1
|
Negi S, Takkar P, Gahlyan P, Kumar R. A new pyranopyrazole based colorimetric chemosensor for the selective recognition of biothiols: applications in real samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:377-387. [PMID: 39641366 DOI: 10.1039/d4ay02099e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Here, we present the development of a pyranopyrazole-based chemosensor (P1) that serves as a reliable colorimetric chemosensor for the identification of biothiols, namely glutathione (GSH), homocysteine (Hcy), and cysteine (Cys). We extensively studied the interaction of P1 with several amino acids (Cys, Ala, His, Ile, Leu, Lys, Ser, Trp, Val, Pro, Phe, Arg) and other biothiols (Hcy and GSH) using colorimetric methods and UV-visible spectroscopy. The results indicated that P1 endures a visible color change in the presence of biothiols, rendering it a practical tool for detection. Time-dependent studies demonstrated that P1 can detect biothiols within seconds, while pH studies verified its efficacy across a wide pH range (4-8), emphasizing its adaptability to a variety of applications. The Benesi-Hildebrand (B-H) method was used to determine the binding constants (Ka) of P1 with Cys, Hcy, and GSH. The respective values obtained were 0.762 × 104 M-1, 0.51 × 104 M-1 and 0.01 × 104 M-1. The determination of the limit of detection (LOD) for Cys, Hcy, and GSH yielded values of 2.62 × 10-7 M, 3.26 × 10-7 M and 1.37 × 10-5 M, correspondingly. Further, the practical usefulness of chemosensor P1 was shown in both solid-state and real sample analysis, encompassing human blood plasma as well as commercially available samples of Cys and GSH. The successful identification of biothiols in these samples underscores the potential of P1 as a reliable chemosensor for clinical diagnostics.
Collapse
Affiliation(s)
- Swati Negi
- Bio-organic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Priya Takkar
- Bio-organic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Parveen Gahlyan
- Bio-organic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Rakesh Kumar
- Bio-organic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Wang P, Liu Y, Tao L, Cheng D, He L, Li S. Monitoring cysteine changes and assessing ferroptosis in diabetic mice with a lysosome-targeted near-infrared fluorescence probe. SENSORS AND ACTUATORS B: CHEMICAL 2024; 421:136549. [DOI: 10.1016/j.snb.2024.136549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Chen S, Yu W, Xing G, Song Z, Feng G. A new fluorescent probe with high selectivity and sensitivity for Cys detection in bovine serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5248-5253. [PMID: 39011724 DOI: 10.1039/d4ay00910j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Cysteine (Cys) is one of the most basic mercaptans in the human body. As an important endogenous small molecule mercaptan, Cys plays a vital role in various physiological processes and can participate in maintaining redox balance to ensure homeostasis. Abnormal Cys levels can lead to a variety of diseases. However, the detection of cysteine may be interfered with by other small molecule biothiols. Therefore, the design of fluorescent probes based on the structural characteristics and reactivity of cysteine has become the focus of current research. In this paper, a fluorescent probe (3-(2H-benzo[d][1,2,3]triazol-2-yl)-2-oxo-2H-benzo[g]chromen-8-yl acrylate, BTAB) for Cys detection was synthesized with acrylic ester as the reaction site. Under the conditions of gradual optimization, BTAB can achieve selectivity and anti-interference ability for Cys detection. The linear range of Cys was 0.3-10 μM, and the detection limit was 0.154 μM. Finally, this probe was applied to detect the Cys content in bovine serum samples with satisfactory results.
Collapse
Affiliation(s)
- Shu Chen
- Department of Thoracic Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun City, Jilin Province, China
| | - Weiwei Yu
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| | - Guangnan Xing
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| | - Zhiguang Song
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| |
Collapse
|
4
|
Li C, Ji P, Liu X, Feng G, Song Z, Guo Y. A new ratiometric fluorescent probe for rapid and highly selective detection of Cysteine in bovine serum. ANAL SCI 2024; 40:765-772. [PMID: 38358582 DOI: 10.1007/s44211-024-00516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
As one of the most fundamental thiol compounds in the human body, cysteine (Cys) is involved in maintaining redox balance. Abnormal Cys levels can lead to various diseases. In this work, we successfully synthesized a fluorescent probe (CTBA) that can specifically detect Cys using acrylate as the reaction site, and CTBA has met the selectivity and anti-interference for Cys detection under optimized conditions. The linear range for Cys detection is between 0.05 and 100 μM and the detection limit is 0.0381 μM. Finally, this probe is used to detect the Cys content in three bovine serum samples and the test results are satisfactory.
Collapse
Affiliation(s)
- Changjian Li
- College of Chemistry, Jilin University, Changchun, 130012, China
- National Chemistry Experimental Teaching Demonstration Center, Jilin University, ChangchunJilin, 130012, China
| | - Peng Ji
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xin Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiguang Song
- College of Chemistry, Jilin University, Changchun, 130012, China
- National Chemistry Experimental Teaching Demonstration Center, Jilin University, ChangchunJilin, 130012, China
| | - Yupeng Guo
- College of Chemistry, Jilin University, Changchun, 130012, China.
- National Chemistry Experimental Teaching Demonstration Center, Jilin University, ChangchunJilin, 130012, China.
| |
Collapse
|
5
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
6
|
Liu L, Liu B, Hao Y, Wang J, Xu X, Shang X. Theory and experiment: The synthesis and drug application of "ON-OFF-ON" fluorescent probes for copper and biothiols detection. J Pharm Biomed Anal 2024; 239:115876. [PMID: 38039872 DOI: 10.1016/j.jpba.2023.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Abnormal copper ions (Cu2+) and biothiols have potential impacts on environmental pollution and human health, so the detection of these substances with high selectivity and sensitivity has become an important research topic. In this study, we designed and synthesized two fluorescent probes (L1 and L2) based on naphthalene and anthracene derivatives that could specifically detect Cu2+ and biothiols. Owing to the paramagnetic effect of Cu2+, the strong fluorescent intensity was quenched after the addition of Cu2+. When biothiols were added to the solution (L-Cu2+), the fluorescence intensity was significantly enhanced and recovered. So, the interaction process was accompanied with "ON-OFF-ON" phenomenon in fluorescent intensity. Two complexes (L-Cu2+) showed low limit of detection for biothiols (Cys was 3.4 ×10-5 M and GSH was 2.0 ×10-5 M) and weak cytotoxicity (< 150 μg/mL). Theoretical investigation analysis revealed that the intramolecular hydrogen bond existed in the structure of probes and the roles of molecular frontier orbitals in molecular interplay. In addition, two probes also showed good applicability in actual drug Atomolan. The GSH content in the tested Atomolan reached over 99.9% of the labeling which was accord with the percentage of pharmacopoeia. Therefore, two probes have the real application value in the detection of Cu2+, biothiols and drug efficacy in various environments.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bingqing Liu
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yongbing Hao
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jia Wang
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiufang Xu
- Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuefang Shang
- Department of Medical Chemistry, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
7
|
Sun L, Dong X, Gao J, Zhu T, Sun J, Dong C, Wang R, Gu X, Zhao C. Precise Spatiotemporal Identification of Mitochondrial H 2S Fluctuations through Exploiting an On-Demand Photoactivated Probe. Anal Chem 2023; 95:14288-14296. [PMID: 37697825 DOI: 10.1021/acs.analchem.3c02509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Various signal molecules participate in complex biological processes in mitochondria. However, most currently available probes have problems in elucidating the functions of these active species in mitochondria due to the inability to light up these probes exclusively at the desired mitochondrial location, thereby compromising the specificity and accuracy. In this study, we present an on-demand photoactivation approach to the molecular design of optimized probes for precise spatiotemporal identification of mitochondrial H2S fluctuations. The designed probe with native yellow fluorescence can monitor the process into mitochondria but maintains nonfluorescent response to H2S during cellular delivery, providing the accurate timing of accumulation in mitochondria. On-demand photoactivation exclusively at the desired mitochondrial location affords a significant aggregation-enhanced and emissive response to H2S with lighting up red fluorescence at 690 nm, which is the only way to get such an emissive phenomenon and greatly improves the specificity and accuracy of targeting mitochondrial H2S. By using this photocontrolled fluorescence responsiveness to H2S, precise spatiotemporal identification of mitochondrial H2S fluctuations is successfully performed. Our work could facilitate advances toward interrogating the physiological and pathological consequences of mitochondrial H2S in various biological events.
Collapse
Affiliation(s)
- Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
8
|
Goshisht MK, Tripathi N, Patra GK, Chaskar M. Organelle-targeting ratiometric fluorescent probes: design principles, detection mechanisms, bio-applications, and challenges. Chem Sci 2023; 14:5842-5871. [PMID: 37293660 PMCID: PMC10246671 DOI: 10.1039/d3sc01036h] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Biological species, including reactive oxygen species (ROS), reactive sulfur species (RSS), reactive nitrogen species (RNS), F-, Pd2+, Cu2+, Hg2+, and others, are crucial for the healthy functioning of cells in living organisms. However, their aberrant concentration can result in various serious diseases. Therefore, it is essential to monitor biological species in cellular organelles such as the cell membrane, mitochondria, lysosome, endoplasmic reticulum, Golgi apparatus, and nucleus. Among various fluorescent probes for species detection within the organelles, ratiometric fluorescent probes have drawn special attention as a potential way to get beyond the drawbacks of intensity-based probes. This method depends on measuring the intensity change of two emission bands (caused by an analyte), which produces an efficient internal referencing that increases the detection's sensitivity. This review article discusses the literature publications (from 2015 to 2022) on organelle-targeting ratiometric fluorescent probes, the general strategies, the detecting mechanisms, the broad scope, and the challenges currently faced by fluorescent probes.
Collapse
Affiliation(s)
- Manoj Kumar Goshisht
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin-Green Bay 2420 Nicolet Drive Green Bay WI 54311-7001 USA
- Department of Chemistry, Government Naveen College Tokapal Bastar Chhattisgarh 494442 India
| | - Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Goutam Kumar Patra
- Department of Chemistry, Faculty of Physical Sciences Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh 495009 India
| | - Manohar Chaskar
- Department of Technology, Savitribai Phule Pune University Ganeshkhind Pune 411007 India
| |
Collapse
|
9
|
Ding C, Ren T. Near infrared fluorescent probes for detecting and imaging active small molecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Chen Y, Zhang Y, Li N, Jiang Z, Li X. Role of mitochondrial stress and the NLRP3 inflammasome in lung diseases. Inflamm Res 2023; 72:829-846. [PMID: 36905430 PMCID: PMC10007669 DOI: 10.1007/s00011-023-01712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND As an organelle essential for intracellular energy supply, mitochondria are involved in intracellular metabolism and inflammation, and cell death. The interaction of mitochondria with the NLRP3 inflammasome in the development of lung diseases has been extensively studied. However, the exact mechanism by which mitochondria mediate the activation of the NLRP3 inflammasome and trigger lung disease is still unclear. METHODS The literatures related to mitochondrial stress, NLRP3 inflammasome and lung diseases were searched in PubMed. RESULTS This review aims to provide new insights into the recently discovered mitochondrial regulation of the NLRP3 inflammasome in lung diseases. It also describes the crucial roles of mitochondrial autophagy, long noncoding RNA, micro RNA, altered mitochondrial membrane potential, cell membrane receptors, and ion channels in mitochondrial stress and regulation of the NLRP3 inflammasome, in addition to the reduction of mitochondrial stress by nuclear factor erythroid 2-related factor 2 (Nrf2). The effective components of potential drugs for the treatment of lung diseases under this mechanism are also summarized. CONCLUSION This review provides a resource for the discovery of new therapeutic mechanisms and suggests ideas for the development of new therapeutic drugs, thus promoting the rapid treatment of lung diseases.
Collapse
Affiliation(s)
- Yonghu Chen
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yuqi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhe Jiang
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| | - Xuezheng Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| |
Collapse
|
11
|
Dong J, Lu G, He B, Tu Y, Fan C. A novel NIR fluorescent probe for monitoring cysteine in mitochondria of living cells. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
12
|
Wang ZR, Zhang TJ, Wang QY, Xu EY, Zhang X, Zhang ZH, Lu PF, Zhao HY, Wang L, Meng FH. (E)-2-styrylanthracene-9,10-dione derivatives as novel fluorescent probes: synthesis, photophysical properties and application in mitochondria imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121988. [PMID: 36308828 DOI: 10.1016/j.saa.2022.121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Our previous work firstly reported that (E)-2-styrylanthracene-9,10-dione is a novel fluorescent core (EK01) with the ability of specific mitochondria imaging. In this effort, we mainly focused our attention on the structure-photophysical property relationship and application in cells imaging of this new fluorescent chemotype. A series of the structural derivatives (TZ series) were designed and synthesized by introducing some substituents onto the 2-styryl moiety. The structure-photophysical property relationship analysis suggested that TZ03 is an excellent fluorescent molecular building block with the property of fluorescent "turn-on" effect after the modification of acylation, and TZ07 is an excellent fluorescent dye with a series of advantages such as high fluorescence intensity (Fmax = 4049.0 in CH2Cl2, 25.80 μM), moderate molar extinction coefficients (3.77 × 103-5.93 × 103 mol-1∙L∙cm-1), strong fluorescence quantum yield (Φmax = 0.739 in CH2Cl2), large Stokes shift (99.0 nm-161.8 nm) and well biological tolerance. As a classical D-π-A structure, the ICT characteristic of TZ07 was analyzed through spectroscopy verification and DFT calculations. Furthermore, optimized compound TZ07 was successfully applied in the living cells imaging with the excellent selectivity to mitochondria in a green fluorescent form. It was also suggested that the mechanism of TZ07 targeting mitochondria is independent of mitochondrial membrane potential, but probably related to the mitochondrial complex I. These findings may provide some insights into the development of novel mitochondria-targeted fluorescent probes.
Collapse
Affiliation(s)
- Zhao-Ran Wang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Ting-Jian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Qiu-Yin Wang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - En-Yu Xu
- School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Xu Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Zhen-Hao Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Peng-Fei Lu
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Hai-Yang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Lin Wang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China.
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China.
| |
Collapse
|
13
|
Zhao H, Xu C, Wang T, Liu J. Biomimetic Construction of Artificial Selenoenzymes. Biomimetics (Basel) 2023; 8:biomimetics8010054. [PMID: 36810385 PMCID: PMC9944854 DOI: 10.3390/biomimetics8010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Selenium exists in the form of selenocysteines in selenoproteins and plays a pivotal role in the catalytic process of the antioxidative enzymes. In order to study the structural and functional properties of selenium in selenoproteins, explore the significance of the role of selenium in the fields of biology and chemistry, scientists conducted a series of artificial simulations on selenoproteins. In this review, we sum up the progress and developed strategies in the construction of artificial selenoenzyme. Using different mechanisms from different catalytic angles, selenium-containing catalytic antibodies, semi-synthetic selenonezyme, and the selenium-containing molecularly imprinted enzymes have been constructed. A variety of synthetic selenoenzyme models have been designed and constructed by selecting host molecules such as cyclodextrins, dendrimers, and hyperbranched polymers as the main scaffolds. Then, a variety of selenoprotein assemblies as well as cascade antioxidant nanoenzymes were built by using electrostatic interaction, metal coordination, and host-guest interaction. The unique redox properties of selenoenzyme glutathione peroxidase (GPx) can be reproduced.
Collapse
|
14
|
Lin M, Liu S. Naphthalimide-Based Fluorescent Probe for Profiling of Aldehydes during Oxidation of Unsaturated Lipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14304-14311. [PMID: 36286393 DOI: 10.1021/acs.jafc.2c05659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A lipophilic naphthalimide hydrazine fluorescent probe was successfully developed in this study for profiling aldehyde oxidation products. Dodecyl amine was applied to afford lipophilicity of the fluorescent probe for lipids. Investigation of fluorescence properties of the probe and condensation products with typical aldehydes including MDA and hexanal revealed significant enhancement of fluorescence intensity after condensation due to the inhibition of photo-induced electron transfer. MDA and hexanal could be differentiated by the probe through emission of different fluorescence colors (blue, MDA; green, hexanal). Eight major oxidation components including seven aldehydes were detected by the fluorescent probe coupled with high-performance liquid chromatography-mass spectrometry during aerobic oxidation of typical unsaturated lipids. Formation of these aldehyde oxidation products was rationalized through the radical oxidation mechanism. Detection of representative aldehyde products demonstrated the generality in the application of this fluorescent probe for profiling of aldehydes after lipid oxidation.
Collapse
Affiliation(s)
- Mengyi Lin
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Songbai Liu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
15
|
Al Kelabi D, Dey A, Alimi LO, Piwoński H, Habuchi S, Khashab NM. Photostable polymorphic organic cages for targeted live cell imaging. Chem Sci 2022; 13:7341-7346. [PMID: 35799823 PMCID: PMC9214840 DOI: 10.1039/d2sc00836j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Fluorescent microscopy is a powerful tool for studying the cellular dynamics of biological systems. Small-molecule organic fluorophores are the most commonly used for live cell imaging; however, they often suffer from low solubility, limited photostability and variable targetability. Herein, we demonstrate that a tautomeric organic cage, OC1, has high cell permeability, photostability and selectivity towards the mitochondria. We further performed a structure–activity study to investigate the role of the keto–enol tautomerization, which affords strong and consistent fluorescence in dilute solutions through supramolecular self-assembly. Significantly, OC1 can passively diffuse through the cell membrane directly targeting the mitochondria without going through the endosomes or the lysosomes. We envisage that designing highly stable and biocompatible self-assembled fluorophores that can passively diffuse through the cell membrane while selectively targeting specific organelles will push the boundaries of fluorescent microscopy to visualize intricate cellular processes at the single molecule level in live samples. In this article, we demonstrate the relatively unexplored potential of organic cages for use in targeted live cell imaging and highlight the importance of inter- and intramolecular interactions to stabilize and improve the performance of fluorophores.![]()
Collapse
Affiliation(s)
- Dana Al Kelabi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Avishek Dey
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Hubert Piwoński
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - Satoshi Habuchi
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division Thuwal 23955-6900 Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
16
|
He D, Zhang L, Sun Y. Meso-substituented pyronine: colorful emission and versatile platform for the rational design of fluorescent probes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Jiang H, Yin G, Gan Y, Yu T, Zhang Y, Li H, Yin P. A multisite-binding fluorescent probe for simultaneous monitoring of mitochondrial homocysteine, cysteine and glutathione in live cells and zebrafish. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Dong J, Lu G, Tu Y, Fan C. Recent Research Progress of Red-Emitting/Near-Infrared Fluorescent Probes for Biothiols. NEW J CHEM 2022. [DOI: 10.1039/d1nj06244a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small-molecule biological thiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), occupy a vital position in physiological and pathological activities. Abnormal fluctuations of their concentrations are often closely connected with...
Collapse
|
19
|
Ma K, Yang H, Shen T, Yue Y, Zhao L, Liu X, Huo F, Yin C. Unique assemble of carbonylpyridinium and chromene reveal mitochondrial thiol starvation under ferroptosis and novel ferroptosis inducer. Chem Sci 2022; 13:3706-3712. [PMID: 35432896 PMCID: PMC8966632 DOI: 10.1039/d2sc00328g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
To reveal the delicate function of mitochondrial, precise detection tools in spatiotemporal manner remains highly desirable. However, current probes with positive charge warheads for targeting mitochondria diffuse out of the...
Collapse
Affiliation(s)
- Kaiqing Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - He Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Tianruo Shen
- University of Technology and Design 487372 Singapore
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Lingling Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| | - Xiaogang Liu
- University of Technology and Design 487372 Singapore
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University Taiyuan 030006 PR China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 PR China
| |
Collapse
|
20
|
Zhou Y, Dong H, Gu Z, Yang S, Ouyang M, Qing Z, Ma X, Hu S, Li J, Yang R. Self-Immolative Dye-Doped Polymeric Probe for Precisely Imaging Hydroxyl Radicals by Avoiding Leakage. Anal Chem 2021; 93:12944-12953. [PMID: 34523923 DOI: 10.1021/acs.analchem.1c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For sensing low abundance of biomarkers, utilizing nanocarriers to load dyes is an efficient method to amplify the detected signal. However, the non-specific leak of the internal dyes in this approach is accompanied by false positive signals, resulting in inaccurate signal acquirement. To address this issue, in this work, we reported a novel signal amplification strategy with dye as a scaffold to construct a self-immolative dye-doped polymeric probe (SDPP). In our proposed approach, the dyes were covalently integrated into the main chain of a polymer, which can avoid the non-specific leak of the dye when used in a rigorous biological environment, thus evading the false positive signal. As a prototype of this concept, a SDPP, which responds to hydroxyl radicals (•OH), was rationally fabricated. Upon being activated by •OH, SDPP will liberate the dye through a self-immolative reaction to bind with protein for amplifying the fluorescence signal. Compared with a dye-loaded nanoprobe, SDPP can precisely track intracellular basal •OH levels and visualize the •OH associated with myocarditis in vivo. More importantly, the attempt in this work not only provides an effective molecular tool to investigate the role of •OH in cardiopathy, but also puts forward a new direction to current signal-amplifying strategies for precisely and reliably acquiring the intracellular molecular information.
Collapse
Affiliation(s)
- Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Hao Dong
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhengxuan Gu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Minzhi Ouyang
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha 410011, P. R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Xiaofei Ma
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Shan Hu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - JunBin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
21
|
Yuan J, Ren TB, Xu S, Wang CJ, Zhang XB, Yuan L. A Unique Multifunctional Luminescent Probe for Self-Monitoring Photodynamic Therapy by Detecting H 2S in Cancer Cells. ACS APPLIED BIO MATERIALS 2021; 4:6016-6022. [PMID: 35006901 DOI: 10.1021/acsabm.1c00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the increasing interest in photodynamic therapy (PDT), the assessment of the level of reactive oxygen species produced during PDT has also become increasingly important. However, most of the fluorescent probes for reactive oxygen species (ROS) evaluation were separated from photosensitizers in the PDT process, resulting in ex situ and asynchronous treatment feedback. Additionally, the consumption of ROS by these fluorescent probes themselves will inevitably affect the therapeutic effect. Herein, inspired by the redox balance in the cell, we developed a multifunctional hydrogen sulfide (H2S) probe Ru-NBD for reporting the therapeutic effect during the PDT process by detecting hydrogen sulfide. The probe Ru-NBD could not only serve as an effective PDT reagent both before and after H2S activation but could also be used for real-time and in situ monitoring of the therapeutic effect via restored luminescence during the PDT process. As the phototherapy process progresses, the luminescent signal of Ru-NBD changes accordingly. The experimental results show that there is a certain correlation between the luminescence intensity and the cell inhibition rate; thus, we can monitor the phototherapy process by detecting the changes in the probe's luminescent signal. This study provides an idea for the design and adjustment of PDT.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chun-Jiang Wang
- The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
22
|
Wang S, Huang Y, Guan X. Fluorescent Probes for Live Cell Thiol Detection. Molecules 2021; 26:3575. [PMID: 34208153 PMCID: PMC8230801 DOI: 10.3390/molecules26123575] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Thiols play vital and irreplaceable roles in the biological system. Abnormality of thiol levels has been linked with various diseases and biological disorders. Thiols are known to distribute unevenly and change dynamically in the biological system. Methods that can determine thiols' concentration and distribution in live cells are in high demand. In the last two decades, fluorescent probes have emerged as a powerful tool for achieving that goal for the simplicity, high sensitivity, and capability of visualizing the analytes in live cells in a non-invasive way. They also enable the determination of intracellular distribution and dynamitic movement of thiols in the intact native environments. This review focuses on some of the major strategies/mechanisms being used for detecting GSH, Cys/Hcy, and other thiols in live cells via fluorescent probes, and how they are applied at the cellular and subcellular levels. The sensing mechanisms (for GSH and Cys/Hcy) and bio-applications of the probes are illustrated followed by a summary of probes for selectively detecting cellular and subcellular thiols.
Collapse
Affiliation(s)
| | | | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Box 2202C, Brookings, SD 57007, USA; (S.W.); (Y.H.)
| |
Collapse
|
23
|
Liu Y, Xu C, Liu HW, Teng L, Huan S, Yuan L, Zhang XB. Precipitated Fluorophore-Based Molecular Probe for In Situ Imaging of Aminopeptidase N in Living Cells and Tumors. Anal Chem 2021; 93:6463-6471. [PMID: 33852265 DOI: 10.1021/acs.analchem.1c00280] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aminopeptidase N (APN) is capable of cleaving N-terminal amino acids from peptides with alanine in the N-terminal position and plays a key role in the growth, migration, and metastasis of cancer. However, reliable in situ information is hard to be obtained with the current APN-responsive molecular probes because the released fluorophores are cytoplasmic soluble and thus rapidly depart from the enzymatic reaction sites and spread out all over the cytoplasm. Here, we report a de novo precipitated fluorophore, HBPQ, which is completely insoluble in water and shows strong yellow solid emission when excited with a 405 nm laser. Owing to the controllable solid fluorescence of HBPQ by the protection-deprotection of phenolic hydroxyl, we further utilized HBPQ to design an APN-responsive fluorogenic probe (HBPQ-A) for the imaging of intracellular APN. Importantly, HBPQ-A can not only perform in situ imaging of APN in different organelles (e.g., lysosomes, mitochondria, endoplasmic reticula, and so forth) but also display a stable and indiffusible fluorescent signal for reliable mapping of the distribution of APN in living cells. In addition, through real-time imaging of APN in 4T1 tumors, we found that the fluorescent signal with high fidelity generated by HBPQ-A could remain constant even after 12 h, which further confirmed its diffusion-resistant ability and long-term reliable imaging ability. We believe that the precipitated fluorophore may have great potential for long-term in situ imaging.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chengyan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hong-Wen Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
24
|
Li Z, Ren TB, Zhang XX, Xu S, Gong XY, Yang Y, Ke G, Yuan L, Zhang XB. Precipitated Fluorophore-Based Probe for Accurate Detection of Mitochondrial Analytes. Anal Chem 2021; 93:2235-2243. [PMID: 33400485 DOI: 10.1021/acs.analchem.0c04094] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria-targeted fluorescent probes are highly important to obtain mitochondrial function information. However, the accuracy of the current mitochondria-targeted fluorescent probes is unsatisfactory owing to the following two reasons. In the first case, some probes that always have a mitochondria-targeting group, thus, would react with the analytes outside of mitochondria and enter mitochondria with the generated fluorophore signal, which leads to a false-positive result. In the other case, after response to the analytes in mitochondria, some probes could diffuse from mitochondria to other organelles, thus triggering a false-negative result. To avoid the two problems, herein, we develop a precipitated fluorophore-based probe, which precipitates in situ after reacting with analytes, for the accurate detection of mitochondrial analytes. The probe was modified with HQPQ, a novel solid-state fluorophore that is insoluble in water. As a proof of concept, we designed and synthesized a probe (HQPQ-B) for H2O2 detection. Based on the different mitochondria-targeting capacities of quinoline salts and quinolone, HQPQ loses the mitochondria-targeting ability after reacting with analytes outside of mitochondria, thus avoiding a false-positive result. On the contrary, when the probe first localized in mitochondria and then reacted with analytes, HQPQ would precipitate and remain in mitochondria without diffusing to other sites, thus avoiding a false-negative result. Therefore, HQPQ enables the accurate detection of mitochondrial analytes. We believe that the novel strategy based on HQPQ will be a general strategy for accurate detection of mitochondrial analytes without interference from other sites, which enables an accurate study on mitochondrial function.
Collapse
Affiliation(s)
- Zhe Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Xing-Xing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Xiang-Yang Gong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Yue Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Guoliang Ke
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
25
|
Mu S, Gao H, Li C, Li S, Wang Y, Zhang Y, Ma C, Zhang H, Liu X. A dual-response fluorescent probe for detection and bioimaging of hydrazine and cyanide with different fluorescence signals. Talanta 2021; 221:121606. [DOI: 10.1016/j.talanta.2020.121606] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
|
26
|
Li D, Chen W, Liu SH, Chen X, Yin J. The regulation of biothiol-responsive performance and bioimaging application of benzo[c][1,2,5]oxadiazole dyes. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Wang L, Wang J, Xia S, Wang X, Yu Y, Zhou H, Liu H. A FRET-based near-infrared ratiometric fluorescent probe for detection of mitochondria biothiol. Talanta 2020; 219:121296. [PMID: 32887038 DOI: 10.1016/j.talanta.2020.121296] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 01/30/2023]
Abstract
A new fluorescent probe A with BODIPY as FRET donor and near-infrared rhodamine as FRET acceptor is constructed through disulfide bonding and use for ratiometric fluorescence detection of biothiol. Due to the efficient fluorescence resonance energy transfer (FRET) from BODIPY donor to near-infrared rhodamine acceptor, Probe A only displays near-infrared rhodamine fluorescence (λem = 656 nm) under BODIPY excitation at 480 nm. The presence of biothiol leads to BODIPY fluorescence increases (λem = 511 nm) and near-infrared rhodamine fluorescence decreases since the disulfide bond of the probe is broken by biothiols, effectively separating the donor from the acceptor, thus inhibiting the FRET process. Probe A exhibits remarkable high selectivity and excellent linear relationship from 10 μM to 100 μM of GSH, with low detection limit as 0.26 μM. Cellular imaging experiments shows that the probe is predominantly present in mitochondria and has been successfully applied to detect biothiol concentrations changes in mitochondria of living cells.
Collapse
Affiliation(s)
- Lu Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Jianbo Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Xinxin Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yating Yu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| |
Collapse
|
28
|
Li Z, Wu Y, Shen Y, Gu B. Simple NIR-Emitting ESIPT Fluorescent Probe for Thiophenol with a Remarkable Stokes Shift and Its Application. ACS OMEGA 2020; 5:10808-10814. [PMID: 32455201 PMCID: PMC7240823 DOI: 10.1021/acsomega.0c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 05/08/2023]
Abstract
Thiophenol as a highly toxic compound can harm the environment and living organisms and thus demands effective detection. In this work, we presented a near-infrared fluorescent probe (DAPH-DNP) for detecting thiophenol according to the ESIPT mechanism using 2,4-dinitrophenyl group as a recognition unit. This probe displayed specificity toward thiophenol over other related analytes. Meanwhile, there was good linearity between the relative fluorescence intensity of DAPH-DNP and the concentration of thiophenol in the range of 0-80 μM. This probe also showed a low detection limit of 3.8 × 10-8 and a marked Stokes shift (192 nm). Further, this probe could be used for monitoring thiophenol in environmental water samples and imaging thiophenol in living cells, which indicated that this probe had a real application in the environment and living organisms.
Collapse
Affiliation(s)
- Zhiying Li
- Hunan
Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Hunan Provincial Key Laboratory of Water Treatment
Functional Materials, Hunan Province Cooperative Innovation Center
for The Construction & Development of Dongting Lake Ecological
Economic ZoneCollege of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
| | - Yang Wu
- Hunan
Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Hunan Provincial Key Laboratory of Water Treatment
Functional Materials, Hunan Province Cooperative Innovation Center
for The Construction & Development of Dongting Lake Ecological
Economic ZoneCollege of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
| | - Youming Shen
- Hunan
Province Engineering Research Center of Electroplating Wastewater
Reuse Technology, Hunan Provincial Key Laboratory of Water Treatment
Functional Materials, Hunan Province Cooperative Innovation Center
for The Construction & Development of Dongting Lake Ecological
Economic ZoneCollege of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
| | - Biao Gu
- Key
Laboratory of Functional Organometallic Materials of College of Hunan
Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, P. R. China
| |
Collapse
|
29
|
Liu Z, Wang Q, Wang H, Su W, Dong S. A FRET Based Two-Photon Fluorescent Probe for Visualizing Mitochondrial Thiols of Living Cells and Tissues. SENSORS 2020; 20:s20061746. [PMID: 32245186 PMCID: PMC7147317 DOI: 10.3390/s20061746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 02/01/2023]
Abstract
Glutathione (GSH) is the main component of the mitochondrial thiol pool and plays key roles in the biological processes. Many evidences have suggested that cysteine and homocysteine also exist in mitochondria and are interrelated with GSH in biological systems. The fluctuation of the levels of mitochondrial thiols has been linked to many diseases and cells’ dysfunction. Therefore, the monitoring of mitochondrial thiol status is of great significance for clinical studies. We report here a novel fluorescence resonance energy transfer based two-photon probe MT-1 for mitochondrial thiols detection. MT-1 was constructed by integrating the naphthalimide moiety (donor) and rhodamine B (accepter and targeting group) through a newly designed linker. MT-1 shows a fast response, high selectivity, and sensitivity to thiols, as well as a low limit of detection. The two-photon property of MT-1 allows the direct visualization of thiols in live cells and tissues by two-photon microscopy. MT-1 can serve as an effective tool to unravel the diverse biological functions of mitochondrial thiols in living systems.
Collapse
Affiliation(s)
- Zhengkun Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; (Z.L.); (Q.W.); (H.W.); (W.S.)
| | - Qianqian Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; (Z.L.); (Q.W.); (H.W.); (W.S.)
| | - Hao Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; (Z.L.); (Q.W.); (H.W.); (W.S.)
| | - Wenting Su
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; (Z.L.); (Q.W.); (H.W.); (W.S.)
| | - Shouliang Dong
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; (Z.L.); (Q.W.); (H.W.); (W.S.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
- Correspondence: ; Tel.: +86-931-891-2428
| |
Collapse
|
30
|
Yang XZ, Wei XR, Sun R, Xu YJ, Ge JF. A novel xanthylene-based effective mitochondria-targeting ratiometric cysteine probe and its bioimaging in living cells. Talanta 2020; 209:120580. [DOI: 10.1016/j.talanta.2019.120580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 11/26/2022]
|
31
|
Wang R, Yan C, Zhang H, Guo Z, Zhu WH. In vivo real-time tracking of tumor-specific biocatalysis in cascade nanotheranostics enables synergistic cancer treatment. Chem Sci 2020; 11:3371-3377. [PMID: 34122845 PMCID: PMC8157340 DOI: 10.1039/d0sc00290a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Glucose oxidase (GOD)-based synergistic cancer therapy has aroused great research interest in the context of cancer treatment due to the inherent biocompatibility and biodegradability. However, this emerging therapeutic system still lacks a strategy to predict and regulate the in vivo biocatalytic behavior of GOD in real time to minimize the side effects on normal tissues. Herein, we developed a tumor-specific cascade nanotheranostic system (BNG) that combines GOD-catalyzed oxidative stress and dual-channel fluorescent sensing, significantly improving the synergistic therapeutic efficacy with real-time feedback information. The nanotheranostic system remains completely silent in the blood circulatory system and selectively releases GOD enzymes in the tumor site, with enhanced near-infrared (NIR) fluorescence at 825 nm. Subsequently, GOD catalyzes H2O2 production, triggering cascade reactions with NIR fluorescence at 650 nm as an optical output, along with GSH depletion, enabling synergistic cancer treatment. The designed nanotheranostic system, integrated with tumor-activated cascade reactions and triggering a dual-channel output at each step, represents an insightful paradigm for precise cooperative cancer therapy.
Collapse
Affiliation(s)
- Ruofei Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Hehe Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
32
|
Dai Y, Zheng Y, Xue T, He F, Ji H, Qi Z. A novel fluorescent probe for rapidly detection cysteine in cystinuria urine, living cancer/normal cells and BALB/c nude mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117490. [PMID: 31505388 DOI: 10.1016/j.saa.2019.117490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 05/22/2023]
Abstract
Cysteine (Cys), an important organic small molecule containing sulfhydryl groups, plays paramount functions in human pathologies and physiologies. The detection of Cys in living vivo is essential for studying its roles. Here, we designed and synthesized a novel red-emission fluorescent probe AXPI-Cys with highly sensitivity (LOD = 48.9 ± 0.23 nM), rapidly response (<7 min) and colorimetric for detection cysteine. More importantly, the AXPI-Cys was determined Cys in real cystinuria urine samples for the first time with the satisfactory results (92%-99.96%) and employed for specifically location of endogenous/exogenous Cys in living cancer/normal cells and almost non-toxic, that is very valuable for diagnosis of cystinuria and observation of the distribution of Cys in normal cells. Notably, the AXPI-Cys was applied to imaging Cys in BALB/c nude mice with good biocompatibility and desirable tissue-penetration depth. Owing to the superior capability of AXPI-Cys, it provided a desired method to detect Cys in urine samples and cells, and exhibited munificent potential usage in biosystems and imaging studies in vivo.
Collapse
Affiliation(s)
- Yanpeng Dai
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yu Zheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Tianzi Xue
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Fangru He
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Hefang Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| |
Collapse
|
33
|
Huang H, Ji X, Jiang Y, Zhang C, Kang X, Zhu J, Sun L, Yi L. NBD-based fluorescent probes for separate detection of cysteine and biothiols via different reactivities. Org Biomol Chem 2020; 18:4004-4008. [DOI: 10.1039/d0ob00040j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A NBD-based fluorescent probe is developed to seperately detect Cys and all biothiols via different reactivity.
Collapse
Affiliation(s)
- Haojie Huang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiuru Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Yaqing Jiang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Changyu Zhang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xueying Kang
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jiqin Zhu
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Long Yi
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
34
|
Zhang X, Liu C, Chen Y, Cai X, Sheng W, Zhu H, Jia P, Li Z, Huang S, Zhu B. Visualization of the cysteine level during Golgi stress using a novel Golgi-targeting highly specific fluorescent probe. Chem Commun (Camb) 2020; 56:1807-1810. [DOI: 10.1039/c9cc08796f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel Golgi-targeting highly specific fluorescent probe was developed to visualize the level of cysteine during Golgi stress.
Collapse
Affiliation(s)
- Xue Zhang
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Caiyun Liu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Yanan Chen
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Xinyu Cai
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Wenlong Sheng
- Biology Institute
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250103
- China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Pan Jia
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Zilu Li
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery
- Shandong Provincial Hospital Affiliated to Shandong University
- Jinan 250021
- China
| | - Baocun Zhu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
35
|
Yao Q, Li L, Huang X, Li H, Fang Y, Xia J, Fan J, Chen L, Wang J, Peng X. Photostable Fluorescent Tracker for Imaging Mitochondria with Super Resolution. Anal Chem 2019; 91:15777-15783. [PMID: 31718148 DOI: 10.1021/acs.analchem.9b04065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The power factories in cells, mitochondria, play important roles in all physiological processes. It is reported that progressive mitochondrial swelling and outer mitochondrial membrane rupture could be induced by a wide variety of apoptotic and necrotic stimuli. Regrettably, although a variety of mitochondrial probes have been developed, most of them are based on the detection of active species in mitochondria. Probes that can monitor the status and distribution of mitochondria for a long time are still urgently needed. In this study, a fluorescent sensor with excellent properties, EtNBEn, is described. Outstanding performance allows it to be observed not only in cells but also in living Daphnia and zebrafish under confocal microscopy for a long time. Moreover, the swelling process of mitochondria under light stimulation is also visualized under super-resolution (SR) microscopy. All these results suggest that EtNBEn could be employed for tagging mitochondria in various physiological processes, which makes a great contribution to the cure of diseases.
Collapse
Affiliation(s)
- Qichao Yao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Liuju Li
- Institute of Molecular Medicine , Peking University , 100871 Beijing , P. R. China
| | - Xiaoshuai Huang
- Institute of Molecular Medicine , Peking University , 100871 Beijing , P. R. China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Yanyun Fang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Jing Xia
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Liangyi Chen
- Institute of Molecular Medicine , Peking University , 100871 Beijing , P. R. China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| |
Collapse
|
36
|
Huang J, Wu Y, Zeng F, Wu S. An Activatable Near-Infrared Chromophore for Multispectral Optoacoustic Imaging of Tumor Hypoxia and for Tumor Inhibition. Theranostics 2019; 9:7313-7324. [PMID: 31695770 PMCID: PMC6831286 DOI: 10.7150/thno.36755] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is a key hallmark of solid tumors and tumor hypoxia usually contributes to cancer progression, therapeutic resistance and poor outcome. Accurately detecting and imaging tumor hypoxia with high spatial resolution would be conducive to formulating optimized treatment plan and thus achieving better patient outcome. Methods: Tumor hypoxia can cleave the azo linker and release a NIR fluorophore (NR-NH2) and release the active drug as well. NR-NH2 shows a strong absorption band at around 680 nm and a strong fluorescence band at 710 nm, allowing for both multispectral optoacoustic tomography imaging (MSOT) and fluorescent imaging of tumor hypoxia in a tumor-bearing mouse model. Results: Liposome encapsulated with the activatable chromophore (NR-azo) for detecting/imaging tumor hypoxia and for tumor inhibition was demonstrated. For this chromophore, a xanthene-based NIR fluorophore acts as the optoacoustic and fluorescent reporter, an azo linker serves as the hypoxia-responsive moiety and a nitrogen mustard as the therapeutic drug. NR-azo shows an absorption at around 575 nm but exhibits negligible fluorescence due to the existence of the strong electron-withdrawing azo linker. Conclusion: We demonstrated an optoacoustic and fluorescent system for not only imaging tumor hypoxia in vivo but also achieving tumor inhibition.
Collapse
Affiliation(s)
| | | | - Fang Zeng
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
37
|
Liu J, Liu M, Zhang H, Wei X, Wang J, Xian M, Guo W. Exploring cysteine regulation in cancer cell survival with a highly specific "Lock and Key" fluorescent probe for cysteine. Chem Sci 2019; 10:10065-10071. [PMID: 32055360 PMCID: PMC6991186 DOI: 10.1039/c9sc02618e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
Using a highly specific “lock and key” fluorescent Cys probe, we confirmed that targeting Cys metabolism to deplete intracellular Cys is a more potent strategy to sensitize cancer cells to chemotherapies.
To probe the regulatory roles of cysteine (Cys) in cancer cell survival, a highly selective and sensitive fluorescent Cys probe SiR was developed by employing a novel “lock and key” strategy, which allows Cys to be detected without any interference or probe consumption caused by the intracellular high concentration of glutathione (GSH). Using SiR, we confirmed that inhibiting cystine (Cys2) transporter system xc– to deplete intracellular Cys is more efficient than inhibiting glutamate–cysteine ligase GCL to deplete intracellular GSH for sensitizing cancer cells to chemotherapy. Moreover, with the probe, a possible self-protection mechanism of cancer cells was indicated: when extracellular Cys sources are blocked, cancer cells could still survive by multidrug resistance protein transporter (Mrp1)-mediated export of intracellular GSH/GSSG as sources to supply intracellular Cys for resisting detrimental oxidative stress. Based on this finding, we further confirmed that abrogating the self-protection mechanism is an even more efficient strategy for sensitizing cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Mengxing Liu
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Hongxing Zhang
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| | - Xuehong Wei
- Scientific Instrument Center , Shanxi University , Taiyuan 030006 , China
| | - Juanjuan Wang
- Scientific Instrument Center , Shanxi University , Taiyuan 030006 , China
| | - Ming Xian
- Department of Chemistry , Washington State University , Pullman , WA 99164 , USA
| | - Wei Guo
- School of Chemistry and Chemical Engineering , Shanxi University , Taiyuan 030006 , China .
| |
Collapse
|
38
|
Cheng T, Huang W, Gao D, Yang Z, Zhang C, Zhang H, Zhang J, Li H, Yang XF. Michael Addition/S,N-Intramolecular Rearrangement Sequence Enables Selective Fluorescence Detection of Cysteine and Homocysteine. Anal Chem 2019; 91:10894-10900. [PMID: 31331163 DOI: 10.1021/acs.analchem.9b02814] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acrylate has been widely used as the recognition unit for Cys fluorescent probes. Despite this widespread use, a potential drawback of this probe type is that the ester linkage between the fluorophore and acryloyl recognition unit is liable to be hydrolyzed by abundant esterase in the cytosol, thus affording a high background signal. To solve this problem, we herein put forward a new strategy to construct a selective fluorescent probe for cysteine (Cys)/homocysteine (Hcy) with propynamide as the recognition moiety. The free probe CPA displays weakly fluorescent emission in aqueous media because of the donor-excited photoinduced electron transfer (d-PET) process within the molecule. The Michael addition of Cys (or Hcy) thiols to the conjugated alkyne of CPA gives the expected β-sulfido-α,β-unsaturated amides (1a/1b), which subsequently undergo an intramolecular S,N rearrangement, yielding β-amino-α,β-unsaturated amides (2a/2b) as the final products. The above cascade reaction results in the blockage of d-PET within CPA, thus affording a dramatic fluorescence enhancement at 495 nm. The involvement of the sulfhydryl and the adjacent amino groups in the sensing process renders CPA high selectivity for Cys/Hcy over glutathione as well as other amino acids. The probe has been successfully applied to image Cys in different cell lines. Further, CPA shows two-photon fluorescence properties, and its ability to monitor Cys in deep tissues has been demonstrated by using two-photon microscopy.
Collapse
Affiliation(s)
- Tianyi Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Wenming Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Congjie Zhang
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Hua Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Xiao-Feng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| |
Collapse
|
39
|
Xia S, Zhang Y, Fang M, Mikesell L, Steenwinkel TE, Wan S, Phillips T, Luck RL, Werner T, Liu H. A FRET-Based Near-Infrared Fluorescent Probe for Ratiometric Detection of Cysteine in Mitochondria. Chembiochem 2019; 20:1986-1994. [PMID: 31197917 PMCID: PMC6676905 DOI: 10.1002/cbic.201900071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/05/2019] [Indexed: 12/27/2022]
Abstract
We report a near-infrared fluorescent probe A for the ratiometric detection of cysteine based on FRET from a coumarin donor to a near-infrared rhodamine acceptor. Upon addition of cysteine, the coumarin fluorescence increased dramatically up to 18-fold and the fluorescence of the rhodamine acceptor decreased moderately by 45 % under excitation of the coumarin unit. Probe A has been used to detect cysteine concentration changes in live cells ratiometrically and to visualize fluctuations in cysteine concentrations induced by oxidation stress through treatment with hydrogen peroxide or lipopolysaccharide (LPS). Finally, probe A was successfully applied for the in vivo imaging of Drosophila melanogaster larvae to measure cysteine concentration changes.
Collapse
Affiliation(s)
- Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Yibin Zhang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Logan Mikesell
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Tessa E Steenwinkel
- Department of Biological Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Shulin Wan
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Tyler Phillips
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Thomas Werner
- Department of Biological Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
40
|
Li M, Zheng K, Chen H, Liu X, Xiao S, Yan J, Tan X, Zhang N. A novel 2,5-bis(benzo[d]thiazol-2-yl)phenol scaffold-based ratiometric fluorescent probe for sensing cysteine in aqueous solution and serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:1-7. [PMID: 30925315 DOI: 10.1016/j.saa.2019.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
An efficient and novel 2,5-bis(benzo[d]thiazol-2-yl)phenol scaffold-based ratiometric fluorescent probe BTP-Cys for the sensing of cysteine has been developed. The probe BTP-Cys with acrylates moiety, as recognition site, has been successfully constructed on account of the excited state intramolecular proton transfer (ESIPT) mechanism. Upon the treatment with Cys (0-250 μM), this probe BTP-Cys exhibits a dramatic fluorescent intensity ratios enhancement (from 0.03 to 18.3) and a large emission shift (113 nm). The detection limit of this probe is as low as 3.8 × 10-7 M. Importantly, the concentration and time dependent of Cys in bovine serum albumin (BSA) has also been measured, indicating that BTP-Cys could be a biocompatible and rapid probe for Cys in vitro.
Collapse
Affiliation(s)
- Meng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Kaibo Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China.
| | - Hui Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Shuzhang Xiao
- College of Biology and Pharmacy, China Three Gorges University, Yichang 443002, PR China
| | - Jiaying Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Xuecai Tan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China.
| |
Collapse
|
41
|
Dai Y, Xue T, Zhang X, Misal S, Ji H, Qi Z. A novel probe for colorimetric and near-infrared fluorescence detection of cysteine in aqueous solution, cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:365-374. [PMID: 30921659 DOI: 10.1016/j.saa.2019.03.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Cysteine(Cys) is tightly related to physiological and pathological of human, and the imbalance of concentration of cysteine in the intracellular are associated with many diseases. Here, a novel NIR fluorescent probe TCF-Cys was designed and synthesized, and both the optimal excitation and emission wavelength of them were between 650 and 900 nm, that within the "optical window" of biological tissues. In aqueous solution, TCF-Cys, which with an acrylate extremity as a recognizing unit, exhibited excellent "turn-on" fluorescence response for Cys superior to other amino acids and thiols with a limit of detection of 0.1323 μM. Moreover, as an excellent naked-eye colorimetric indicator, TCF-Cys could effectively distinguishing the Cys, Hcy and GSH in aqueous solution through color change. Then, the response mechanism of TCF-Cys for Cys was revealed by TLC, 1H NMR, HPLC, HRMS and DFT calculation. Finally, TCF-Cys was successfully employed to fluorescence specifically map of exogenous and endogenous Cys in living cells and zebrafish with low toxicity.
Collapse
Affiliation(s)
- Yanpeng Dai
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Tianzi Xue
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xiuxuan Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Saima Misal
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Hefang Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| |
Collapse
|
42
|
Li H, Lee CH, Shin I. Preparation of a Multiple-Targeting NIR-Based Fluorogenic Probe and Its Application for Selective Cancer Cell Imaging. Org Lett 2019; 21:4628-4631. [DOI: 10.1021/acs.orglett.9b01530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hui Li
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Chang-Hee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
43
|
Duan Y, Gou GZ, Xu J, Hu Y, Cheng F. “Turn-on” fluorescent probe for selective Cys recognition and the related mechanism. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Gao P, Pan W, Li N, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019; 10:6035-6071. [PMID: 31360411 PMCID: PMC6585876 DOI: 10.1039/c9sc01652j] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dynamic fluctuations of bioactive species in living cells are associated with numerous physiological and pathological phenomena. The emergence of organelle-targeted fluorescent probes has significantly facilitated our understanding on the biological functions of these species. This review describes the design, applications, challenges and potential directions of organelle-targeted bioactive species probes.
Bioactive species, including reactive oxygen species (ROS, including O2˙–, H2O2, HOCl, 1O2, ˙OH, HOBr, etc.), reactive nitrogen species (RNS, including ONOO–, NO, NO2, HNO, etc.), reactive sulfur species (RSS, including GSH, Hcy, Cys, H2S, H2Sn, SO2 derivatives, etc.), ATP, HCHO, CO and so on, are a highly important category of molecules in living cells. The dynamic fluctuations of these molecules in subcellular microenvironments determine cellular homeostasis, signal conduction, immunity and metabolism. However, their abnormal expressions can cause disorders which are associated with diverse major diseases. Monitoring bioactive molecules in subcellular structures is therefore critical for bioanalysis and related drug discovery. With the emergence of organelle-targeted fluorescent probes, significant progress has been made in subcellular imaging. Among the developed subcellular localization fluorescent tools, ROS, RNS and RSS (RONSS) probes are highly attractive, owing to their potential for revealing the physiological and pathological functions of these highly reactive, interactive and interconvertible molecules during diverse biological events, which are rather significant for advancing our understanding of different life phenomena and exploring new technologies for life regulation. This review mainly illustrates the design principles, detection mechanisms, current challenges, and potential future directions of organelle-targeted fluorescent probes toward RONSS.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| |
Collapse
|
45
|
Wen S, Zhang W, Ren T, Zhang Q, Liu Y, Shi L, Hu R, Zhang X, Yuan L. Donor and Ring‐Fusing Engineering for Far‐Red to Near‐Infrared Triphenylpyrylium Fluorophores with Enhanced Fluorescence Performance for Sensing and Imaging. Chemistry 2019; 25:6973-6979. [DOI: 10.1002/chem.201900246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Si‐Yu Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Wei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Tian‐Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Qian‐Ling Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Yu‐Peng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Ling Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Rongfeng Hu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal FormulaAnhui University of Chinese Medicine Hefei Anhui 230038 P.R. China
| | - Xiao‐Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P.R. China
| |
Collapse
|
46
|
Liu H, Guo C, Guo S, Fan J, Wang L, Shi D. Chalcone-analogue fluorescent probes for detecting thiophenols in seawater samples. Talanta 2019; 201:301-308. [PMID: 31122427 DOI: 10.1016/j.talanta.2019.03.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023]
Abstract
Two efficient chalcone fluorescent probes (probe-KCN1 and probe-KCN2) were developed for the detection of thiophenols. Upon gradual addition of thiophenols to the fluorescent probes, the fluorescence intensity of the emission band at 550 nm is enhanced about 40-fold, with a large Stokes shift (130 nm). Probe-KCN1 responds to thiophenols with a good range of linearity and a detection limit of 79 nΜ (R2 = 0.9915), and Probe-KCN2 responds selectively to thiophenols over other amino acids, common metal ions and other potential interferents with a detection limit of 96 nM (R2 = 0.9978). The low-toxicity probe has been successfully used to detect thiophenols in samples of seawater. These results demonstrate that Probe-KCN is a class of specific probes that might provide a simple way to monitor changes in thiophenols at low concentrations in seawater samples.
Collapse
Affiliation(s)
- Hua Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chuanlong Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuju Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lijun Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Dayong Shi
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
47
|
Li H, Li Y, Yao Q, Fan J, Sun W, Long S, Shao K, Du J, Wang J, Peng X. In situ imaging of aminopeptidase N activity in hepatocellular carcinoma: a migration model for tumour using an activatable two-photon NIR fluorescent probe. Chem Sci 2019; 10:1619-1625. [PMID: 30842824 PMCID: PMC6368242 DOI: 10.1039/c8sc04685a] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/25/2018] [Indexed: 12/28/2022] Open
Abstract
CD13/aminopeptidase N (APN), which is a zinc-dependent metalloproteinase, plays a vital role in the growth, migration, angiogenesis, and metastasis of tumours. Thus, in situ molecular imaging of endogenous APN levels is considerably significant for investigating APN and its different functions. In this study, a novel two-photon near-infrared (NIR) fluorescence probe DCM-APN was prepared to perform in vitro and in vivo tracking of APN. The N-terminal alanyl site of probe DCM-APN was accurately hydrolysed to the amino group, thereby liberating strong fluorescence owing to the recovery of the Intramolecular Charge Transfer (ICT) effect. By considering its outstanding selectivity, ultra-sensitivity (DL 0.25 ng mL-1) and favourable biocompatibility, the probe DCM-APN was used to distinguish between normal cells (LO2 cells) and cancer cells (HepG-2 and B16/BL6 cells). Furthermore, migration of hepatocellular carcinoma cells was apparently inhibited by ensuring that the APN catalytic cavity was occupied by bestatin. The identification of three-dimensional (3D) fluorescence in cancer tissues was completed under two-photon excitation coupled with lighting up hepatocellular carcinoma tumours in situ; this revealed that probe DCM-APN is an effective tool for detecting APN, thereby assisting in the early diagnosis of tumour in clinical medicine.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Yueqing Li
- School of Pharmaceutical Science and Technology , Dalian University of Technology , 2 Linggong Road, Hi-tech Zone , Dalian 116024 , P. R. China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
- Research Institute of Dalian University of Technology in Shenzhen , Gaoxin South fourth Road , Nanshan District , Shenzhen 518057 , China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
- Research Institute of Dalian University of Technology in Shenzhen , Gaoxin South fourth Road , Nanshan District , Shenzhen 518057 , China
| | - Saran Long
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
- Research Institute of Dalian University of Technology in Shenzhen , Gaoxin South fourth Road , Nanshan District , Shenzhen 518057 , China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
- Research Institute of Dalian University of Technology in Shenzhen , Gaoxin South fourth Road , Nanshan District , Shenzhen 518057 , China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jingyun Wang
- School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China
- Research Institute of Dalian University of Technology in Shenzhen , Gaoxin South fourth Road , Nanshan District , Shenzhen 518057 , China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
- Research Institute of Dalian University of Technology in Shenzhen , Gaoxin South fourth Road , Nanshan District , Shenzhen 518057 , China
| |
Collapse
|
48
|
Liu H, Guo C, Guo S, Wang L, Shi D. Design and Synthesis of a Fluorescent Probe with a Large Stokes Shift for Detecting Thiophenols and Its Application in Water Samples and Living Cells. Molecules 2019; 24:molecules24020375. [PMID: 30669672 PMCID: PMC6359167 DOI: 10.3390/molecules24020375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
A turn-on florescent probe (probe-KCP) was developed for highly selective detection of thiophenols based on a donor-excited photo-induced electron transfer mechanism. Herein, the synthesis of the probe, a chalcone derivative, through a simple straightforward combination of a carbazole-chalcone fluorophore with a 2,4-dinitrophenyl functional group. In a kinetic study of the probe-KCP for thiophenols, the probe displayed a short response time (~30 min) and significant fluorescence enhancement. In selection and competition experiments, the probe-KCP exhibited excellent selectivity for thiophenols over glutathione (GSH), cysteine (Cys), sodium hydrosulfide (NaSH), and ethanethiol (C2H5SH) in addition to common anions and metal ions. Using the designed probe, we successfully monitored and quantified thiophenols, which are highly toxic. This turn-on fluorescence probe features a remarkably large Stokes shift (130 nm) and a short response time (30 min), and it is highly selective and sensitive (~160-fold) in the detection of thiophenols, with marked fluorescence in the presence of thiophenols. probe-KCP responds to thiophenols with a good range of linearity (0–15 μM) and a detection limit of 28 nM (R2 = 0.9946) over other tested species mentioned including aliphatic thiols, thiophenol analogues, common anions, and metal ions. The potential applications of this carbazole-chalcone fluorescent probe was successfully used to determine of thiophenols in real water samples and living cells with good performance and low cytotoxicity. Therefore, this probe has great potential application in environment and biological samples.
Collapse
Affiliation(s)
- Hua Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuanlong Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shuju Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Lijun Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Dayong Shi
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
49
|
Jiang Y, Ji X, Zhang C, Xi Z, Sun L, Yi L. Dual-quenching NBD-based fluorescent probes for separate detection of H2S and Cys/Hcy in living cells. Org Biomol Chem 2019; 17:8435-8442. [DOI: 10.1039/c9ob01535c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dual-quenching fluorescent probes based on thiolysis of NBD thioether/ether/amine for fast and separate detection of H2S and Cys/Hcy in living cells were rationally constructed.
Collapse
Affiliation(s)
- Yaqing Jiang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiuru Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin
- China
| | - Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin
- China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
| |
Collapse
|
50
|
Yang S, Guo C, Li Y, Guo J, Xiao J, Qing Z, Li J, Yang R. A Ratiometric Two-Photon Fluorescent Cysteine Probe with Well-Resolved Dual Emissions Based on Intramolecular Charge Transfer-Mediated Two-Photon-FRET Integration Mechanism. ACS Sens 2018; 3:2415-2422. [PMID: 30362710 DOI: 10.1021/acssensors.8b00919] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of an efficient ratiometric two-photon fluorescence imaging probe is crucial for in situ monitoring of biothiol cysteine (Cys) in biosystems, but the current reported intramolecular charge transfer (ICT)-based one suffers from serious overlap between the shifted emission bands. To address this issue, we herein for the first time constructed an ICT-mediated two-photon excited fluorescence resonance energy transfer (TP-FRET) system consisting of a two-photon fluorogen benzo[ h]chromene and a Cys-responsive benzoxadiazole-analogue dye. Different from a previous mechanism that utilized single two-photon fluorogen to acquire a ratiometric signal, ICT was used to switch on the TP-FRET process of the energy transfer dyad by eliciting an absorption shift of benzoxadiazole with Cys to modulate the spectral overlap level between benzo[ h]chromene emission and benzoxadiazole absorption, resulting in two well-separated emission signal changes with large emission wavelength shift (120 nm), fixed two-photon excitation maximum (750 nm), and significant variation in fluorescence ratio (over 36-fold). Therefore, it can be successfully employed to ratiometrically visualize Cys in HeLa cells and liver tissues. Importantly, this new ICT-mediated TP-FRET integration mechanism would be convenient for designing ratiometric two-photon fluorescent probes with two well-resolved emission spectra suitable for high resolution two-photon fluorescence bioimaging.
Collapse
Affiliation(s)
- Sheng Yang
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Chongchong Guo
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Yuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China
| | - Jingru Guo
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Jie Xiao
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Zhihe Qing
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Jiangsheng Li
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|