1
|
Saha E, Khan A, Mallick AI, Mitra J. Purpose-built multicomponent supramolecular silver(I)-hydrogels as membrane-targeting broad-spectrum antibacterial agents against multidrug-resistant pathogens. J Mater Chem B 2024; 12:8767-8777. [PMID: 39140272 DOI: 10.1039/d4tb01355g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Membrane-targeting compounds are of immense interest to counter complicated multi-drug resistant infections. However, the broad-spectrum effect of such compounds is often unmet due to the surges of antibiotic resistance among majority of Gram-negative bacteria compared to Gram-positive species. Though amphiphiles, synthetic mimics of antimicrobial peptides etc, have been extensively explored for their potential to perturb bacterial membranes, small molecule-based supramolecular hydrogels have remained unexplored. The design of supramolecular hydrogels can be tuned on-demand, catering to desired applications, including facile bacterial membrane perturbation. Considering the strong biocidal properties of Ag-based systems and the bacterial membrane-targeting potential of appended primary amine groups, we designed self-assembled multicomponent supramolecular Ag(I)-hydrogels with urea and DATr (3,5-diamino-1,2,4-triazole) as ligands, which are predisposed for hydrogen bonding and interacting with negatively charged bacterial membranes at physiological pH. The synthesized supramolecular Ag(I)-hydrogels exhibited almost similar antibacterial activity against both Gram-negative (Campylobacter jejuni; C. jejuni) and Gram-positive (Staphylococcus aureus; S. aureus) bacteria, with minimal inhibitory concentration (MIC) of ∼60 μg mL-1. Ag(I)-hydrogels facilitated the disruption of the negatively charged bacterial membrane due to electrostatic interaction and complementary hydrogen bonding facilitated by DATr and urea. Sustained intracellular ROS generation in the presence of Ag(I)-hydrogel further expedited cell lysis. We envisage that the multicomponent supramolecular Ag(I)-hydrogels studied herein can be employed in designing effective antibacterial coatings on a range of medical devices, including surgical instruments. Moreover, the present form of the hydrogels has the potential to improve the antibacterial functionality of conventional antimicrobials, thus revitalizing the effective targeting of hard-to-treat multi-drug-resistant (MDR) bacterial infections in a clinical set up.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad-201002, UP, India
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal-741246, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal-741246, India.
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad-201002, UP, India
| |
Collapse
|
2
|
Mohanta I, Sahu N, Guchhait C, Kaur L, Mandal D, Adhikari B. Ag +-Induced Supramolecular Polymers of Folic Acid: Reinforced by External Kosmotropic Anions Exhibiting Salting Out. Biomacromolecules 2024; 25:6203-6215. [PMID: 39153217 DOI: 10.1021/acs.biomac.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Introducing kosmotropic salts enhances protein stability and reduces solubility by withdrawing water from the protein surface, leading to 'salting out', a phenomenon we have mimicked in supramolecular polymers (SPs). Under the guidance of Ag+, folic acid (FA) self-assembled in water through slipped-stacking and hydrophobic interactions into elongated, robust one-dimensional SPs, resulting in thermo-stable supergels. The SPs exhibited temperature and dilution tolerance, attributed to the stability of the FA-Ag+ complex and its hydrophobic stacking. Importantly, FA-Ag+ SP's stability has been augmented by the kosmotropic anions, such as SO42-, strengthening hydrophobic interactions in the SP, evident from the enhanced J-band, causing improvement of gel's mechanical property. Interestingly, higher kosmotrope concentrations caused a significant decrease in SP's solubility, leading to precipitation of the reinforced SPs─a 'salting out' effect. Conversely, chaotropes like ClO4- slightly destabilized hydrophobic stacking and promoted an extended conformation of individual SP chain with enhanced solubility, resembling a 'salting in' effect.
Collapse
Affiliation(s)
- Indrajit Mohanta
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Nihar Sahu
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Chandrakanta Guchhait
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Lovleen Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Bimalendu Adhikari
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| |
Collapse
|
3
|
Martínez-Fernández L, Kohl FR, Zhang Y, Ghosh S, Saks AJ, Kohler B. Triplet Excimer Formation in a DNA Duplex with Silver Ion-Mediated Base Pairs. J Am Chem Soc 2024; 146:1914-1925. [PMID: 38215466 DOI: 10.1021/jacs.3c08793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The dynamics of excited electronic states in self-assembled structures formed between silver(I) ions and cytosine-containing DNA strands or monomeric cytosine derivatives were investigated by time-resolved infrared (TRIR) spectroscopy and quantum mechanical calculations. The steady-state and time-resolved spectra depend sensitively on the underlying structures, which change with pH and the nucleobase and silver ion concentrations. At pH ∼ 4 and low dC20 strand concentration, an intramolecularly folded i-motif is observed, in which protons, and not silver ions, mediate C-C base pairing. However, at the higher strand concentrations used in the TRIR measurements, dC20 strands associate pairwise to yield duplex structures containing C-Ag+-C base pairs with a high degree of propeller twisting. UV excitation of the silver ion-mediated duplex produces a long-lived excited state, which we assign to a triplet excimer state localized on a pair of stacked cytosines. The computational results indicate that the propeller-twisted motifs induced by metal-ion binding are responsible for the enhanced intersystem crossing that populates the triplet state and not a generic heavy atom effect. Although triplet excimer states have been discussed frequently as intermediates in the formation of cyclobutane pyrimidine dimers, we find neither computational nor experimental evidence for cytosine-cytosine photoproduct formation in the systems studied. These findings provide a rare demonstration of a long-lived triplet excited state that is formed in a significant yield in a DNA duplex, demonstrating that supramolecular structural changes induced by metal ion binding profoundly affect DNA photophysics.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Science (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Supriya Ghosh
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Andrew J Saks
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| |
Collapse
|
4
|
Escher D, Schäfer T, Hebenbrock M, Müller J. 6-Pyrazolylpurine and its deaza derivatives as nucleobases for silver(I)-mediated base pairing with pyrimidines. J Biol Inorg Chem 2023; 28:791-803. [PMID: 37982840 PMCID: PMC10687122 DOI: 10.1007/s00775-023-02022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/26/2023] [Indexed: 11/21/2023]
Abstract
The artificial nucleobase 6-pyrazolylpurine (6PP) and its deaza derivatives 1-deaza-6-pyrazolylpurine (1D6PP), 7-deaza-6-pyrazolylpurine (7D6PP), and 1,7-dideaza-6-pyrazolylpurine (1,7D6PP) were investigated with respect to their ability to differentiate between the canonical nucleobases cytosine and thymine by means of silver(I)-mediated base pairing. As shown by temperature-dependent UV spectroscopy and by circular dichroism spectroscopy, 6PP and (to a lesser extent) 7D6PP form stable silver(I)-mediated base pairs with cytosine, but not with thymine. 1D6PP and 1,7D6PP do not engage in the formation of stabilizing silver(I)-mediated base pairs with cytosine or thymine. The different behavior of 1D6PP, 7D6PP, and 1,7D6PP indicates that silver(I) binding occurs via the N1 position of the purine derivative, i.e. via the Watson-Crick face. The data show that 6PP is capable of differentiating between cytosine and thymine, which is potentially relevant in the context of detecting single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Daniela Escher
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Tim Schäfer
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Marian Hebenbrock
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 30, 48149, Münster, Germany.
- Center for Soft Nanoscience (SoN) and Cells in Motion Interfaculty Centre (CiMIC), Universität Münster, Corrensstr. 30, 48149, Münster, Germany.
| |
Collapse
|
5
|
Lim SA, Jung SH, Jung JH. Kinetically controlled chiral metal‐coordinated supramolecular polymerization accompanying helical inversion or morphological transformation. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Seol A. Lim
- Department of Chemistry Research Institute of Natural Sciences, Gyeongsang National University Jinju Korea
| | - Sung Ho Jung
- Department of Chemistry Research Institute of Natural Sciences, Gyeongsang National University Jinju Korea
| | - Jong Hwa Jung
- Department of Chemistry Research Institute of Natural Sciences, Gyeongsang National University Jinju Korea
| |
Collapse
|
6
|
Benz M, Klapötke TM, Lenz T, Stierstorfer J. Tuning the Properties of 5‐Azido and 5‐Nitramino‐tetrazoles by Diverse Functionalization – General Concepts for Future Energetic Materials. Chemistry 2022; 28:e202200772. [PMID: 35416343 PMCID: PMC9325492 DOI: 10.1002/chem.202200772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/15/2022]
Abstract
5‐Azido and 5‐nitraminotetrazole backbones are established heterocyclic motifs in the research field of energetic materials synthesis. Despite the high energy content of the compounds, the problem with many derivatives is that their sensitivities are far too high. Functionalization of one of the ring nitrogen atoms is the aim of this study to adjust the sensitivity by inserting nitratoethyl, azidoethyl and methyl groups. In this context, derivatives of 2‐(2‐azidoethyl)‐5‐nitraminotetrazoles (2, 2
a–2
d), as well as 1‐nitrato and 1‐azidoethyl substituted 5‐azidotetrazole (7 and 10) and the methylation products of 5‐azidotetrazole (5‐azido‐1‐methyl‐tetrazole, 11 and 5‐azido‐2‐methyl‐tetrazole, 12) were prepared. The obtained nitrogen‐rich compounds were extensively characterized through multinuclear NMR spectroscopy and IR spectroscopy. The structural confinement was checked by X‐ray diffraction experiments. The pure samples (verified by elemental analysis) were investigated regarding their behavior toward friction, impact (BAM methods) and electrostatic discharge as well as heating (DTA and DSC). For all metal‐free compounds the detonation properties were computed with the EXPLO5 code using their density and heat of formation, calculated based on CBS‐4 M level of theory.
Collapse
Affiliation(s)
- Maximilian Benz
- Department of Chemistry Ludwig Maximilian University of Munich Butenandtstr. 5–13 D-81337 Munich Germany
| | - Thomas M. Klapötke
- Department of Chemistry Ludwig Maximilian University of Munich Butenandtstr. 5–13 D-81337 Munich Germany
| | - Tobias Lenz
- Department of Chemistry Ludwig Maximilian University of Munich Butenandtstr. 5–13 D-81337 Munich Germany
| | - Jörg Stierstorfer
- Department of Chemistry Ludwig Maximilian University of Munich Butenandtstr. 5–13 D-81337 Munich Germany
| |
Collapse
|
7
|
Petty JT, Lewis D, Carnahan S, Kim D, Couch C. Tug-of-War between DNA Chelation and Silver Agglomeration in DNA-Silver Cluster Chromophores. J Phys Chem B 2022; 126:3822-3830. [PMID: 35594191 DOI: 10.1021/acs.jpcb.2c01054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supramolecular chromophores form when a DNA traps silvers that then coalesce into clusters with discrete, molecular electronic states. However, DNA strands are polymeric ligands that disperse silvers and thus curb agglomeration. We study this competition using two chromophores that share three common components: a dimeric DNA scaffold, Ag+-nucleobase base pairs, and Ag0 chromophores. The DNA host C4-A2-iC4T mimics structural elements in a DNA-cluster crystal structure using a phosphodiester backbone with combined 5' → 3' and 3' → 5' (indicated by "i") directions. The backbone directions must alternate to form the two silver clusters, and this interdependence supports a silver-linked structure. This template creates two chromophores with distinct sizes, charges, and hence spectra: (C4-A2-iC4T)2/Ag117+ with λabs/λem = 430/520 nm and (C4-A2-iC4T)2/Ag148+ with λabs/λem = 510/630 nm. The Ag+ and Ag0 constituents in these partially oxidized clusters are linked with structural elements in C4-A2-iC4T. Ag+ alone binds sparsely but strongly to form C4-A2-iC4T/3-4 Ag+ and (C4-A2-iC4T)2/7-8 Ag+ complexes, and these stoichiometries suggest that Ag+ cross-links pairs of cytosines to form a hairpin with a metallo-C4/iC4 duplex and an adenine loop. The Ag0 are chemically orthogonal because they can be oxidatively etched without disrupting the underlying Ag+-DNA matrix, and their reactivity is attributed to their valence electrons and weaker chelation by the adenines. These studies suggest that Ag+ disperses with the cytosines to create an adenine binding pocket for the Ag0 cluster chromophores.
Collapse
Affiliation(s)
- Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - David Lewis
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Savannah Carnahan
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Caroline Couch
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
8
|
El-Zubir O, Martinez PR, Dura G, Al-Mahamad LLG, Pope T, Penfold TJ, Mackenzie LE, Pal R, Mosely J, Cucinotta F, McGarry LF, Horrocks BR, Houlton A. Circularly polarised luminescence in an RNA-based homochiral, self-repairing, coordination polymer hydrogel. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:7329-7335. [PMID: 35706420 PMCID: PMC9097859 DOI: 10.1039/d2tc00366j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The aqueous equimolar reaction of Ag(i) ions with the thionucleoside enantiomer (-)6-thioguanosine, ((-)6tGH), yields a one-dimensional coordination polymer {Ag(-)tG} n , the self-assembly of which generates left-handed helical chains. The resulting helicity induces an enhanced chiro-optical response compared to the parent ligand. DFT calculations indicate that this enhancement is due to delocalisation of the excited state along the helical chains, with 7 units being required to converge the calculated CD spectra. At concentrations ≥15 mmol l-1 reactions form a sample-spanning hydrogel which shows self-repair capabilities with instantaneous recovery in which the dynamic reversibility of the coordination chains appears to play a role. The resulting gel exhibits circularly polarised luminescence (CPL) with a large dissymmetry factor of -0.07 ± 0.01 at 735 nm, a phenomenon not previously observed for this class of coordination polymer.
Collapse
Affiliation(s)
- Osama El-Zubir
- Chemical Nanoscience Labs, Chemistry, School of Natural Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Pablo Rojas Martinez
- Chemical Nanoscience Labs, Chemistry, School of Natural Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Gema Dura
- Chemical Nanoscience Labs, Chemistry, School of Natural Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, UCLM Spain
| | - Lamia L G Al-Mahamad
- Department of Chemistry, College of Science, Mustansiriyah University Baghdad Iraq
| | - Thomas Pope
- Chemical Nanoscience Labs, Chemistry, School of Natural Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Thomas J Penfold
- Chemical Nanoscience Labs, Chemistry, School of Natural Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Lewis E Mackenzie
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | - Robert Pal
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | - Jackie Mosely
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | - Fabio Cucinotta
- Chemical Nanoscience Labs, Chemistry, School of Natural Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Liam F McGarry
- Chemical Nanoscience Labs, Chemistry, School of Natural Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Benjamin R Horrocks
- Chemical Nanoscience Labs, Chemistry, School of Natural Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Andrew Houlton
- Chemical Nanoscience Labs, Chemistry, School of Natural Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
9
|
Vittala SK, Zhao Y, Han D. Programmed Assembly of DNA Templates by Silver Nanowires. Chempluschem 2022; 87:e202100478. [PMID: 35014201 DOI: 10.1002/cplu.202100478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/20/2021] [Indexed: 12/16/2022]
Abstract
DNA origami templates are known to exhibit many advantages to integrate functional components at desirable locations for nanoelectronic applications. In order to immobilize conducting or semiconducting species in a bottom-up approach, the programmed assembly of DNA templates is of utmost necessity. This report demonstrates the silver nanowires enabled bridging of two linear DNA origami (DO) nanostructures by utilizing the host-guest interaction of biotin-STV and sequence-specific silver metallization of poly(dG-dC) DNA nanowires (in 10 % yield) using (dA)10 coated AgNPs (15 nm). The enzymatic synthesis of 750 bp, 1500 bp and 3000 bp bis-biotinylated poly(dG-dC), facile synthesis of 1 : 1 biotin-STV and silver-nanowire bridged DNA templates were characterized by gel electrophoresis, atomic force microscope imaging techniques. The strategy utilized here provides a method that can precisely connect heterogeneous templates towards bottom-up fabrication of practical nanoelectronics.
Collapse
Affiliation(s)
- Sandeepa K Vittala
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yumeng Zhao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Da Han
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
10
|
Dairaku T, Kawai R, Nozawa-Kumada K, Yoshida K, Ono T, Kondo Y, Kondo J, Ono A, Tanaka Y, Kashiwagi Y. Chemical reduction of Ag + to Ag employing organic electron donors: evaluation of the effect of Ag +-mediated cytosine-cytosine base pairing on the aggregation of Ag nanoparticles. Dalton Trans 2021; 50:12208-12214. [PMID: 35226008 DOI: 10.1039/d1dt01927a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ag+-mediated base pairing is valuable for synthesising DNA-based silver nanoparticles (AgNPs) and nanoclusters (AgNCs). Recently, we reported the formation of a [Ag(cytidine)2]+ complex in dimethyl sulfoxide (DMSO), which facilitated the evaluation of the effect of cytosine-Ag+-cytosine (C-Ag+-C) base pairing on the degree of AgNP aggregation in solution. As an aprotic solvent, DMSO was expected to dissolve the [Ag(cytidine)2]+ complex, and powerful reducing agents, such as organic electron donors. In this study, the chemical reduction of a cytidine/Ag+ system using a powerful reducing agent tetrakis(dimethylamino)ethylene (TDAE) was investigated. 1H/13C/15N NMR spectroscopic evidence was obtained to identify the iminium dication (TDAE2+), which is an oxidised form of TDAE. The results were compared with those obtained using another organic electron donor, tetrathiafulvalene (TTF), which exhibits a relatively lower reduction activity than TDAE. AgNPs prepared via redox reaction between [Ag(cytidine)2]+ and organic electron donors (TDAE and TTF) were characterised using UV-Vis spectroscopy and nanoparticle tracking analysis. It was found that the formation of C-Ag+-C base pairing inhibited the aggregation of AgNPs in solution. In addition, in the presence of cytidine, the total concentration of the AgNP solution was affected by the reduction activity of the reducing agent.
Collapse
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Rika Kawai
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering, Kangawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
11
|
Zhang A, Budow‐Busse S, Leonard P, Seela F. Anomeric and Enantiomeric 2'-Deoxycytidines: Base Pair Stability in the Absence and Presence of Silver Ions. Chemistry 2021; 27:10574-10577. [PMID: 34014006 PMCID: PMC8362019 DOI: 10.1002/chem.202101253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/25/2022]
Abstract
Dodecamer duplex DNA containing anomeric (α/β-d) and enantiomeric (β-l/β-d) 2'-deoxycytidine mismatches was studied with respect to base pair stability in the absence and presence of silver ions. Stable duplexes with silver-mediated cytosine-cytosine pairs were formed by all anomeric and enantiomeric combinations. Stability changes were observed depending on the composition of the mismatches. Most strikingly, the new silver-mediated base pair of anomeric α-d-dC with enantiomeric β-l-dC is superior to the well-noted β-d/β-d-dC pair in terms of stability. CD spectra were used to follow global helical changes of DNA structure.
Collapse
Affiliation(s)
- Aigui Zhang
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Simone Budow‐Busse
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for NanotechnologyHeisenbergstrasse 1148149MünsterGermany
- Laboratorium für Organische und Bioorganische ChemieInstitut für Chemie neuer MaterialienUniversität OsnabrückBarbarastrasse 749069OsnabrückGermany
| |
Collapse
|
12
|
Dairaku T, Kawai R, Kanaba T, Ono T, Yoshida K, Sato H, Nozawa-Kumada K, Kondo Y, Kondo J, Ono A, Tanaka Y, Kashiwagi Y. Effect of cytosine-Ag +-cytosine base pairing on the redox potential of the Ag +/Ag couple and the chemical reduction of Ag + to Ag by tetrathiafulvalene. Dalton Trans 2021; 50:7633-7639. [PMID: 33973617 DOI: 10.1039/d1dt00975c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The redox properties of metallo-base pairs remain to be elucidated. Herein, we report the detailed 1H/13C/109Ag NMR spectroscopic and cyclic voltammetric characterisation of the [Ag(cytidine)2]+ complex as isolated cytosine-Ag+-cytosine (C-Ag+-C) base pairs. We also performed comparative studies between cytidine/Ag+ and other nucleoside/Ag+ systems by using cyclic voltammetry measurements. In addition, to evaluate the effect of [Ag(cytidine)2]+ formation on the chemical reduction of Ag+ to Ag, we utilised the redox reaction between Ag+ and tetrathiafulvalene (TTF). We found that Ag+-mediated base pairing lowers the redox potential of the Ag+/Ag couple. In addition, C-Ag+-C base pairing makes it more difficult to reduce captured Ag+ ions than in other nucleoside/Ag+ systems. Remarkably, the cytidine/Ag+ system can be utilised to control the redox potential of the Ag+/Ag couple in DMSO. This feature of the cytidine/Ag+ system may be exploited for Ag nanoparticle synthesis by using the redox reaction between Ag+ and TTF.
Collapse
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Rika Kawai
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Teppei Kanaba
- Application, Bruker Japan K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa 221-0022, Japan
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Hajime Sato
- Application, Bruker Japan K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa 221-0022, Japan
| | - Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering, Kangawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
13
|
Mao S, Chang Z, Ying Zheng Y, Shekhtman A, Sheng J. DNA Functionality with Photoswitchable Hydrazone Cytidine*. Chemistry 2021; 27:8372-8379. [PMID: 33872432 DOI: 10.1002/chem.202100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/18/2022]
Abstract
A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. The E-Z isomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by 1 H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activated Z form isomer of this hydrazone-cytidine with a six-member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by using Bst DNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA-enzyme interactions using the cell friendly blue light irradiation.
Collapse
Affiliation(s)
- Song Mao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Zhihua Chang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| |
Collapse
|
14
|
Kohl FR, Zhang Y, Charnay AP, Martínez-Fernández L, Kohler B. Ultrafast excited state dynamics of silver ion-mediated cytosine-cytosine base pairs in metallo-DNA. J Chem Phys 2021; 153:105104. [PMID: 32933288 DOI: 10.1063/5.0020463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To better understand the nexus between structure and photophysics in metallo-DNA assemblies, the parallel-stranded duplex formed by the all-cytosine oligonucleotide, dC20, and silver nitrate was studied by circular dichroism (CD), femtosecond transient absorption spectroscopy, and time-dependent-density functional theory calculations. Silver(I) ions mediate Cytosine-Cytosine (CC) base pairs by coordinating to the N3 atoms of two cytosines. Although these silver(I) mediated CC base pairs resemble the proton-mediated CC base pairs found in i-motif DNA at first glance, a comparison of experimental and calculated CD spectra reveals that silver ion-mediated i-motif structures do not form. Instead, the parallel-stranded duplex formed between dC20 and silver ions is proposed to contain consecutive silver-mediated base pairs with high propeller twist-like ones seen in a recent crystal structure of an emissive, DNA-templated silver cluster. Femtosecond transient absorption measurements with broadband probing from the near UV to the near IR reveal an unusually long-lived (>10 ns) excited state in the dC20 silver ion complex that is not seen in dC20 in single-stranded or i-motif forms. This state is also absent in a concentrated solution of cytosine-silver ion complexes that are thought to assemble into planar ribbons or sheets that lack stacked silver(I) mediated CC base pairs. The large propeller twist angle present in metal-mediated base pairs may promote the formation of long-lived charged separated or triplet states in this metallo-DNA.
Collapse
Affiliation(s)
- Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| | - Aaron P Charnay
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| | - Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| |
Collapse
|
15
|
Escher D, Müller J. Silver(I)‐mediated hetero base pairs of 6‐pyrazolylpurine and its deaza derivatives. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniela Escher
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstr. 30 48149 Münster Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstr. 30 48149 Münster Germany
| |
Collapse
|
16
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
17
|
Oh JS, Kim KY, Park J, Lee H, Park Y, Cho J, Lee SS, Kim H, Jung SH, Jung JH. Dynamic Transformation of a Ag+-Coordinated Supramolecular Nanostructure from a 1D Needle to a 1D Helical Tube via a 2D Ribbon Accompanying the Conversion of Complex Structures. J Am Chem Soc 2021; 143:3113-3123. [DOI: 10.1021/jacs.0c10678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jeong Sang Oh
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaehyeon Park
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonju Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Younwoo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Ho Jung
- Department of Liberal Arts, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52725, Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
18
|
Wurzenberger MHH, Gruhne MS, Lommel M, Braun V, Szimhardt N, Stierstorfer J. Taming the Dragon: Complexation of Silver Fulminate with Nitrogen-Rich Azole Ligands. Inorg Chem 2020; 59:17875-17879. [DOI: 10.1021/acs.inorgchem.0c03027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Michael S. Gruhne
- Department of Chemistry, University of Munich, Butenandtstrasse 5−13 (D), 81377 München, Germany
| | - Marcus Lommel
- Department of Chemistry, University of Munich, Butenandtstrasse 5−13 (D), 81377 München, Germany
| | - Vanessa Braun
- Department of Chemistry, University of Munich, Butenandtstrasse 5−13 (D), 81377 München, Germany
| | - Norbert Szimhardt
- Department of Chemistry, University of Munich, Butenandtstrasse 5−13 (D), 81377 München, Germany
| | - Jörg Stierstorfer
- Department of Chemistry, University of Munich, Butenandtstrasse 5−13 (D), 81377 München, Germany
| |
Collapse
|
19
|
Hossain MN, Ahmad S, Kraatz H. Consecutive Silver(I) Ion Incorporation into Oligonucleotides containing Cytosine‐Cytosine Mispairs. Chempluschem 2020; 86:224-231. [DOI: 10.1002/cplu.202000607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Indexed: 12/18/2022]
Affiliation(s)
- M. Nur Hossain
- Department of Physical and Environmental Sciences University of Toronto Scarborough 11265 Military Trail Toronto M1 C 1 A4 Canada
| | - Syed Ahmad
- Department of Physical and Environmental Sciences University of Toronto Scarborough 11265 Military Trail Toronto M1 C 1 A4 Canada
- Department of Chemistry University of Toronto 80 St. George Street Toronto M5S 3H6 Canada
| | - Heinz‐Bernhard Kraatz
- Department of Physical and Environmental Sciences University of Toronto Scarborough 11265 Military Trail Toronto M1 C 1 A4 Canada
- Department of Chemistry University of Toronto 80 St. George Street Toronto M5S 3H6 Canada
| |
Collapse
|
20
|
Huang NH, Liu Y, Li RT, Chen J, Hu PP, Young DJ, Chen JX, Zhang WH. Sequential Ag +/biothiol and synchronous Ag +/Hg 2+ biosensing with zwitterionic Cu 2+-based metal-organic frameworks. Analyst 2020; 145:2779-2788. [PMID: 32101233 DOI: 10.1039/d0an00002g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zwitterionic metal-organic frameworks (MOFs) of {[Cu(Cbdcp)(Dps)(H2O)3]·6H2O}n (MOF 1) and [Cu4(Dcbb)4(Dps)2(H2O)2]n (MOF 2) (H3CbdcpBr = N-(4-carboxybenzyl)-(3,5-dicarboxyl)pyridinium bromide; H2DcbbBr = 1-(3,5-dicarboxybenzyl)-4,4'-bipyridinium bromide; Dps = 4,4'-dipyridyl sulfide) quench the fluorescence of cytosine-rich DNA tagged with 5-carboxytetramethylrhodamine (TAMRA, emission at 582 nm, denoted as C-rich P-DNA-1) and yield the corresponding P-DNA-1@MOF hybrids. Exposure of these hybrids to Ag+ results in the release of the P-DNA-1 strands from the MOF surfaces as double-stranded, hairpin-like C-AgI-C (ds-DNA-1@Ag+) with the restoration of TAMRA fluorescence. The ds-DNA-1@Ag+ formed on the surface of 1 can subsequently sense biothiols cysteine (Cys), glutathione (GSH), and homocysteine (Hcy) due to the stronger affinity of mercapto groups for Ag+ that serves to unfold the ds-DNA-1@Ag+ duplex, reforming P-DNA-1, which is re-adsorbed by MOF 1 accompanied by quenching of TAMRA emission. Meanwhile, MOF 2 is also capable of co-loading a thymine-rich probe DNA tagged with 5-carboxyfluorescein (FAM, emission at 518 nm, denoted as T-rich P-DNA-2) to achieve synchronous sensing of Ag+ and Hg2+, resulting from the simultaneous yet specific ds-DNA-1@Ag+ and T-HgII-T duplex (ds-DNA-2@Hg2+) formation, as well as the distinctive emission wavelengths of TAMRA and FAM. Detection limits are as low as 5.3 nM (Ag+), 14.2 nM (Cys), 13.5 nM (GSH), and 9.1 nM (Hcy) for MOF 1, and 7.5 nM (Ag+) and 2.6 nM (Hg2+) for MOF 2, respectively. The sequential sensing of Ag+ and biothiols by MOF 1, and the synchronous sensing of Ag+ and Hg2+ by MOF 2 are rapid and specific, even in the presence of other mono- and divalent metal cations or other biothiols at much higher concentrations. Molecular simulation studies provide insights regarding the molecular interactions that underpin these sensing processes.
Collapse
Affiliation(s)
- Nai-Han Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Huang HJ, Tsai YL, Lin SH, Hsu SH. Smart polymers for cell therapy and precision medicine. J Biomed Sci 2019; 26:73. [PMID: 31623607 PMCID: PMC6798433 DOI: 10.1186/s12929-019-0571-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022] Open
Abstract
Soft materials have been developed very rapidly in the biomedical field over the past 10 years because of advances in medical devices, cell therapy, and 3D printing for precision medicine. Smart polymers are one category of soft materials that respond to environmental changes. One typical example is the thermally-responsive polymers, which are widely used as cell carriers and in 3D printing. Self-healing polymers are one type of smart polymers that have the capacity to recover the structure after repeated damages and are often injectable through needles. Shape memory polymers are another type with the ability to memorize their original shape. These smart polymers can be used as cell/drug/protein carriers. Their injectability and shape memory performance allow them to be applied in bioprinting, minimally invasive surgery, and precision medicine. This review will describe the general materials design, characterization, as well as the current progresses and challenges of these smart polymers.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, Republic of China
| | - Yu-Liang Tsai
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, Republic of China
| | - Shih-Ho Lin
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, Republic of China.
- Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan.
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli, 35053, Taiwan, Republic of China.
| |
Collapse
|
22
|
Mistry L, Waddell PG, Wright NG, Horrocks BR, Houlton A. transoid and cisoid Conformations in Silver-Mediated Cytosine Base Pairs: Hydrogen Bonding Dictates Argentophilic Interactions in the Solid State. Inorg Chem 2019; 58:13346-13352. [DOI: 10.1021/acs.inorgchem.9b02228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Liam Mistry
- Chemical Nanoscience Laboratory, Chemistry, School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Paul G. Waddell
- Chemical Nanoscience Laboratory, Chemistry, School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Nick G. Wright
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Benjamin R. Horrocks
- Chemical Nanoscience Laboratory, Chemistry, School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Andrew Houlton
- Chemical Nanoscience Laboratory, Chemistry, School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
23
|
|
24
|
Zhou X, Kondhare D, Leonard P, Seela F. Anomeric 5-Aza-7-deaza-2'-deoxyguanosines in Silver-Ion-Mediated Homo and Hybrid Base Pairs: Impact of Mismatch Structure, Helical Environment, and Nucleobase Substituents on DNA Stability. Chemistry 2019; 25:10408-10419. [PMID: 31062885 DOI: 10.1002/chem.201901276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Nucleoside configuration (α-d vs. β-d), nucleobase substituents, and the helical DNA environment of silver-mediated 5-aza-7-deazaguanine-cytosine base pairs have a strong impact on DNA stability. This has been demonstrated by investigations on oligonucleotide duplexes with silver-mediated base pairs of α-d and β-d anomeric 5-aza-7-deaza-2'-deoxyguanosines and anomeric 2'-deoxycytidines incorporated in 12-mer duplexes. To this end, a new synthetic protocol has been developed to access the pure anomers of 5-aza-7-deaza-2'-deoxyguanosine by glycosylation of either the protected nucleobase or its salt followed by separation of the glycosylation products by crystallization and chromatography. Thermal stability measurements were performed on duplexes with α-d/α-d and β-d/β-d homo base pairs or α-d/β-d and β-d/α-d hybrid pairs within two sequence environments, positions 6 or 7, of oligonucleotide duplexes. The respective Tm stability increases observed after silver ion addition differ significantly. Homo base pairs with β-d/β-d or α-d/α-d nucleoside combinations are more stable than α-d/β-d hybrid base pairs. The positional switch of silver-ion-mediated base pairs has a significant impact on stability. Nucleobase substituents introduced at the 5-position of the dC site of silver-mediated base pairs affect base pair stability to a minor extent. Our investigation might lead to applications in the construction of bioinspired nanodevices, in DNA diagnostics, or metal-DNA hybrid materials.
Collapse
Affiliation(s)
- Xinglong Zhou
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| |
Collapse
|
25
|
Al-mahamad LL. Synthesis and surface characterization of new triplex polymer of Ag(I) and mixture nucleosides: cytidine and 8-bromoguanosine. Heliyon 2019; 5:e01609. [PMID: 31193246 PMCID: PMC6522667 DOI: 10.1016/j.heliyon.2019.e01609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022] Open
Abstract
In this work one-dimensional (1D) triplex polymer of silver (I): mixture nucleosides of cytidine and 8-bromoguanosine was synthesised. The polymer showed high stability due to the presence Ag(I) ions in the structure of the polymer in addition to the stability that produces from the effect of Hoogsteen hydrogen bonding in the triplex CGC. Atomic Force Microscopy (AFM) and transmission electron microscopy (TEM) were used to investigate the morphology of the polymer. The AFM images revealed formation of nanofibres extending many microns in length with height in the range of 2-3 nm. Statistical analyses carried out to analyse the AFM images to determine the height of the loops that formed in the polymer. The data displayed that the height value was in the range between 10 nm to 15 nm. The data of TEM images were consistent with the data of AFM images by displaying a very long fibre. Gwyddion software program was used to investigate surface parameters (roughness and waviness), diameter (size distribution), and probability density of the fibre. The data showed that the diameter of the fibre was ∼0.4 nm.
Collapse
Affiliation(s)
- Lamia L.G. Al-mahamad
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
26
|
Sandmann N, Bachmann J, Hepp A, Doltsinis NL, Müller J. Copper(ii)-mediated base pairing involving the artificial nucleobase 3H-imidazo[4,5-f]quinolin-5-ol. Dalton Trans 2019; 48:10505-10515. [DOI: 10.1039/c9dt02043h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly stabilizing Cu(ii)-mediated base pair is introduced into DNA using a large artificial nucleobase.
Collapse
Affiliation(s)
- Nikolas Sandmann
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jim Bachmann
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Nikos L. Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|