to new drug discovery. SIGNIFICANCE: In this study, we probe into the proliferation inhibition effect of obacunone on 22RV1 prostate cancer cells by differentiating metabolic changes of cell sample in control and obacunone administration. Using the non-targeted and targeted cell metabolomics approaches, our findings were manifested that obacunone effectually control proliferation and promote apoptosis in 22RV1 prostate cancer cells, which were related to twenty one proposed metabolites, and nicotinate and nicotinamide metabolism, phenylalanine metabolism, tryptophan metabolism as well as ascorbate metabolism. These data were suggested that functional metabolomics analysis have potential to explore the pharmacodynamic mechanism through resolving metabolic changes in cancer cells that possesses higher clinical application value. The advances in the molecular understanding of the roles of metabolomic pathway concerned with particular metabolites in obacunone administration attract more attention in favor of burgeoning therapeutic measures resisting prostate cancer.
Collapse
Affiliation(s)
- Jing Xie
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Shi Qiu
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Tian-Lei Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xian-Na Li
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| |
Collapse
|
18
|
Wu XH, Sun XL, Zhao C, Zhang JQ, Wang X, Zhang AH, Wang XJ. Exploring the pharmacological effects and potential targets of paeoniflorin on the endometriosis of cold coagulation and blood stasis model rats by ultra-performance liquid chromatography tandem mass spectrometry with a pattern recognition approach. RSC Adv 2019; 9:20796-20805. [PMID: 35515565 PMCID: PMC9065745 DOI: 10.1039/c9ra03525g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
This study was employed to explore the potential biomarkers of endometriosis of cold coagulation and blood stasis (ECB) model rats and the effective mechanism of action of paeoniflorin (PF). The serum metabolomics approach was carried out using the UPLC-MS technique with a pattern recognition approach to prove the possible biomarkers of the ECB model rats and the perturbed pathways. Subsequently, the mechanism of PF treatment of this disease model was elucidated. The results revealed that the serum metabolism profiles in two groups were also separated significantly. Moreover, 8 biomarkers were found in the positive mode, and 5 biomarkers were found in the negative mode. Totally, 13 biomarkers participated in the metabolism of phenylalanine, arachidonic acid, etc. After treatment with PF, 10 biomarkers were regulated. Among the 10 biomarkers, 4 were statistically significant: l-phenylalanine, l-tryptophan, LysoPC (18:4(6Z,9Z,12Z,15Z)), and LysoPC (16:1(9Z)). We initially confirmed that PF could significantly regulate the metabolic expression of multiple metabolic pathways in the ECB model rats. For the first time, this study explored the mechanism of action of PF treatment based on the metabolic pathways of the organism and demonstrated the potential of the metabolomics techniques for the study of drug action mechanisms.
Collapse
Affiliation(s)
- Xiu-Hong Wu
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Xiao-Lan Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Chuang Zhao
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Jin-Qi Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Xu Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine Heping Road 24 Harbin 150040 China +86-451-82110818 +86-451-82110818 +86-451-87266802
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology Avenida Wai Long Taipa Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant Nanning Guangxi China
| |
Collapse
|
19
|
Yang Q, Zhang AH, Miao JH, Sun H, Han Y, Yan GL, Wu FF, Wang XJ. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv 2019; 9:37245-37257. [PMID: 35542267 PMCID: PMC9075731 DOI: 10.1039/c9ra06697g] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed. Mass spectrometry-based metabolomics has been used in a variety of disease research areas. However, the deep research of metabolites remains a difficult and lengthy process. Fortunately, mass spectrometry is considered to be a universal tool with high specificity and sensitivity and is widely used around the world. Mass spectrometry technology has been applied to various basic disciplines, providing technical support for the discovery and identification of endogenous substances in living organisms. The combination of metabolomics and mass spectrometry is of great significance for the discovery and identification of metabolite biomarkers. The mass spectrometry tool could further improve and develop the exploratory research of the life sciences. This mini review discusses metabolomics biotechnology with a focus on recent applications of metabolomics as a powerful tool to elucidate metabolic disturbances and the related mechanisms of diseases. Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed.![]()
Collapse
Affiliation(s)
- Qiang Yang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ai-hua Zhang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Jian-hua Miao
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Hui Sun
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ying Han
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Guang-li Yan
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Fang-fang Wu
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Xi-jun Wang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| |
Collapse
|
20
|
Luo W, Zhang JW, Zhang LJ, Zhang W. High-throughput untargeted metabolomics and chemometrics reveals pharmacological action and molecular mechanism of chuanxiong by ultra performance liquid chromatography combined with quadrupole-time-of-flight-mass spectrometry. RSC Adv 2019; 9:39025-39036. [PMID: 35540684 PMCID: PMC9075942 DOI: 10.1039/c9ra06267j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/17/2019] [Indexed: 01/05/2023] Open
Abstract
Metabolomics methods can be used to explore the effect mechanisms underlying treatments with traditional medicine. Lung cancer (LC) causes the highest morbidity and mortality among tumors disease, and has become a serious public health problem. Chuanxiong (CX) is a dried rhizome of Ligusticum Chuanxiong Hort., often used in traditional Chinese medicine and has been widely used in the treatment for tumors. However, the pharmacological effect of CX on the metabolism process of LC mice is still unclear. This study used high-throughput untargeted metabolomics aims to discover biomarkers and metabolic pathways of LC as a potential target to provide insight into the pharmacological action and effective mechanism of CX against LC. The precise structural identification of the LC biomarker has been established using ultra performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight-mass spectrometry (Q-TOF-MS) technology. UPLC-Q-TOF-MS and chemometrics methods were used to analyze the blood metabolism of LC model mice, and revealed the intervention effect of CX on LC model mice and potential therapeutic targets. The results showed that the metabolic profile clustering among the groups was obvious, and 31 potential biomarkers were finally locked, involving 7 related metabolic pathways. After treatment with CX, we found that 22 kinds of biomarkers were recalled to the main metabolic pathway which are associated with lipid metabolism. This study provides an effective biomarker reference for early clinical diagnosis of LC, and also provides a foundation for the expansion of new drugs for CX treatment of LC. Metabolomics methods can be used to explore the effect mechanisms underlying treatments with traditional medicine.![]()
Collapse
Affiliation(s)
- Wen Luo
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| | - Jia-Wen Zhang
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| | - Li-Juan Zhang
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| | - Wei Zhang
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| |
Collapse
|