1
|
Dutta T, Chakraborty B, Nigam A, Minocha S, Koner AL. A small-molecule probe to decipher stress-induced ER microenvironments and ER-Golgi communication. J Mater Chem B 2024; 12:7848-7857. [PMID: 38808376 DOI: 10.1039/d4tb00572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Cellular stress is a crucial factor in regulating and maintaining both organismal and microenvironmental homeostasis. It induces a response that also affects the micropolarity of specific cellular compartments, which is essential for early disease diagnosis. In this contribution, we present a quantitative study of micropolarity changes inside the endoplasmic reticulum (ER) during the G1/S and G2/M phases, using a biocompatible small-molecule fluorophore called ER-Oct. This probe is selectively driven to the ER by its hydrophobicity, and it has the fastest diffusion properties among a series of analogous probes. We found that induced ER stress caused cell cycle arrests leading to an increase in ER micropolarity which is well supported by lambda scanning experiments and fluorescence lifetime imaging microscopy (FLIM) as well. ER-Oct is a versatile staining agent that could effectively stain the ER in various living/fixed mammalian cells, isolated ER, Caenorhabditis elegans, and mice tissues. Furthermore, we used this probe to visualize a well-known biological event, ER to Golgi transport, by live-cell fluorescence microscopy. Our exhaustive investigation of micropolarity using ER-staining dye provides a new way to study ER stress, which could provide a deeper understanding of proteostasis in model systems and even in fixed patient samples.
Collapse
Affiliation(s)
- Tanoy Dutta
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh - 462066, India.
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Barsha Chakraborty
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh - 462066, India.
| | - Aditya Nigam
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh - 462066, India.
| |
Collapse
|
2
|
He Z, Liu D, Li H, Gao W, Li X, Ma H, Shi W. Amphiphilic Rhodamine Fluorescent Probes Combined with Basal Imaging for Fine Structures of the Cell Membrane. Anal Chem 2024; 96:7257-7264. [PMID: 38664861 DOI: 10.1021/acs.analchem.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Confocal fluorescence imaging of fine structures of the cell membrane is important for understanding their biofunctions but is often neglected due to the lack of an effective method. Herein, we develop new amphiphilic rhodamine fluorescent probe RMGs in combination with basal imaging for this purpose. The probes show high signal-to-noise ratio and brightness and low internalization rate, making them suitable for imaging the fine substructures of the cell membrane. Using the representative probe RMG3, we not only observed the cell pseudopodia and intercellular nanotubes but also monitored the formation of migrasomes in real time. More importantly, in-depth imaging studies on more cell lines revealed for the first time that hepatocellular carcinoma cells secreted much more adherent extracellular vesicles than other cell lines, which might serve as a potential indicator of liver cells. We believe that RMGs may be useful for investigating the fine structures of the cell membrane.
Collapse
Affiliation(s)
- Zixu He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - He Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Guo Y, Wang Z, Chen Y, Chao F, Xu Y, Qu LL, Wu FG, Dong X. Ultrabright Green-Emissive Nanodots for Precise Biological Visualization. NANO LETTERS 2024; 24:2264-2272. [PMID: 38324803 DOI: 10.1021/acs.nanolett.3c04520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Developing general methods to fabricate water-dispersible and biocompatible fluorescent probes will promote different biological visualization applications. Herein, we report a metal-facilitated method to fabricate ultrabright green-emissive nanodots via the one-step solvothermal treatment of rose bengal, ethanol, and various metal ions. These metal-doped nanodots show good water dispersity, ultrahigh photoluminescence quantum yields (PLQYs) (e.g., the PLQY of Fe-doped nanodots (FeNDs) was ∼97%), and low phototoxicity. Owing to the coordination effect of metal ions, the FeNDs realize glutathione detection with outstanding properties. Benefiting from the high endoplasmic reticulum (ER) affinity of the chloride group, the FeNDs can act as an ER tracker with long ER imaging capacity (FeNDs: >24 h; commercial ER tracker: ∼1 h) and superb photostability and can achieve tissue visualization in living Caenorhabditis elegans. The metal-doped nanodots represent a general nanodot preparation method and may shed new light on diverse biological visualization uses.
Collapse
Affiliation(s)
- Yuxin Guo
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Zihao Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yu Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Furong Chao
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Yin Xu
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Lu-Lu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Xiaochen Dong
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
4
|
Koo KM, Kim CD, Kim TH. Recent Advances in Electrochemical Detection of Cell Energy Metabolism. BIOSENSORS 2024; 14:46. [PMID: 38248422 PMCID: PMC10813075 DOI: 10.3390/bios14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Cell energy metabolism is a complex and multifaceted process by which some of the most important nutrients, particularly glucose and other sugars, are transformed into energy. This complexity is a result of dynamic interactions between multiple components, including ions, metabolic intermediates, and products that arise from biochemical reactions, such as glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the two main metabolic pathways that provide adenosine triphosphate (ATP), the main source of chemical energy driving various physiological activities. Impaired cell energy metabolism and perturbations or dysfunctions in associated metabolites are frequently implicated in numerous diseases, such as diabetes, cancer, and neurodegenerative and cardiovascular disorders. As a result, altered metabolites hold value as potential disease biomarkers. Electrochemical biosensors are attractive devices for the early diagnosis of many diseases and disorders based on biomarkers due to their advantages of efficiency, simplicity, low cost, high sensitivity, and high selectivity in the detection of anomalies in cellular energy metabolism, including key metabolites involved in glycolysis and mitochondrial processes, such as glucose, lactate, nicotinamide adenine dinucleotide (NADH), reactive oxygen species (ROS), glutamate, and ATP, both in vivo and in vitro. This paper offers a detailed examination of electrochemical biosensors for the detection of glycolytic and mitochondrial metabolites, along with their many applications in cell chips and wearable sensors.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (K.-M.K.); (C.-D.K.)
| |
Collapse
|
5
|
Mondal IC, Rawat P, Galkin M, Deka S, Karmakar A, Mondal P, Ghosh S. Julolidine-based small molecular probes for fluorescence imaging of RNA in live cells. Org Biomol Chem 2023; 21:7831-7840. [PMID: 37728395 DOI: 10.1039/d3ob01314f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Intracellular RNA imaging with organic small molecular probes has been an intense topic, although the number of such reported dyes, particularly dyes with high quantum yields and long wavelength excitation/emission, is quite limited. The present work reports the design and synthesis of three cationic julolidine-azolium conjugates (OX-JLD, BTZ-JLD and SEZ-JLD) as turn-on fluorescent probes with appreciably high quantum yields and brightness upon interaction with RNA. A structure-efficiency relationship has been established for their potential for the interaction and imaging of intracellular RNA. Given their chemical structure, the free rotation between the donor and the acceptor gets restricted when the probes bind with RNA resulting in strong fluorescence emission towards a higher wavelength upon photoexcitation. A detailed investigation revealed that the photophysical properties and the optical responses of two probes, viz. BTZ-JLD and SEZ-JLD, towards RNA are very promising and qualify them to be suitable candidates for biological studies, particularly for cellular imaging applications. The probes allow imaging of intracellular RNA with prominent staining of nucleoli in live cells under a range of physiological conditions. The results of the cellular digest test established the appreciable RNA selectivity of BTZ-JLD and SEZ-JLD inside the cellular environment. Moreover, a comparison between the relative intensity profile of SEZ-JLD before and after the RNA-digestion test inside the cellular environment indicated that the interference of cellular viscosity in fluorescence enhancement is insignificant, and hence, SEZ-JLD can be used as a cell membrane permeable cationic molecular probe for deep-red imaging of intracellular RNA with a good degree of selectivity.
Collapse
Affiliation(s)
- Iswar Chandra Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, H.P-175005, India
| | - Priya Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, H.P-175005, India
| | - Maksym Galkin
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6 16610, Czech Republic
| | - Snata Deka
- School of Chemical Sciences, Indian Institute of Technology Mandi, H.P-175005, India
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Prosenjit Mondal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, H.P-175005, India
| | - Subrata Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, H.P-175005, India
| |
Collapse
|
6
|
Warjurkar K, Panda S, Sharma V. Red emissive carbon dots: a promising next-generation material with intracellular applicability. J Mater Chem B 2023; 11:8848-8865. [PMID: 37650569 DOI: 10.1039/d3tb01378b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The accidental discovery of carbon dots (CDs) back in 2004 has led to their widespread use in the biomedical field. CDs have demonstrated their effectiveness in reporting 3D structures of biological specimens, identifying normal and cancer cells, and even detecting analytes within cells. However, the limitations of blue-green emitting CDs, such as their shallow penetration, photodamage, and auto-fluorescence, have hindered their practical applications. To overcome these limitations, red emissive CDs (RCDs) have been developed, which have deep tissue penetration, minimal photo-damage, low auto-fluorescence, and high imaging contrast. In this article, we present a thorough review on the use of RCDs in biomedical applications, including in vivo and in vitro bioimaging, photoacoustic imaging, monitoring temperature and polarity changes in living cells, tumour therapy, and drug delivery. With the rapid progress being made in the development of RCDs for intracellular applications, their clinical application is expected to become a reality in the near future.
Collapse
Affiliation(s)
- Khushboo Warjurkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jagti, Jammu-180012, India.
| | - Satyajit Panda
- Department of Materials Engineering, National Institute of Technology Rourkela, Odisha-769008, India
| | - Vinay Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jagti, Jammu-180012, India.
| |
Collapse
|
7
|
Sternstein C, Böhm TM, Fink J, Meyr J, Lüdemann M, Krug M, Kriukov K, Gurdap CO, Sezgin E, Ebert R, Seibel J. Development of an Effective Functional Lipid Anchor for Membranes (FLAME) for the Bioorthogonal Modification of the Lipid Bilayer of Mesenchymal Stromal Cells. Bioconjug Chem 2023; 34:1221-1233. [PMID: 37328799 DOI: 10.1021/acs.bioconjchem.3c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The glycosylation of cellular membranes is crucial for the survival and communication of cells. As our target is the engineering of the glycocalyx, we designed a functionalized lipid anchor for the introduction into cellular membranes called Functional Lipid Anchor for MEmbranes (FLAME). Since cholesterol incorporates very effectively into membranes, we developed a twice cholesterol-substituted anchor in a total synthesis by applying protecting group chemistry. We labeled the compound with a fluorescent dye, which allows cell visualization. FLAME was successfully incorporated in the membranes of living human mesenchymal stromal cells (hMSC), acting as a temporary, nontoxic marker. The availability of an azido function─a bioorthogonal reacting group within the compound─enables the convenient coupling of alkyne-functionalized molecules, such as fluorophores or saccharides. After the incorporation of FLAME into the plasma membrane of living hMSC, we were able to successfully couple our molecule with an alkyne-tagged fluorophore via click reaction. This suggests that FLAME is useful for the modification of the membrane surface. Coupling FLAME with a galactosamine derivative yielded FLAME-GalNAc, which was incorporated into U2OS cells as well as in giant unilamellar vesicles (GUVs) and cell-derived giant plasma membrane vesicles (GPMVs). With this, we have shown that FLAME-GalNAc is a useful tool for studying the partitioning in the liquid-ordered (Lo) and the liquid-disordered (Ld) phases. The molecular tool can also be used to analyze the diffusion behavior in the model and the cell membranes by fluorescence correlation spectroscopy (FCS).
Collapse
Affiliation(s)
- Christine Sternstein
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa-Maria Böhm
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jessica Meyr
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Lüdemann
- Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Melanie Krug
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Kirill Kriukov
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Zheng Y, Wegner T, Di Iorio D, Pierau M, Glorius F, Wegner SV. NTA-Cholesterol Analogue for the Nongenetic Liquid-Ordered Phase-Specific Functionalization of Lipid Membranes with Proteins. ACS Chem Biol 2023; 18:1435-1443. [PMID: 37184283 DOI: 10.1021/acschembio.3c00180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The nongenetic modification of cell membranes with proteins is a straightforward way of cellular engineering. In these processes, it is important to specifically address the proteins to liquid-ordered (Lo) or liquid-disordered (Ld) domains as this can largely affect their biological functions. Herein, we report a cholesterol analogue (CHIM) with a nitrilotriacetic acid (NTA) headgroup, named CHIM-NTA. CHIM-NTA integrates into lipid membranes similar to the widely used phospholipid-derived DGS-NTA and, when loaded with Ni2+, allows for specific membrane immobilization of any polyhistidine-tagged proteins of choice. Yet, unlike DGS-NTA, it localizes to the Lo phase in phase-separated giant unilamellar vesicles (GUVs) and allows addressing His-tagged proteins to Lo domains. Furthermore, CHIM-NTA readily integrates into the membranes of live cells and thus enables the nongenetic modification of the cell surface with proteins. Overall, CHIM-NTA provides a facile and flexible way to modify biological membranes, in particular Lo domains, with His-tagged proteins and can serve as a broadly applicable molecular tool for cell surface engineering.
Collapse
Affiliation(s)
- Yanjun Zheng
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Münster 48149, Germany
| | - Tristan Wegner
- University of Münster, Institute of Organic Chemistry, Münster 48149, Germany
| | - Daniele Di Iorio
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Münster 48149, Germany
| | - Marco Pierau
- University of Münster, Institute of Organic Chemistry, Münster 48149, Germany
| | - Frank Glorius
- University of Münster, Institute of Organic Chemistry, Münster 48149, Germany
| | - Seraphine V Wegner
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry, Münster 48149, Germany
| |
Collapse
|
9
|
Sharma A, Choi HK, Lee HJ. Carbon Dots for the Treatment of Inflammatory Diseases: An Appraisal of In Vitro and In Vivo Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3076119. [PMID: 37273553 PMCID: PMC10234732 DOI: 10.1155/2023/3076119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023]
Abstract
In recent decades, several studies demonstrating various applications of carbon dots (C-dots), including metal sensing, bioimaging, pH sensing, and antimicrobial activities, have been published. Recent developments have shifted this trend toward biomedical applications that target various biomarkers relevant to chronic diseases. However, relevant developments and research results regarding the anti-inflammatory properties of C-dots against inflammation-associated diseases have not been systematically reviewed. Hence, this review discusses the anti-inflammatory effects of C-dots in in vivo and in vitro models of LPS-induced inflammation, gout, cartilage tissue engineering, drug-induced inflammation, spinal cord injury, wound healing, liver diseases, stomach cancer, gastric ulcers, acute kidney and lung injury, psoriasis, fever or hypothermia, and bone tissue regeneration. The compiled studies demonstrate the promising potential of C-dots as anti-inflammatory agents for the development of new drugs.
Collapse
Affiliation(s)
- Anshul Sharma
- College of Bionanotechnology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea 55365
| | - Hae-Jeung Lee
- College of Bionanotechnology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
10
|
Lu C, Liu Y, Liu Y, Kou G, Chen Y, Wu X, Lv Y, Cai J, Chen R, Luo J, Yang X. Silver Nanoparticles Cause Neural and Vascular Disruption by Affecting Key Neuroactive Ligand-Receptor Interaction and VEGF Signaling Pathways. Int J Nanomedicine 2023; 18:2693-2706. [PMID: 37228446 PMCID: PMC10204756 DOI: 10.2147/ijn.s406184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Silver nanoparticles (AgNP) are widely used as coating materials. However, the potential risks of AgNP to human health, especially for neural and vascular systems, are still poorly understood. Methods The vascular and neurotoxicity of various concentrations of AgNP in zebrafish were examined using fluorescence microscopy. In addition, Illumina high-throughput global transcriptome analysis was performed to explore the transcriptome profiles of zebrafish embryos after exposure to AgNP. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to elucidate the top 3000 differentially expressed genes (DEGs) between AgNP-exposed and control groups. Results We systematically investigated the neural and vascular developmental toxicities of AgNP exposure in zebrafish. The results demonstrated that AgNP exposure could cause neurodevelopmental anomalies, including a small-eye phenotype, neuronal morphology defects, and inhibition of athletic abilities. In addition, we found that AgNP exposure induces angiogenesis malformation in zebrafish embryos. Further RNA-seq revealed that DEGs were mainly enriched in the neuroactive ligand-receptor interaction and vascular endothelial growth factor (Vegf) signaling pathways in AgNP-treated zebrafish embryos. Specifically, the mRNA levels of the neuroactive ligand-receptor interaction pathway and Vegf signaling pathway-related genes, including si:ch73-55i23.1, nfatc2a, prkcg, si:ch211-132p1.2, lepa, mchr1b, pla2g4aa, rac1b, p2ry6, adrb2, chrnb1, and chrm1b, were significantly regulated in AgNP-treated zebrafish embryos. Conclusion Our findings indicate that AgNP exposure transcriptionally induces developmental toxicity in neural and vascular development by disturbing neuroactive ligand-receptor interactions and the Vegf signaling pathway in zebrafish embryos.
Collapse
Affiliation(s)
- Chunjiao Lu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Yi Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Yao Liu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Guanhua Kou
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Xuewei Wu
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Yuhang Lv
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Jiahao Cai
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Renyuan Chen
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Juanjuan Luo
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| |
Collapse
|
11
|
Yang J, Wang YYL, Kazmi SSUH, Mo J, Fan H, Wang Y, Liu W, Wang Z. Evaluation of in vitro toxicity information for zebrafish as a promising alternative for chemical hazard and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162262. [PMID: 36801337 DOI: 10.1016/j.scitotenv.2023.162262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In vitro assays are widely proposed as a test alternative to traditional in vivo standard acute and chronic toxicity tests. However, whether toxicity information derived from in vitro assays instead of in vivo tests could provide sufficient protection (e.g., 95 % of protection) for chemical risks remain evaluated. To investigate the feasibility of zebrafish (Danio rerio) cell-based in vitro test method as a test alternative, we comprehensively compared sensitivity differences among endpoints, among test methods (in vitro, FET and in vivo), and between zebrafish and rat (Rattus norvegicus), respectively using chemical toxicity distribution (CTD) approach. For each test method involved, sublethal endpoints were more sensitive than lethal endpoints for both zebrafish and rat, respectively. Biochemistry (zebrafish in vitro), development (zebrafish in vivo and FET), physiology (rat in vitro) and development (rat in vivo) were the most sensitive endpoints for each test method. Nonetheless, zebrafish FET test was the least sensitive one compared to its in vivo and in vitro tests for either lethal or sublethal responses. Comparatively, rat in vitro tests considering cell viability and physiology endpoints were more sensitive than rat in vivo test. Zebrafish was found to be more sensitive than rat regardless of in vivo or in vitro tests for each pairwise endpoint of concern. Those findings indicate that zebrafish in vitro test is a feasible test alternative to zebrafish in vivo and FET test and traditional mammalian test. It is suggesting that zebrafish in vitro test can be optimized by choosing more sensitive endpoints, such as biochemistry to provide sufficient protection for zebrafish in vivo test and to establish applications of zebrafish in vitro test in future risk assessment. Our findings are vital for evaluating and further application of in vitro toxicity toxicity information as an alternative for chemical hazard and risk assessment.
Collapse
Affiliation(s)
- Jing Yang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yolina Yu Lin Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Syed Shabi Ul Hassan Kazmi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Hailin Fan
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yuwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
12
|
Xu KF, Jia HR, Wang Z, Feng HH, Li LY, Zhang R, Durrani S, Lin F, Wu FG. See the Unseen: Red-Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and In Vivo Drug Toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205890. [PMID: 36634974 DOI: 10.1002/smll.202205890] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Nucleolus, which participates in many crucial cellular activities, is an ideal target for evaluating the state of a cell or an organism. Here, bright red-emissive carbon dots (termed CPCDs) with excitation-independent/polarity-dependent fluorescence emission are synthesized by a one-step hydrothermal reaction between congo red and p-phenylenediamine. The CPCDs can achieve wash-free, real-time, long-term, and high-quality nucleolus imaging in live cells, as well as in vivo imaging of two common model animals-zebrafish and Caenorhabditis elegans (C. elegans). Strikingly, CPCDs realize the nucleolus imaging of organs/flowing blood cells in zebrafish at a cellular level for the first time, and the superb nucleolus imaging of C. elegans suggests that the germ cells in the spermatheca probably have no intact nuclei. These previously unachieved imaging results of the cells/tissues/organs may guide the zebrafish-related studies and benefit the research of C. elegans development. More importantly, a novel strategy based on CPCDs for in vivo toxicity evaluation of materials/drugs (e.g., Ag+ ), which can visualize the otherwise unseen injuries in zebrafish, is developed. In conclusion, the CPCDs represent a robust tool for visualizing the structures and dynamic behaviors of live zebrafish and C. elegans, and may find important applications in cell biology and toxicology.
Collapse
Affiliation(s)
- Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Zihao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hui-Heng Feng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ling-Yi Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Rufeng Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Samran Durrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
13
|
Koo KM, Kim CD, Ju FN, Kim H, Kim CH, Kim TH. Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability. BIOSENSORS 2022; 12:bios12121162. [PMID: 36551129 PMCID: PMC9775431 DOI: 10.3390/bios12121162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 05/28/2023]
Abstract
Redox reactions in live cells are generated by involving various redox biomolecules for maintaining cell viability and functions. These qualities have been exploited in the development of clinical monitoring, diagnostic approaches, and numerous types of biosensors. Particularly, electrochemical biosensor-based live-cell detection technologies, such as electric cell-substrate impedance (ECIS), field-effect transistors (FETs), and potentiometric-based biosensors, are used for the electrochemical-based sensing of extracellular changes, genetic alterations, and redox reactions. In addition to the electrochemical biosensors for live-cell detection, cancer and stem cells may be immobilized on an electrode surface and evaluated electrochemically. Various nanomaterials and cell-friendly ligands are used to enhance the sensitivity of electrochemical biosensors. Here, we discuss recent advances in the use of electrochemical sensors for determining cell viability and function, which are essential for the practical application of these sensors as tools for pharmaceutical analysis and toxicity testing. We believe that this review will motivate researchers to enhance their efforts devoted to accelerating the development of electrochemical biosensors for future applications in the pharmaceutical industry and stem cell therapeutics.
Collapse
|
14
|
Liu Z, Zhu Y, Zhang L, Jiang W, Liu Y, Tang Q, Cai X, Li J, Wang L, Tao C, Yin X, Li X, Hou S, Jiang D, Liu K, Zhou X, Zhang H, Liu M, Fan C, Tian Y. Structural and functional imaging of brains. Sci China Chem 2022; 66:324-366. [PMID: 36536633 PMCID: PMC9753096 DOI: 10.1007/s11426-022-1408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/23/2022]
Abstract
Analyzing the complex structures and functions of brain is the key issue to understanding the physiological and pathological processes. Although neuronal morphology and local distribution of neurons/blood vessels in the brain have been known, the subcellular structures of cells remain challenging, especially in the live brain. In addition, the complicated brain functions involve numerous functional molecules, but the concentrations, distributions and interactions of these molecules in the brain are still poorly understood. In this review, frontier techniques available for multiscale structure imaging from organelles to the whole brain are first overviewed, including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), serial-section electron microscopy (ssEM), light microscopy (LM) and synchrotron-based X-ray microscopy (XRM). Specially, XRM for three-dimensional (3D) imaging of large-scale brain tissue with high resolution and fast imaging speed is highlighted. Additionally, the development of elegant methods for acquisition of brain functions from electrical/chemical signals in the brain is outlined. In particular, the new electrophysiology technologies for neural recordings at the single-neuron level and in the brain are also summarized. We also focus on the construction of electrochemical probes based on dual-recognition strategy and surface/interface chemistry for determination of chemical species in the brain with high selectivity and long-term stability, as well as electrochemophysiological microarray for simultaneously recording of electrochemical and electrophysiological signals in the brain. Moreover, the recent development of brain MRI probes with high contrast-to-noise ratio (CNR) and sensitivity based on hyperpolarized techniques and multi-nuclear chemistry is introduced. Furthermore, multiple optical probes and instruments, especially the optophysiological Raman probes and fiber Raman photometry, for imaging and biosensing in live brain are emphasized. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Ying Zhu
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Liming Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Qiaowei Tang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiaoqing Cai
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Jiang Li
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Lihua Wang
- Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 201210 China
| | - Changlu Tao
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
| | | | - Xiaowei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055 China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, 430071 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
15
|
Xu KF, Jia HR, Liu X, Zhu YX, She C, Li J, Duan QY, Zhang R, Wu FG. Fluorescent dendrimer-based probes for cell membrane imaging: Zebrafish epidermal labeling-based toxicity evaluation. Biosens Bioelectron 2022; 213:114403. [PMID: 35696870 DOI: 10.1016/j.bios.2022.114403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022]
Abstract
Visualizing the plasma membrane of living mammalian cells both in vitro and in vivo is crucial for tracking their cellular activities. However, due to the complex and dynamic nature of the plasma membrane, most commercial dyes for membrane staining can only realize very limited imaging performance. Thus, precise and stable plasma membrane imaging remains technically challenging. Here, by taking advantage of the small, well-defined, and amine-rich dendrimers, we prepared poly(ethylene glycol)-cholesterol (PEG-Chol)-conjugated and cyanine dye (e.g., cyanine2, cyanine3, and cyanine5)-labeled dendrimer nanoprobes (termed DPC-Cy2, DPC-Cy3, and DPC-Cy5 NPs). It was revealed that these probes enabled universal, wash-free, long-term (at least 8 h), and multicolor (green, yellow, and red) plasma membrane labeling of a variety of live mammalian cells. Further, we confirmed that the nanoprobes (using DPC-Cy5 as a representative) could achieve high-quality, wash-free, and stable cell surface labeling of live zebrafish embryos. More importantly, we demonstrated that our probes could act as biosensors to visualize the toxicity of metal-organic frameworks (MOFs) toward the epidermal cells of zebrafish embryos, and thus they hold great potential for identifying the toxic effect of drugs/materials at the single-cell scale or in live animals. The present work highlights the advantages of utilizing dendrimers for constructing functional imaging materials, and it is also believed that the fluorescent dendrimer nanoprobes developed in this work may find wide applications like cell imaging, drug toxicity evaluation, and cellular state monitoring.
Collapse
Affiliation(s)
- Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China
| | - Cong She
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China
| | - Junying Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China
| | - Rufeng Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China.
| |
Collapse
|
16
|
Miyamoto K, Kawakami K, Tamura K, Abe G. Developmental independence of median fins from the larval fin fold revises their evolutionary origin. Sci Rep 2022; 12:7521. [PMID: 35525860 PMCID: PMC9079066 DOI: 10.1038/s41598-022-11180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
The median fins of modern fish that show discrete forms (dorsal, anal, and caudal fins) are derived from a continuous fold-like structure, both in ontogeny and phylogeny. The median fin fold (MFF) hypothesis assumes that the median fins evolved by reducing some positions in the continuous fin fold of basal chordates, based on the classical morphological observation of developmental reduction in the larval fin folds of living fish. However, the developmental processes of median fins are still unclear at the cellular and molecular levels. Here, we describe the transition from the larval fin fold into the median fins in zebrafish at the cellular and molecular developmental level. We demonstrate that reduction does not play a role in the emergence of the dorsal fin primordium. Instead, the reduction occurs along with body growth after primordium formation, rather than through actively scrapping the non-fin forming region by inducing cell death. We also report that the emergence of specific mesenchymal cells and their proliferation promote dorsal fin primordium formation. Based on these results, we propose a revised hypothesis for median fin evolution in which the acquisition of de novo developmental mechanisms is a crucial evolutionary component of the discrete forms of median fins.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Koji Tamura
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Gembu Abe
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan.
- Division of Developmental Biology, Department of Functional Morphology, School of Life Science, Faculty of Medicine, Tottori University, Nishi-cho 86, Yonago, 683-8503, Japan.
| |
Collapse
|
17
|
Cascallar M, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers (Basel) 2022; 14:cancers14092238. [PMID: 35565373 PMCID: PMC9099873 DOI: 10.3390/cancers14092238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an “avatar” model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-704
| |
Collapse
|
18
|
Colorimetric/spectral dual-mode analysis of sensitive fluorescent probe based on 2,3,3-trimethyl-3H-benzo[e]indole detection of acid pH. Bioorg Chem 2022; 124:105792. [DOI: 10.1016/j.bioorg.2022.105792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022]
|
19
|
Gao D, Zhang Y, Wu K, Min H, Wei D, Sun J, Yang H, Fan H. One-step synthesis of ultrabright amphiphilic carbon dots for rapid and precise tracking lipid droplets dynamics in biosystems. Biosens Bioelectron 2022; 200:113928. [PMID: 34990958 DOI: 10.1016/j.bios.2021.113928] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
Fluorescent probes enabling precisely labeling lipid droplets (LDs) in complex systems are highly desirable in life science for studying LDs-related physiological processes and metabolic diseases. However, most of the current LDs fluorophores fail to achieve rapid wash-free LDs labeling, especially in vivo labeling due to their strong hydrophobicity and poor water solubility. We report here one-step synthesis of highly efficient carbon dots (CDs) that feature robust solvatochromic emission, high quantum yield (QY) up to 76.35% in oil, good water solubility and lipophilicity, thus allowing to stain LDs in a bright and selective manner. Detailed characterizations reveal the presence of a well-defined molecule, 2-dimethylamino-5-fluorobenzimidazole in a large amount in CDs. Its D-π-A structure and dimethylamino-induced spatial torsion configuration and extended π-electron conjugation account for solvatochromic emission with high QY. Notably, the CDs can image LDs with many advanced merits (high brightness, ultrafast staining within 10 s, wash-free, excellent LDs specificity, good biocompatibility) and have been successfully applied to monitor cellular LDs dynamics. Moreover, the CDs for the first time allow in situ labeling of LDs and epidermal cell membranes simultaneously in live zebrafish. This work expands the diversity for optical properties and applications of CDs, facilitating the design of new LDs-targeting CDs.
Collapse
Affiliation(s)
- Dong Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Kai Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Hanyun Min
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Huaqing Yang
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
20
|
Yu XW, Liu X, Jiang YW, Li YH, Gao G, Zhu YX, Lin F, Wu FG. Rose Bengal-Derived Ultrabright Sulfur-Doped Carbon Dots for Fast Discrimination between Live and Dead Cells. Anal Chem 2022; 94:4243-4251. [PMID: 35235297 DOI: 10.1021/acs.analchem.1c04658] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discrimination between dead and live cells is crucial for cell viability evaluation. Carbon dots (CDs), with advantages like simple and cost-effective synthesis, excellent biocompatibility, and high photostability, have shown potential for realizing selective live/dead cell staining. However, most of the developed CDs with the live/dead cell discrimination capacity usually have low photoluminescence quantum yields (PLQYs) and excitation wavelength-dependent fluorescence emission (which can cause fluorescence overlap with other fluorescent probes and make dual-color live/dead staining impossible), and hence, developing ultrabright CDs with excitation wavelength-independent fluorescence emission property for live/dead cell discrimination becomes an important task. Here, using a one-pot hydrothermal method, we prepared ultrasmall (∼1.6 nm), ultrabright (PLQY: ∼78%), and excitation wavelength-independent sulfur-doped carbon dots (termed S-CDs) using rose bengal and 1,4-dimercaptobenzene as raw materials and demonstrated that the S-CDs could rapidly (∼5 min) and accurately distinguish dead cells from live ones for almost all the cell types including bacterial, fungal, and animal cells in a wash-free manner. We confirmed that the S-CDs could rapidly pass through the dead cell surfaces to enter the interior of the dead cells, thus visualizing these dead cells. In contrast, the S-CDs could not enter the interior of live cells and thus could not stain these live cells. We further verified that the S-CDs presented better biocompatibility and higher photostability than the commercial live/dead staining dye propidium iodide, ensuring its bright application prospect in cell imaging and cell viability assessment. Overall, this work develops a type of CDs capable of realizing the live/dead cell discrimination of almost all the cell types (bacterial, fungal, and animal cells), which has seldom been achieved by other fluorescent nanoprobes.
Collapse
Affiliation(s)
- Xin-Wang Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Yan-Hong Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
21
|
Hu L, Chen X, Yu K, Huang N, Du H, Wei Y, Wu Y, Wang H. Weak-emission iridium(III) complexes as fluorescent turn-on probes for ultrasensitive and selective imaging histidine in living cells and rat tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120095. [PMID: 34175759 DOI: 10.1016/j.saa.2021.120095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Visualizing endogenous histidine (His) in living systems is an important and challenging work in life science field. Herein, two weak-emission iridium(III) complexes (IrL1 and IrL2) with solvent ligands (CH3CN) were designed and synthesized. It was found that IrL2 showed a better performance for detecting His with more remarkable fluorescence enhancement and lower limit of detection (LOD = 35 nM). Moreover, the recognitionmechanism was confirmed to be a substitution of solvent ligands by His. Importantly, probe IrL2 was applicable to visualize endogenous His in living cells and rat tissue slices via an energy-dependent endocytotic pathway. We hope that this probe can serve as a useful tool for the diagnosis of His-related diseases.
Collapse
Affiliation(s)
- Lei Hu
- Department of Chemistry, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Xi Chen
- Department of Chemistry, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Kun Yu
- Department of Chemistry, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Na Huang
- Department of Chemistry, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Hailing Du
- Department of Chemistry, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Yan Wei
- Department of Chemistry, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Yunjun Wu
- Department of Chemistry, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Hui Wang
- Department of Chemistry, Wannan Medical College, Wuhu 241002, People's Republic of China.
| |
Collapse
|
22
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
23
|
Sun M, Cao Y, Sun Q, Ren X, Hu J, Sun Z, Duan J. Exposure to polydopamine nanoparticles induces neurotoxicity in the developing zebrafish. NANOIMPACT 2021; 24:100353. [PMID: 35559812 DOI: 10.1016/j.impact.2021.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/15/2023]
Abstract
Currently, the potential applications of polydopamine (PDA) nanoparticles in the biomedical field are being extensively studied, such as cell internalization, biocompatible surface modification, biological imaging, nano-drug delivery, cancer diagnosis, and treatment. However, the subsequent toxicological response to PDA nanoparticles, especially on nervous system damage was still largely unknown. In this regard, the evaluation of the neurotoxicity of PDA nanoparticles was performed in the developing zebrafish larvae. Results of the transmission electron microscope (TEM), diameter analysis, 1H NMR, and thermogravimetric analysis (TGA) indicated that PDA nanoparticles had high stability without any depolymerization; the maximum non-lethal dose (MNLD) and LD10 of PDA nanoparticles for zebrafish were determined to be 0.5 mg/mL and 4 mg/mL. Pericardial edema and uninflated swim bladders were observed in zebrafish larvae after exposure to PDA nanoparticles. At a concentration higher than MNLD, the fluorescence images manifested that the PDA nanoparticles could inhibit the axonal growth of peripheral motor neurons in zebrafish, which might affect the movement distances and speed, disturb the movement trace, finally resulting in impaired motor function. However, in further investigating the mechanism of PDA nanoparticles-induced neurotoxicity in zebrafish larvae, we did not find apoptosis of central neurocytes. Our data suggested that PDA nanoparticles might trigger neurotoxicity in zebrafish, which could provide an essential clue for the safety assessment of PDA nanoparticles.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junjie Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
24
|
Yang J, Xu L, Di L, Su Y, Zhu X. Journey of Poly(ethylene Glycol) in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40267-40277. [PMID: 34424662 DOI: 10.1021/acsami.1c09366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the gold standard for stealth polymer materials, poly(ethylene glycol) (PEG) has been widely used in drug delivery with excellent properties such as low toxicity, reduced immunogenicity, good water solubility, and so forth. However, lack of understanding for the fate of PEG and PEGylated delivery systems at the cellular level has limited the application of PEGylated molecules in diagnosis and therapy. Here, we chose linear PEG 5k as a representative model and focused on the internalization behavior and mechanism, intracellular trafficking, sub-cellular localization, and cellular exocytosis of PEG and PEGylated molecules in living cells. Our investigation showed that PEG could be internalized into cells in 1 h. The internalized PEG was localized to lysosome, cytosol, endoplasmic reticulum (ER) and mitochondria. Importantly, the fate of PEG in cells could be regulated by conjugating different small molecules. PEGylated rhodamine B (PEG-RB) as the positively charged macromolecule was internalized into cells by micropinocytosis and then transported in lysosomes, ER, and mitochondria via vesicles sequentially. In contrast, PEGylated pyropheophorbide-a (PEG-PPa) as the negatively charged macromolecule was internalized into cells and transported to lysosomes ultimately. PEGylation slowed down the exocytosis process of RB and PPa and significantly prolonged their residence time inside the cells. These findings improve the understanding of how PEG and PEGylated molecules interact with the biological system at cellular and sub-cellular levels, which is of significance to rational PEGylation design for drug delivery.
Collapse
Affiliation(s)
- Jiapei Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ling Di
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
25
|
Di Mauro G, Rauti R, Casani R, Chimowa G, Galibert AM, Flahaut E, Cellot G, Ballerini L. Tuning the Reduction of Graphene Oxide Nanoflakes Differently Affects Neuronal Networks in the Zebrafish. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2161. [PMID: 34578477 PMCID: PMC8468975 DOI: 10.3390/nano11092161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 01/05/2023]
Abstract
The increasing engineering of biomedical devices and the design of drug-delivery platforms enriched by graphene-based components demand careful investigations of the impact of graphene-related materials (GRMs) on the nervous system. In addition, the enhanced diffusion of GRM-based products and technologies that might favor the dispersion in the environment of GRMs nanoparticles urgently requires the potential neurotoxicity of these compounds to be addressed. One of the challenges in providing definite evidence supporting the harmful or safe use of GRMs is addressing the variety of this family of materials, with GRMs differing for size and chemistry. Such a diversity impairs reaching a unique and predictive picture of the effects of GRMs on the nervous system. Here, by exploiting the thermal reduction of graphene oxide nanoflakes (GO) to generate materials with different oxygen/carbon ratios, we used a high-throughput analysis of early-stage zebrafish locomotor behavior to investigate if modifications of a specific GRM chemical property influenced how these nanomaterials affect vertebrate sensory-motor neurophysiology-exposing zebrafish to GO downregulated their swimming performance. Conversely, reduced GO (rGO) treatments boosted locomotor activity. We concluded that the tuning of single GRM chemical properties is sufficient to produce differential effects on nervous system physiology, likely interfering with different signaling pathways.
Collapse
Affiliation(s)
- Giuseppe Di Mauro
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Rossana Rauti
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Raffaele Casani
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - George Chimowa
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Anne Marie Galibert
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Emmanuel Flahaut
- CIRIMAT, UMR CNRS 5085, Université Toulouse Paul Sabatier, Bat. CIRIMAT, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (G.C.); (A.M.G.); (E.F.)
| | - Giada Cellot
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| | - Laura Ballerini
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, 34136 Trieste, Italy; (G.D.M.); (R.R.); (R.C.)
| |
Collapse
|
26
|
Saleem S, Kannan RR. Zebrafish: A Promising Real-Time Model System for Nanotechnology-Mediated Neurospecific Drug Delivery. NANOSCALE RESEARCH LETTERS 2021; 16:135. [PMID: 34424426 PMCID: PMC8382796 DOI: 10.1186/s11671-021-03592-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Delivering drugs to the brain has always remained a challenge for the research community and physicians. The blood-brain barrier (BBB) acts as a major hurdle for delivering drugs to specific parts of the brain and the central nervous system. It is physiologically comprised of complex network of capillaries to protect the brain from any invasive agents or foreign particles. Therefore, there is an absolute need for understanding of the BBB for successful therapeutic interventions. Recent research indicates the strong emergence of zebrafish as a model for assessing the permeability of the BBB, which is highly conserved in its structure and function between the zebrafish and mammals. The zebrafish model system offers a plethora of advantages including easy maintenance, high fecundity and transparency of embryos and larvae. Therefore, it has the potential to be developed as a model for analysing and elucidating the permeability of BBB to novel permeation technologies with neurospecificity. Nanotechnology has now become a focus area within the industrial and research community for delivering drugs to the brain. Nanoparticles are being developed with increased efficiency and accuracy for overcoming the BBB and delivering neurospecific drugs to the brain. The zebrafish stands as an excellent model system to assess nanoparticle biocompatibility and toxicity. Hence, the zebrafish model is indispensable for the discovery or development of novel technologies for neurospecific drug delivery and potential therapies for brain diseases.
Collapse
Affiliation(s)
- Suraiya Saleem
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
27
|
Hu J, Yang R, Qin H, Sun Y, Qu L, Li Z. Spying on the Polarity Dynamics during Wound Healing of Zebrafish by Using Rationally Designed Carbon Dots. Adv Healthc Mater 2021; 10:e2002268. [PMID: 34165910 DOI: 10.1002/adhm.202002268] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/27/2021] [Indexed: 12/20/2022]
Abstract
Wound healing is an essential and complex biological process. Research into its mechanism and factors that influence its effectiveness has led to better treatments. Changes in the microenvironment are demonstrated to affect wound healing. Cell polarity is a significant microenvironment-related parameter that is associated with many physiological and pathological activities. However, dynamic changes in polarity during wound healing have not been investigated. Monitoring cell polarity during wound healing may open up a new avenue for developing better treatments. Here, a method is developed to monitor cell polarity that involved taking advantage of the fascinating optical properties and biocompatibility of carbon dots (CDs). Specifically, near-infrared (NIR) polarity-sensitive N-phenyl-p-phenylenediamine (PPh-CDs) are successfully prepared, which exhibit high sensitivity to polarity, with 509-fold stronger fluorescence in dioxane than in water. The PPh-CDs are successfully applied to monitor the changes of lysosomal polarity during starvation conditions. Using this method, dynamic changes of polarity during wound healing of zebrafish are monitored for the first time. Upon an amputation performed at the zebrafish tail, stronger PPh-CDs fluorescence appeared at the wound sites, and the intensity increased for 25 min and then gradually decreased. This report provides an important experimental basis for investigating wound healing by employing polarity-sensitive CDs.
Collapse
Affiliation(s)
- Jingyu Hu
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| | - Ran Yang
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| | - Haoyue Qin
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| | - Yuanqiang Sun
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lingbo Qu
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| | - Zhaohui Li
- College of Chemistry Green Catalysis Center Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
28
|
Yang N, Song S, Ren J, Liu C, Li Z, Qi H, Yu C. Controlled Aggregation of a Perylene-Derived Probe for Near-Infrared Fluorescence Imaging and Phototherapy. ACS APPLIED BIO MATERIALS 2021; 4:5008-5015. [PMID: 35007049 DOI: 10.1021/acsabm.1c00289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design and synthesis of water-soluble phototherapeutic agents with near-infrared (NIR) fluorescence emission is highly desirable for cancer diagnosis and treatment. Here, we report the construction of an amphiphilic perylene-derived photosensitizer, AP. AP shows NIR emission with large Stokes shift (130 nm) and high 1O2 quantum yield (22%). It can self-assemble into nanoparticles in aqueous solution with quenched fluorescence emission due to aggregation-induced quenching. Upon membrane anchoring, AP is able to disassemble into free monomer molecules and specifically "light up" the cell membrane without the usually required washing procedures. Furthermore, AP is subsequently used for the efficient photodynamic therapy against cancer cells and solid tumors. The in vitro and in vivo experiments clearly indicate that AP is suitable for biological imaging and can serve as a promising photosensitizer for tumor suppression.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jia Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhiheng Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hong Qi
- Tumor Hospital of Jilin Province, Changchun 130061, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Zhu Z, Wang Q, Liao H, Liu M, Liu Z, Zhang Y, Zhu WH. Trapping endoplasmic reticulum with amphiphilic AIE-active sensor via specific interaction of ATP-sensitive potassium (K ATP). Natl Sci Rev 2021; 8:nwaa198. [PMID: 34691658 PMCID: PMC8288166 DOI: 10.1093/nsr/nwaa198] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/23/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
The current aggregation-induced emission luminogens (AIEgens) sometimes suffer from poor targeting selectivity due to undesirable aggregation in the hydrophilic biosystem with 'always-on' fluorescence or unspecific aggregation in the lipophilic organelle with prematurely activated fluorescence. Herein, we report an unprecedented 'amphiphilic AIEgen' sensor QM-SO3-ER based on the AIE building block of quinoline-malononitrile (QM). The introduced hydrophilic sulfonate group can well control the specific solubility in a hydrophilic system with desirable initial 'fluorescence-off' state. Moreover, the incorporated p-toluenesulfonamide group plays two roles: enhancing the lipophilic dispersity, and behaving as binding receptor to the adenosine triphosphate (ATP)-sensitive potassium (KATP) on the endoplasmic reticulum (ER) membrane to generate the docking assay confinement effect with targetable AIE signal. The amphiphilic AIEgen has for the first time settled down the predicament of unexpected 'always-on' fluorescence in the aqueous system and the untargetable aggregation signal in the lipophilic organelle before binding to ER, thus successfully overcoming the bottleneck of AIEgens' targetability.
Collapse
Affiliation(s)
- Zhirong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongze Liao
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenxing Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Youheng Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
30
|
Yi H, Zhou X, Zhou C, Yang Q, Jia N. Liquid exfoliated biocompatible WS 2@BSA nanosheets with enhanced theranostic capacity. Biomater Sci 2021; 9:148-156. [PMID: 32936130 DOI: 10.1039/d0bm00991a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrathin transition metal dichalcogenides (TMDs) seem to have a promising future in the field of theranostic agents due to their excellent near-infrared light absorption capacity and large specific surface area. Plenty of previous studies focused on the therapeutic effects of the materials, but were less concerned with the detailed studies of biocompatibility for clinical transformation. In this work, ultrathin WS2 nanosheets coated with bovine serum protein (BSA) (WS2@BSA NSs) were selected as experimental subjects with favorable biocompatibility to explore their potential as a theranostic agent. Firstly, ultrathin WS2 nanosheets were prepared by ultrasound-assisted exfoliation using n-methyl pyrrolidone (NMP) as the liquid phase, followed by coating with bovine serum protein. The physical and chemical properties of WS2@BSA NSs were investigated. Secondly, the biocompatibility experiments that are most relevant to clinical transformation were divided into cell level experiments and in vivo experiments with zebrafish as the model organism. Finally, to explore further applications for the diagnosis and treatment of tumors, the in vitro photothermal effect and the X-ray computed tomography (CT) imaging capability of WS2@BSA NSs were investigated. The obtained results were promising in terms of biocompatibility and theranostics, which suggested the potential of WS2@BSA NSs for use as a multifunctional theranostic agent in clinics.
Collapse
Affiliation(s)
- Haoyang Yi
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P.R. China.
| | | | | | | | | |
Collapse
|
31
|
Integration of [12]aneN3 and Acenaphtho[1,2-b]quinoxaline as non-viral gene vectors with two-photon property for enhanced DNA/siRNA delivery and bioimaging. Bioorg Chem 2021; 113:104983. [PMID: 34029935 DOI: 10.1016/j.bioorg.2021.104983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Two-photon fluorescent Acenaphtho[1,2-b]quinoxaline (ANQ) and the hydrophilic di-(triazole-[12]aneN3) moieties were combined through an alkyl chain (ANQ-A-M) or a β-hairpin motif with two aromatic γ-amino acid residues (ANQ-H-M) to explore their capabilities for in vitro and in vivo gene delivery and tracing. ANQ-A-M and ANQ-H-M showed the same maximum absorption at 420 nm, and their fluorescent intensities around 650 nm were varied in different solvents and became poor in the protic solvents. Gel electrophoresis assays indicated that both compounds completely retarded the migration of pDNA at 20 μM in the presence of DOPE. However, the DNA condensation with ANQ-H-M was not reversible, and the particle size of the corresponding complexes were larger indicated from the SEM and DLS measurements. In vitro transfections indicated ANQ-A-M/DOPE achieved Luciferase and GFP expressions were to be 7.9- and 5.7-fold of those by Lipo2000 in A549 cells respectively. However, ANQ-H-M showed very poor transfection efficiency in Luciferase expression. With the help of single/two-photon fluorescence imaging it clearly demonstrated that the successful transfection of ANQ-A-M was attributed to its cellular uptake, apparent lysosomal escape, and reversible release of DNA; and the poor transfection of ANQ-H-M was resulted from the aggregation of the DNA complexes which prevented them from the cellular uptake, and also the strong binding ability which is not easy to release DNA. ANQ-A-M/DOPE also exhibited robust gene silencing (83% knockdown of Luciferase) and GFP expression (2.47-fold higher) efficiency compared with Lipo2000 in A549 and zebrafish, respectively. The work demonstrated that the linkage structure between fluorescent and di(triazole-[12]aneN3) played the important role for their gene delivery performance, and that ANQ-A-M represents a vector with the strong transfection efficiency in vitro and in vivo as well as the efficient real time bioimaging properties, which is potential for the development in biomedical research.
Collapse
|
32
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
33
|
Sayed SM, Jia HR, Jiang YW, Zhu YX, Ma L, Yin F, Hussain I, Khan A, Ma Q, Wu FG, Lu X. Photostable AIE probes for wash-free, ultrafast, and high-quality plasma membrane staining. J Mater Chem B 2021; 9:4303-4308. [PMID: 33908594 DOI: 10.1039/d1tb00049g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasma membrane (PM), a fundamental building component of a cell, is responsible for a variety of cell functions and biological processes. However, it is still challenging to acquire its morphology and morphological variation information via an effective approach. Herein, we report a PM imaging study regarding an aggregation-induced emission luminogen (AIEgen) called tetraphenylethylene-naphthalimide+ (TPE-NIM+), which is derived from our previously reported tetraphenylethylene-naphthalimide (TPE-NIM). The designed AIEgen (TPE-NIM+) shows significant characteristics of ultrafast staining, high photostability, wash-free property, and long retention time at the PM, which can structurally be correlated with its positively charged quaternary amine and hydrophobic moiety. TPE-NIM+ is further applied for staining of different cell lines, proving its universal PM imaging capability. Most importantly, we demonstrate that TPE-NIM+ can clearly delineate the contours of densely packed living cells with high cytocompatibility. Therefore, TPE-NIM+ as a PM imaging reagent superior to currently available commercial PM dyes shall find a number of applications in the biological/biomedical fields and even beyond.
Collapse
Affiliation(s)
- Sayed Mir Sayed
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Feifei Yin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Imtiaz Hussain
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Arshad Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Qian Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| |
Collapse
|
34
|
Liu C, Gao X, Yuan J, Zhang R. Advances in the development of fluorescence probes for cell plasma membrane imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
A novel fluorescence probe based on specific recognition of GABA A receptor for imaging cell membrane. Talanta 2020; 219:121317. [PMID: 32887057 DOI: 10.1016/j.talanta.2020.121317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 01/19/2023]
Abstract
Long and real time imaging of cell membrane is very important for better understanding of cell performances in physiological and pathological processes. Nowadays, fluorescence probe analysis has become an indispensable tool for monitoring cell membrane. Herein, a novel fluorescent probe based on specific recognition of GABAA receptor was developed for imaging cell membrane. The probe synthesized in this work has been successfully applied to image different kinds of cell membrane with some advantages over the reported probes. Moreover, the probe also showed good superiority in the preliminary screening GABAA drugs.
Collapse
|
36
|
Bu Y, Xu T, Zhu X, Zhang J, Wang L, Yu Z, Yu J, Wang A, Tian Y, Zhou H, Xie Y. A NIR-I light-responsive superoxide radical generator with cancer cell membrane targeting ability for enhanced imaging-guided photodynamic therapy. Chem Sci 2020; 11:10279-10286. [PMID: 34094292 PMCID: PMC8162420 DOI: 10.1039/d0sc03093g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
Photodynamic therapy (PDT), as an emerging treatment modality, which takes advantage of reactive oxygen species (ROS) generated upon light illumination to ablate tumours, has suffered from a limited treatment depth, strong oxygen dependence and short ROS lifespan. Herein, we developed a highly efficient NIR-I light (808 nm laser) initiated theranostic system based on a fluorescent photosensitizer (EBD-1) with cancer cell membrane targeting ability, which can realize large penetration depth in tissue, generate superoxide radicals (O2 -˙) to relieve the oxygen-dependence, confine the ROS oxidation at the cell membrane, and self-report the cell viability during the PDT process. In vivo experiments demonstrated that EBD-1 under 808 nm light successfully accomplished remarkable cancer ablation. This work will be beneficial for the design of novel photosensitizers for PDT-based theranostic systems.
Collapse
Affiliation(s)
- Yingcui Bu
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Tianren Xu
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Xiaojiao Zhu
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Jie Zhang
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Lianke Wang
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhipeng Yu
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Jianhua Yu
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Aidong Wang
- Huangshan University Huangshan 242700 P. R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education Hefei 230601 P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, iChem, University of Science and Technology of China Hefei P. R. China
| |
Collapse
|
37
|
Zhu YX, Jia HR, Duan QY, Liu X, Yang J, Liu Y, Wu FG. Photosensitizer-Doped and Plasma Membrane-Responsive Liposomes for Nuclear Drug Delivery and Multidrug Resistance Reversal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36882-36894. [PMID: 32666795 DOI: 10.1021/acsami.0c09110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clinically approved doxorubicin (Dox)-loaded liposomes (e.g., Doxil) guarantee good biosafety, but their insufficient nuclear delivery of Dox (<0.4%) after cellular uptake significantly hampers their final anticancer efficacy. Here, we report that simply doping protoporphyrin IX (PpIX, a commonly used hydrophobic photosensitizer) into the lipid bilayers of Dox-loaded liposomes (the resultant product is termed PpIX/Dox liposomes) is a feasible way to promote the nuclear delivery of Dox. This facile strategy relies on a unique property of PpIX-it presents considerably higher affinity for the real plasma membrane over its liposomal carrier, which drives the doped PpIX molecules to detach from the liposomes when encountering cancer cells. We demonstrate that this process can trigger the efficient release of the loaded Dox molecules and allow them to enter the nuclei of MCF-7 breast cancer cells without being trapped by lysosomes. Regarding the drug-resistant MCF-7/ADR cells, the aberrant activation of the efflux pumps in the plasma membranes expels the internalized Dox. However, we strikingly find that the robust drug resistance can be reversed upon mild laser irradiation because the photodynamic effect of PpIX disrupts the drug efflux system (e.g., P-glycoprotein) and facilitates the nuclear entry of Dox. As a proof-of-concept, this PpIX doping strategy is also applicable for enhancing the effectiveness of cisplatin-loaded liposomes against both A549 and A549/DDP lung cancer cells. In vivo experimental results prove that a single injection of PpIX/Dox liposomes completely impedes the growth of MCF-7 tumors in nude mice within 2 weeks and, in combination with laser irradiation, can synergistically ablate MCF-7/ADR tumors. Biosafety assessments reveal no significant systemic toxicity caused by PpIX/Dox liposomes. This work exemplifies a facile method to modulate the subcellular fate of liposomal drugs and may inspire the optimization of nanopharmaceuticals in the near future.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Jing Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Yi Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
38
|
Fam KT, Collot M, Klymchenko AS. Probing biotin receptors in cancer cells with rationally designed fluorogenic squaraine dimers. Chem Sci 2020; 11:8240-8248. [PMID: 34094177 PMCID: PMC8163205 DOI: 10.1039/d0sc01973a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorogenic probes enable imaging biomolecular targets with high sensitivity and maximal signal-to-background ratio under non-wash conditions. Here, we focus on the molecular design of biotinylated dimeric squaraines that undergo aggregation-caused quenching in aqueous media through intramolecular H-type dimerization, but turn on their fluorescence in apolar environment due to target-mediated disaggregation. Our structure-property study revealed that depending on the linkers used to connect the squaraine dyes, different aggregation patterns could be obtained (intramolecular dimerization versus intermolecular aggregation) leading to different probing efficiencies. Using a relatively short l-lysine linker we developed a bright fluorogenic probe, Sq2B, displaying only intramolecular dimerization-caused quenching properties in aqueous media. The latter was successfully applied for imaging biotin receptors, in particular sodium-dependent multivitamin transporter (SMVT), which are overexpressed at the surface of cancer cells. Competitive displacement with SMVT-targets, such as biotin, lipoic acid or sodium pantothenate, showed Sq2B targeting ability to SMVT. This fluorogenic probe for biotin receptors could distinguish cancer cells (HeLa and KB) from model non-cancer cell lines (NIH/3T3 and HEK293T). The obtained results provide guidelines for development of new dimerization-based fluorogenic probes and propose bright tools for imaging biotin receptors, which is particularly important for specific detection of cancer cells.
Collapse
Affiliation(s)
- Kyong T Fam
- Nanochemistry and Bioimaging Group, Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Faculté de Pharmacie 67401 Illkirch France
| | - Mayeul Collot
- Nanochemistry and Bioimaging Group, Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Faculté de Pharmacie 67401 Illkirch France
| | - Andrey S Klymchenko
- Nanochemistry and Bioimaging Group, Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Faculté de Pharmacie 67401 Illkirch France
| |
Collapse
|
39
|
Wei J, Liu J, Liang S, Sun M, Duan J. Low-Dose Exposure of Silica Nanoparticles Induces Neurotoxicity via Neuroactive Ligand-Receptor Interaction Signaling Pathway in Zebrafish Embryos. Int J Nanomedicine 2020; 15:4407-4415. [PMID: 32606685 PMCID: PMC7310985 DOI: 10.2147/ijn.s254480] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Silica nanoparticles (SiO2 NPs) have been extensively employed in biomedical field. SiO2 NPs are primarily designed to enter the circulatory system; however, little information is available on potential adverse effects of SiO2 NPs on the nervous system. Methods The neurotoxicity of SiO2 NPs at different concentrations (3, 6, 12 ng/nL) on zebrafish embryos was determined using immunofluorescence and microarray techniques, and subsequently confirmed by qRT-PCR. Results SiO2 NPs disrupt the axonal integrity and decrease the length of axons in Tg (NBT: EGFP) transgenic lines. The number of apoptotic cells in the brain and central nervous system of zebrafish embryos was increased in the presence of 12 ng/nL of SiO2 NPs, but the difference did not reach statistical significance. Screening for changes in the expression of genes involved in the neuroactive ligand–receptor interaction pathway was performed by microarray and confirmed by qRT-PCR. These analyses demonstrated that SiO2 NPs markedly downregulated genes associated with neural function (grm6a, drd1b, chrnb3b, adrb2a, grin2ab, npffr2.1, npy8br, gabrd, chrma3, gabrg3, gria3a, grm1a, adra2b, and glra3). Conclusion The obtained results documented that SiO2 NPs can induce developmental neurotoxicity by affecting the neuroactive ligand–receptor interaction signaling pathway. This new evidence may help to clarify the mechanism of SiO2 NPs-mediated neurotoxicity.
Collapse
Affiliation(s)
- Jialiu Wei
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianhui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
40
|
Shi L, Liu Y, Li K, Sharma A, Yu K, Ji MS, Li L, Zhou Q, Zhang H, Kim JS, Yu X. An AIE‐Based Probe for Rapid and Ultrasensitive Imaging of Plasma Membranes in Biosystems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Shi
- College of ChemistrySichuan University Chengdu 610064 China
| | - Yan‐Hong Liu
- College of ChemistrySichuan University Chengdu 610064 China
| | - Kun Li
- College of ChemistrySichuan University Chengdu 610064 China
| | - Amit Sharma
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Kang‐Kang Yu
- College of ChemistrySichuan University Chengdu 610064 China
| | - Myung Sun Ji
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Ling‐Ling Li
- College of ChemistrySichuan University Chengdu 610064 China
| | - Qian Zhou
- College of ChemistrySichuan University Chengdu 610064 China
| | - Hong Zhang
- College of ChemistrySichuan University Chengdu 610064 China
| | - Jong Seung Kim
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Xiao‐Qi Yu
- College of ChemistrySichuan University Chengdu 610064 China
| |
Collapse
|
41
|
Qin H, Sun Y, Geng X, Zhao K, Meng H, Yang R, Qu L, Li Z. A wash-free lysosome targeting carbon dots for ultrafast imaging and monitoring cell apoptosis status. Anal Chim Acta 2020; 1106:207-215. [DOI: 10.1016/j.aca.2020.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/26/2019] [Accepted: 02/02/2020] [Indexed: 12/26/2022]
|
42
|
Kagotani K, Nakayama H, Zang L, Fujimoto Y, Hayashi A, Sono R, Nishimura N, Shimada Y. Lecithin-Based Dermal Drug Delivery for Anti-Pigmentation Maize Ceramide. Molecules 2020; 25:molecules25071595. [PMID: 32244349 PMCID: PMC7180834 DOI: 10.3390/molecules25071595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/29/2022] Open
Abstract
Ceramides have several well-known biological properties, including anti-pigmentation and anti-melanogenesis, which make them applicable for use in skincare products in cosmetics. However, the efficacy of ceramides is still limited. Dermal or transdermal drug delivery systems can enhance the anti-pigmentation properties of ceramides, although there is currently no systemic evaluation method for the efficacy of these systems. Here we prepared several types of lecithin-based emulsion of maize-derived glucosylceramide, determining PC70-ceramide (phosphatidylcholine-base) to be the safest and most effective anti-pigmentation agent using zebrafish larvae. We also demonstrated the efficacy of PC70 as a drug delivery system by showing that PC70-Nile Red (red fluorescence) promoted Nile Red accumulation in the larval bodies. In addition, PC70-ceramide suppressed melanin in mouse B16 melanoma cells compared to ceramide alone. In conclusion, we developed a lecithin-based dermal delivery method for ceramide using zebrafish larvae with implications for human clinical use.
Collapse
Affiliation(s)
- Kazuhiro Kagotani
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu 514-8507, Japan;
- Zebrafish Drug Screening Center, Mie University, Mie 514-8507, Japan; (H.N.); (L.Z.); (N.N.)
| | - Hiroko Nakayama
- Zebrafish Drug Screening Center, Mie University, Mie 514-8507, Japan; (H.N.); (L.Z.); (N.N.)
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Mie, Japan
| | - Liqing Zang
- Zebrafish Drug Screening Center, Mie University, Mie 514-8507, Japan; (H.N.); (L.Z.); (N.N.)
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Mie, Japan
| | - Yuki Fujimoto
- Tsuji Oil Mills Co., Ltd., Matsusaka, Mie 515-0053, Japan; (Y.F.); (A.H.); (R.S.)
| | - Akihito Hayashi
- Tsuji Oil Mills Co., Ltd., Matsusaka, Mie 515-0053, Japan; (Y.F.); (A.H.); (R.S.)
| | - Ryoji Sono
- Tsuji Oil Mills Co., Ltd., Matsusaka, Mie 515-0053, Japan; (Y.F.); (A.H.); (R.S.)
| | - Norihiro Nishimura
- Zebrafish Drug Screening Center, Mie University, Mie 514-8507, Japan; (H.N.); (L.Z.); (N.N.)
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Mie, Japan
| | - Yasuhito Shimada
- Zebrafish Drug Screening Center, Mie University, Mie 514-8507, Japan; (H.N.); (L.Z.); (N.N.)
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu 514-8507, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
- Correspondence: ; Tel.: +81-59-231-5384
| |
Collapse
|
43
|
Cristóbal-Lecina E, Pulido D, Martin-Malpartida P, Macias MJ, Albericio F, Royo M. Synthesis of Stable Cholesteryl-Polyethylene Glycol-Peptide Conjugates with Non-Disperse Polyethylene Glycol Lengths. ACS OMEGA 2020; 5:5508-5519. [PMID: 32201843 PMCID: PMC7081636 DOI: 10.1021/acsomega.0c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
A method for conjugating cholesterol to peptide ligands through non-disperse polyethylene glycol (ND-PEG) through a non-hydrolysable linkage is described. The iterative addition of tetraethylene glycol macrocyclic sulfate to cholesterol (Chol) renders a family of highly pure well-defined Chol-PEG compounds with different PEG lengths from 4 up to 20 ethylene oxide units, stably linked through an ether bond. The conjugation of these Chol-PEG compounds to the cyclic (RGDfK) peptide though Lys5 side chains generates different lengths of Chol-PEG-RGD conjugates that retain the oligomer purity of the precursors, as analysis by HRMS and NMR has shown. Other derivatives were synthesized with similar results, such as Chol-PEG-OCH3 and Chol-PEG conjugated to glutathione and Tf1 peptides through maleimide-thiol chemoselective ligation. This method allows the systematic synthesis of highly pure uniform stable Chol-PEGs, circumventing the use of activation groups on each elongation step and thus reducing the number of synthesis steps.
Collapse
Affiliation(s)
- Edgar Cristóbal-Lecina
- Department
of Surfactants and Nanobiotechnology, Institute
for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro
de Investigación Biomédica en Red Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel Pulido
- Department
of Surfactants and Nanobiotechnology, Institute
for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro
de Investigación Biomédica en Red Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Pau Martin-Malpartida
- Institute
for Research in Biomedicine (IRB Barcelona), Baldiri i Reixach 10, 08028 Barcelona Spain
- The
Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
| | - Maria J. Macias
- Institute
for Research in Biomedicine (IRB Barcelona), Baldiri i Reixach 10, 08028 Barcelona Spain
- The
Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Fernando Albericio
- Department
of Surfactants and Nanobiotechnology, Institute
for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro
de Investigación Biomédica en Red Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Department
of Inorganic and Organic Chemistry, University
of Barcelona, Marti i Franqués 1-11, 08028 Barcelona, Spain
- School
of Chemistry and Physics, University of
KwaZulu-Natal, 4041 Durban, South Africa
| | - Miriam Royo
- Department
of Surfactants and Nanobiotechnology, Institute
for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro
de Investigación Biomédica en Red Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
44
|
Ma Z, Liu X, Yin B, Zhao Y, Liu J, Yu Y, Wang Y. Common-path-based device for magnetomotive OCT noise reduction. APPLIED OPTICS 2020; 59:1431-1437. [PMID: 32225400 DOI: 10.1364/ao.377118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Magnetomotive optical coherence tomography (MMOCT) is a promising imaging method for noninvasive three-dimensional tracking of magnetic nanoparticle (MNP) motions in target tissues or organs. The external B-field is the driving force that provides MMOCT contrast. However, B-field modulation also introduces modulation noise, thereby decreasing the quality of the MMOCT image. In this paper, a common-path-based device is designed for modulation noise reduction. The device is capable of adjusting interference distance, reference light intensity, and imaging position (X-Y translation). The sensitivity of the MMOCT is increased by ∼20 times with the new device. Using the proposed device, the distribution of MNPs injected in zebrafish was imaged.
Collapse
|
45
|
Shi L, Li K, Liu YH, Liu X, Zhou Q, Xu Q, Chen SY, Yu XQ. Bio-inspired assembly in a phospholipid bilayer: effective regulation of electrostatic and hydrophobic interactions for plasma membrane specific probes. Chem Commun (Camb) 2020; 56:3661-3664. [DOI: 10.1039/d0cc00679c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A simple assembly system of phospholipid bilayer and probes via electrostatic and hydrophobic interactions was constructed.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xin Liu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Qian Zhou
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Qi Xu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
46
|
Gu Y, Liu B, Liu Q, Hang Y, Wang L, Brash JL, Chen G, Chen H. Modular Polymers as a Platform for Cell Surface Engineering: Promoting Neural Differentiation and Enhancing the Immune Response. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47720-47729. [PMID: 31793283 DOI: 10.1021/acsami.9b16882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regulating cell behavior and cell fate are of great significance for basic biological research and cell therapy. Carbohydrates, as the key biomacromolecules, play a crucial role in regulating cell behavior. Herein, "modular" glycopolymers were synthesized by reversible addition-fragmentation chain transfer polymerization. These glycopolymers contain sugar units (glucose), anchoring units (cholesterol), "guest" units (adamantane) for host-guest interaction, and fluorescent labeling units (fluorescein). It was demonstrated that these glycopolymers can insert into cell membranes with high efficiency and their residence time on the membranes can be regulated by controlling their cholesterol content. Furthermore, the behavior of the engineered cells can be controlled by modifying with different functional β-cyclodextrins (CD-X) via host-guest interactions with the adamantane units. Host-guest interactions with the modular polymers were demonstrated using CD-RBITC (X = a rhodamine B isothiocyanate). The glycopolymers were modified with CD-S (X = seven sulfonate groups) and CD-M (X = seven mannose groups) and were then attached, respectively, to the surfaces of mouse embryonic stem cells for the promotion of neural differentiation and to the surfaces of cancer cells for the enhancement of the immune response. The combination of multiple anchors and host-guest interactions provides a widely applicable cell membrane modification platform for a variety of applications.
Collapse
Affiliation(s)
- Yan Gu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Bing Liu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| | - Qi Liu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Yingjie Hang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| | - Lei Wang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| | - John L Brash
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- School of Biomedical Engineering and Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S4L7 , Canada
| | - Gaojian Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Hong Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
47
|
Niu N, Zhou H, Liu N, Ren J, Li W, Yu C. A benzoperylene self-assembly complex with turn-on excimer emission for wash-free cell membrane fluorescence imaging. Chem Commun (Camb) 2019; 55:14446-14449. [PMID: 31724658 DOI: 10.1039/c9cc06648a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rational design of a benzoperylene probe BP-3 with positive charge allows for turn-on excimer emission, and wash-free cell membrane imaging. BP-3 possesses excellent chemical, thermal and photo stability. And the Stokes shift of the excimer emission is considerably large (90-100 nm), which very much avoids the background fluorescence interference.
Collapse
Affiliation(s)
- Niu Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | | | | | | | | | | |
Collapse
|
48
|
Deng F, Liu L, Qiao Q, Huang C, Miao L, Xu Z. A general strategy to develop cell membrane fluorescent probes with location- and target-specific fluorogenicities: a case of a Zn 2+ probe with cellular selectivity. Chem Commun (Camb) 2019; 55:15045-15048. [PMID: 31782433 DOI: 10.1039/c9cc08895d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We reported fluorescent probes to image Zn2+ with plasma membrane-specific and Zn2+-specific fluorogenicities. The probes contained hydrophobic alkyl chains as membrane-anchored domains and hydrophilic zinc sensor ZTRS, and aggregated to display quenched fluorescence. Cells dissolved the aggregates and the liberated probes were dispersed on the outside of the cell plasma membrane. Aggregates that did not bind to the cell membrane still exhibited aggregation-induced fluorescence quenching after complexing with zinc ions, while probes anchored on the membrane surface exhibited a fluorescence-enhanced response upon recognition of zinc ions.
Collapse
Affiliation(s)
- Fei Deng
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China and CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Limin Liu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chunfang Huang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
49
|
Sun YD, Zhu YX, Zhang X, Jia HR, Xia Y, Wu FG. Role of Cholesterol Conjugation in the Antibacterial Photodynamic Therapy of Branched Polyethylenimine-Containing Nanoagents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14324-14331. [PMID: 31580079 DOI: 10.1021/acs.langmuir.9b02727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy is a promising approach for fighting bacterial infections because it can induce few side effects, develop no drug resistance, and realize precise treatment. However, most photosensitizers (PSs) have the disadvantages of poor water-solubility, severe self-quenching, and potential toxicity. Here, the cationic polymer polyethyleneimine (PEI) was used to prepare a cholesterol- and chlorin e6 (Ce6, a common PS)-conjugated compound via the carboxyl-amine reaction or the acyl chloride-amine reaction (abbreviated as Chol-PEI-Ce6). The as-prepared Chol-PEI-Ce6 molecules can self-assemble into close-to-spherical nanoparticles (NPs) with an average diameter of ∼15 nm and can bind to the bacterial surfaces via the synergistic hydrophobic insertion of the cholesterol moieties and electrostatic interaction between the cationic amine groups of PEI and the bacterial surfaces. Upon light irradiation, the NPs can effectively inactivate both Gram-positive and Gram-negative bacteria. Besides, the interaction between Chol-PEI-Ce6 NPs and bacteria markedly enhances the production of intracellular reactive oxygen species after light irradiation, which may account for the excellent antibacterial performance of the NPs. More importantly, the NPs possess negligible dark cytotoxicity and good hemocompatibility. Therefore, the present work may have strong implications for developing novel antibacterial agents to fight against bacterial infections.
Collapse
Affiliation(s)
- Yun-Dan Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , 136 HanZhong Road , Nanjing 210029 , P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| |
Collapse
|
50
|
Hu Y, Huang H, Chen M, Shen Y. Non-localized Increase in Lipid Content and Striation Pattern Formation Characterize the Sonoporated Plasma Membrane. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3005-3017. [PMID: 31421866 DOI: 10.1016/j.ultrasmedbio.2019.07.411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotic cells can survive sonoporation and repair their plasma membrane wounds. However, it is not clear how the repaired plasma membranes will differ from the intact ones. To answer this question, we used high-resolution confocal microscopy and scanning electron microscopy to study plasma membrane lipid alterations induced by sonoporation. First, we found that the wound-induced increase in membrane lipid content was not limited to the sonoporation sites. The degree of lipid increase was dependent on pore distance, calcium influx and pore size. Second, we observed interesting lipid striation patterns on the sonoporated plasma membranes. This patterning effect was reversible in the cell subjected to small-scale sonoporation and could be recognized using digital image orientation analysis. Third, we showed that actin stress fibers underneath the plasma membrane hindered the addition and the protrusion of lipids to produce the patterning effect. Our findings demonstrated that the sonoporated and repaired plasma membranes have distinct lipid distribution characteristics.
Collapse
Affiliation(s)
- Yaxin Hu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China.
| | - Haoqiang Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China
| | - Mengting Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, Guangdong, China
| |
Collapse
|