1
|
Gong L, Jiang T, Xiao T, Feng B, Wei M, Liu C, Xiao W, Huang P, Huang D. Biomimetic Morphogenesis of Strontium Chitosan-Gelatin Composite Aggregates via EPD and Biomineralization in vitro and in vivo. Int J Nanomedicine 2024; 19:11651-11669. [PMID: 39544892 PMCID: PMC11561900 DOI: 10.2147/ijn.s476874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Biomineralization has been increasingly adopted for the synthesis of advanced materials with superior properties. Hierarchical architecture growth mimicking biomineralization has been studied using various organic molecules to template inorganic materials with controlled morphology. In our previous study, self-assembled Sr/CS/G(SrCO3-chitosan-gelatin) aggregates were fabricated using electrophoretic deposition (EPD). This study is a further step toward understanding the morphogenesis of Sr/CS/G aggregates and its biomineralization. Methods Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to investigate the biomimetic morphogenesis of Sr/CS/G composite under various EPD parameters, such as polymer concentration, time, and voltage. The Sr/CS/G aggregates were immersed in H2O, phosphate-buffered saline (PBS), and simulated body fluid (SBF) to study the bioactive apatite formation ability. In addition, biocompatibility of the composites were evaluated by Fluorescence staining, SEM in vitro. The osteogenic ability of the coatings induced by PBS were tested in vivo. Results The CS/G weight ratio, EPD time, and voltage were found to influence the morphogenesis of Sr/CS/G aggregates. SEM and TEM results showed that the Sr/CS/G aggregates exhibited fractal growth characteristics and morphological self-similarity. XRD results confirmed the formation of SrCO3 crystals within the framework of chitosan and gelatin organic templates. Chitosan played a vital role in branching growth of the crystals, whereas gelatin guided the formation of composite spheres. The microstructural and compositional results reveal that the Sr/CS/G-induced apatite coating yielded a large quantity of apatite. These apatite coatings promote the cytocompatibility and osteogenesis of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. The coatings induced by PBS enhanced proliferation and mineralization in vitro, and enhanced angiogenesis and osteogenesis in vivo. Conclusion Sr/CS/G composites prepared via EPD are promising organic-inorganic templates for biomineralization. These findings provide important insights into understanding the mineralization process and optimizing the design of advanced biological materials.
Collapse
Affiliation(s)
- Lingling Gong
- Department of prosthodontics, Changsha Stomatological Hospital, Changsha, Hunan, People’s Republic of China
- Department of prosthodontics, School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Tao Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
- Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Ting Xiao
- Department of prosthodontics, Changsha Stomatological Hospital, Changsha, Hunan, People’s Republic of China
- Department of prosthodontics, School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Bo Feng
- Department of prosthodontics, Changsha Stomatological Hospital, Changsha, Hunan, People’s Republic of China
- Department of prosthodontics, School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Mouda Wei
- Department of Pediatric Dentistry, Ubcare Dental Clinic Co. Ltd, Changsha, Hunan, People’s Republic of China
| | - Chuanzi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Weiwei Xiao
- Department of prosthodontics, Changsha Stomatological Hospital, Changsha, Hunan, People’s Republic of China
- Department of prosthodontics, School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Pin Huang
- Department of Pediatric Dentistry, Ubcare Dental Clinic Co. Ltd, Changsha, Hunan, People’s Republic of China
| | - Dan Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Wei Y, Liang Y, Qi K, Gu Z, Yan B, Xie H. Exploring the application of piezoelectric ceramics in bone regeneration. J Biomater Appl 2024; 39:409-420. [PMID: 39152927 DOI: 10.1177/08853282241274528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Piezoelectric ceramics are piezoelectric materials with polycrystalline structure and have been widely used in many fields such as medical imaging and sound sensors. As knowledge about this kind of material develops, researchers find piezoelectric ceramics possess favorable piezoelectricity, biocompatibility, mechanical properties, porous structure and antibacterial effect and endeavor to apply piezoelectric ceramics to the field of bone tissue engineering. However, clinically no piezoelectric ceramics have been exercised so far. Therefore, in this paper we present a comprehensive review of the research and development of various piezoelectric ceramics including barium titanate, potassium sodium niobate and zinc oxide ceramics and aims to explore the application of piezoelectric ceramics in bone regeneration by providing a detailed overview of the current knowledge and research of piezoelectric ceramics in bone tissue regeneration.
Collapse
Affiliation(s)
- Yige Wei
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaxian Liang
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kailong Qi
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Bing Yan
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Rubina A, Sceglovs A, Ramata-Stunda A, Pugajeva I, Skadins I, Boyd AR, Tumilovica A, Stipniece L, Salma-Ancane K. Injectable mineralized Sr-hydroxyapatite nanoparticles-loaded ɛ-polylysine-hyaluronic acid composite hydrogels for bone regeneration. Int J Biol Macromol 2024; 280:135703. [PMID: 39288854 DOI: 10.1016/j.ijbiomac.2024.135703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
In this study, multifunctional injectable mineralized antibacterial nanocomposite hydrogels were prepared by a homogenous distribution of high content of (up to 60 wt%) Sr-substituted hydroxyapatite (Sr-HAp) nanoparticles into covalently cross-linked ɛ-polylysine (ɛ-PL) and hyaluronic acid (HA) hydrogel network. The developed bone-targeted nanocomposite hydrogels were to synergistically combine the functional properties of bioactive Sr-HAp nanoparticles and antibacterial ɛ-PL-HA hydrogels for bone tissue regeneration. Viscoelasticity, injectability, structural parameters, degradation, antibacterial activity, and in vitro biocompatibility of the fabricated nanocomposite hydrogels were characterized. Physical performances of the ɛ-PL-HA hydrogels can be tailored by altering the mass ratio of Sr-HAp. The nanocomposite hydrogels revealed good stability against enzymatic degradation, which increased from 5 to 19 weeks with increasing the mass ratio of Sr-HAp from 40 % to 60 %. The loading of the Sr-HAp at relatively high mass ratios did not suppress the fast-acting and long-term antibacterial activity of the ɛ-PL-HA hydrogels against S. aureus and E. coli. The cell studies confirmed the cytocompatibility and pre-collagen I synthesis-promoting activity of the fabricated nanocomposite hydrogels.
Collapse
Affiliation(s)
- A Rubina
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - A Sceglovs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - A Ramata-Stunda
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Jelgavas St. 1, Riga LV-1004, Latvia
| | - I Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV-1076, Latvia
| | - I Skadins
- Department of Biology and Microbiology, Riga Stradins University, Dzirciema St. 16, Riga LV-1007, Latvia
| | - A R Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, United Kingdom of Great Britain and Northern Ireland
| | - A Tumilovica
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - L Stipniece
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| | - K Salma-Ancane
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka St. 3/3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| |
Collapse
|
4
|
Dong S, Mei Y, Zhang Y, Bu W, Zhang Y, Sun C, Zou R, Niu L. A Novel Therapeutic Calcium Peroxide Loaded Injectable Bio-adhesive Hydrogel Against Periodontitis. Int Dent J 2024:S0020-6539(24)00150-3. [PMID: 39127517 DOI: 10.1016/j.identj.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVES Periodontitis is a prevalent oral disease that can significantly impact patients' life quality and systemic health. However, non-surgical subgingival scaling is largely compromised due to poor patient compliance, leading to a high recurrence rate of periodontitis. Therefore, this research aims to explore new approaches to enhance the effectiveness of existing local drug administration therapies. MATERIALS AND METHODS Gelatin-oxidized dextran hydrogel loaded with calcium peroxide and penicillin (CP-P hydrogel) was synthesized and characterized using Universal mechanical testing machine, Fourier transform infrared spectroscopy, swelling test, and dissolved oxygen meter. Furthermore, the cytotoxicity, osteogenic ability, antibacterial behavior, and alveolar bone regenerating capability of CP-P hydrogel were conducted both in vitro and in vivo. RESULTS The CP-P hydrogel demonstrated excellent mechanical properties, minimal swelling, and ideal biocompatibility. It created more favorable environments in the periodontal pocket by reversing anaerobic environment, eliminating drug-resistant bacteria and enhancing the therapeutic potency of drugs. By continuously releasing drugs in the periodontal pocket, the CP-P hydrogel effectively inhibited bacteria and reduce local inflammation response. In addition to bacteriostatic effects, the CP-P hydrogel also promoted the expression of osteogenic genes and enhanced osteogenic differentiation of PDLSCs in vitro. CONCLUSIONS CP-P hydrogel can be developed as a new therapeutic platform to enhance the effectiveness of local drug administration strategy against periodontitis.
Collapse
Affiliation(s)
- Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yukun Mei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China
| | - Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China
| | - Wenqing Bu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China
| | - Yifei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China
| | - Changjie Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China.
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
5
|
Silva AV, Gomes DDS, Victor RDS, Santana LNDL, Neves GA, Menezes RR. Influence of Strontium on the Biological Behavior of Bioactive Glasses for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7654. [PMID: 38138796 PMCID: PMC10744628 DOI: 10.3390/ma16247654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Bioactive glasses (BGs) can potentially be applied in biomedicine, mainly for bone repair and replacement, given their unique ability to connect to natural bone tissue and stimulate bone regeneration. Since their discovery, several glass compositions have been developed to improve the properties and clinical abilities of traditional bioactive glass. Different inorganic ions, such as strontium (Sr2+), have been incorporated in BG due to their ability to perform therapeutic functions. Sr2+ has been gaining prominence due to its ability to stimulate osteogenesis, providing an appropriate environment to improve bone regeneration, in addition to its antibacterial potential. However, as there are still points in the literature that are not well consolidated, such as the influence of ionic concentrations and the BG production technique, this review aims to collect information on the state of the art of the biological behavior of BGs containing Sr2+. It also aims to gather data on different types of BGs doped with different concentrations of Sr2+, and to highlight the manufacturing techniques used in order to analyze the influence of the incorporation of this ion for bone regeneration purposes.
Collapse
Affiliation(s)
- Amanda Vieira Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Déborah dos Santos Gomes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Rayssa de Sousa Victor
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Lisiane Navarro de Lima Santana
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Gelmires Araújo Neves
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil; (R.d.S.V.); (L.N.d.L.S.); (G.A.N.)
| |
Collapse
|
6
|
Sheng X, Li C, Wang Z, Xu Y, Sun Y, Zhang W, Liu H, Wang J. Advanced applications of strontium-containing biomaterials in bone tissue engineering. Mater Today Bio 2023; 20:100636. [PMID: 37441138 PMCID: PMC10333686 DOI: 10.1016/j.mtbio.2023.100636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 07/15/2023] Open
Abstract
Strontium (Sr) and strontium ranelate (SR) are commonly used therapeutic drugs for patients suffering from osteoporosis. Researches have showed that Sr can significantly improve the biological activity and physicochemical properties of materials in vitro and in vivo. Therefore, a large number of strontium containing biomaterials have been developed for repairing bone defects and promoting osseointegration. In this review, we provide a comprehensive overview of Sr-containing biomaterials along with the current state of their clinical use. For this purpose, the different types of biomaterials including calcium phosphate, bioactive glass, and polymers are discussed and provided future outlook on the fabrication of the next-generation multifunctional and smart biomaterials.
Collapse
Affiliation(s)
| | | | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yu Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
7
|
Tan P, Zhao C, Dong Y, Zhang Z, Mei L, Kong Y, Zeng F, Wen Y, Zhao B, Wang J. A Network Pharmacology and Multi-Omics Combination Approach to Reveal the Effect of Strontium on Ca 2+ Metabolism in Bovine Rumen Epithelial Cells. Int J Mol Sci 2023; 24:ijms24119383. [PMID: 37298335 DOI: 10.3390/ijms24119383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Strontium (Sr) belongs to the same group in the periodic table as calcium (Ca). Sr level can serve as an index of rumen Ca absorption capacity; however, the effects of Sr on Ca2+ metabolism are unclear. This study aims to investigate the effect of Sr on Ca2+ metabolism in bovine rumen epithelial cells. The bovine rumen epithelial cells were isolated from the rumen of newborn Holstein male calves (n = 3, 1 day old, 38.0 ± 2.8 kg, fasting). The half maximal inhibitory concentration (IC50) of Sr-treated bovine rumen epithelial cells and cell cycle were used to establish the Sr treatment model. Transcriptomics, proteomics, and network pharmacology were conducted to investigate the core targets of Sr-mediated regulation of Ca2+ metabolism in bovine rumen epithelial cells. The data of transcriptomics and proteomics were analyzed using bioinformatic analysis (Gene Ontology and Kyoto Encyclopedia of genes/protein). Quantitative data were analyzed using one-way ANOVA in GraphPad Prism 8.4.3 and the Shapiro-Wilk test was used for the normality test. Results presented that the IC50 of Sr treatment bovine rumen epithelial cells for 24 h was 43.21 mmol/L, and Sr increased intracellular Ca2+ levels. Multi-omics results demonstrated the differential expression of 770 mRNAs and 2436 proteins after Sr treatment; network pharmacology and reverse transcriptase polymerase chain reaction (RT-PCR) revealed Adenosylhomocysteine hydrolase-like protein 2 (AHCYL2), Semaphoring 3A (SEMA3A), Parathyroid hormone-related protein (PTHLH), Transforming growth factor β2 (TGF-β2), and Cholesterol side-chain cleavage enzyme (CYP11A1) as potential targets for Sr-mediated Ca2+ metabolism regulation. Together these results will improve the current comprehension of the regulatory effect of Sr on Ca2+ metabolism and pave a theoretical basis for Sr application in bovine hypocalcemia.
Collapse
Affiliation(s)
- Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yong Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zixin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Linshan Mei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yongqiang Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Liu X, Huang H, Zhang J, Sun T, Zhang W, Li Z. Recent Advance of Strontium Functionalized in Biomaterials for Bone Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040414. [PMID: 37106601 PMCID: PMC10136039 DOI: 10.3390/bioengineering10040414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Bone defect disease causes damage to people’s lives and property, and how to effectively promote bone regeneration is still a big clinical challenge. Most of the current repair methods focus on filling the defects, which has a poor effect on bone regeneration. Therefore, how to effectively promote bone regeneration while repairing the defects at the same time has become a challenge for clinicians and researchers. Strontium (Sr) is a trace element required by the human body, which mainly exists in human bones. Due to its unique dual properties of promoting the proliferation and differentiation of osteoblasts and inhibiting osteoclast activity, it has attracted extensive research on bone defect repair in recent years. With the deep development of research, the mechanisms of Sr in the process of bone regeneration in the human body have been clarified, and the effects of Sr on osteoblasts, osteoclasts, mesenchymal stem cells (MSCs), and the inflammatory microenvironment in the process of bone regeneration have been widely recognized. Based on the development of technology such as bioengineering, it is possible that Sr can be better loaded onto biomaterials. Even though the clinical application of Sr is currently limited and relevant clinical research still needs to be developed, Sr-composited bone tissue engineering biomaterials have achieved satisfactory results in vitro and in vivo studies. The Sr compound together with biomaterials to promote bone regeneration will be a development direction in the future. This review will present a brief overview of the relevant mechanisms of Sr in the process of bone regeneration and the related latest studies of Sr combined with biomaterials. The aim of this paper is to highlight the potential prospects of Sr functionalized in biomaterials.
Collapse
|
9
|
Weng Y, Jian Y, Huang W, Xie Z, Zhou Y, Pei X. Alkaline earth metals for osteogenic scaffolds: From mechanisms to applications. J Biomed Mater Res B Appl Biomater 2023; 111:1447-1474. [PMID: 36883838 DOI: 10.1002/jbm.b.35246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Regeneration of bone defects is a significant challenge today. As alternative approaches to the autologous bone, scaffold materials have remarkable features in treating bone defects; however, the various properties of current scaffold materials still fall short of expectations. Due to the osteogenic capability of alkaline earth metals, their application in scaffold materials has become an effective approach to improving their properties. Furthermore, numerous studies have shown that combining alkaline earth metals leads to better osteogenic properties than applying them alone. In this review, the physicochemical and physiological characteristics of alkaline earth metals are introduced, mainly focusing on their mechanisms and applications in osteogenesis, especially magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Furthermore, this review highlights the possible cross-talk between pathways when alkaline earth metals are combined. Finally, some of the current drawbacks of scaffold materials are enumerated, such as the high corrosion rate of Mg scaffolds and defects in the mechanical properties of Ca scaffolds. Moreover, a brief perspective is also provided regarding future directions in this field. It is worth exploring that whether the levels of alkaline earth metals in newly regenerated bone differs from those in normal bone. The ideal ratio of each element in the bone tissue engineering scaffolds or the optimal concentration of each elemental ion in the created osteogenic environment still needs further exploration. The review not only summarizes the research developments in osteogenesis but also offers a direction for developing new scaffold materials.
Collapse
Affiliation(s)
- Yihang Weng
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Yujia Jian
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenlong Huang
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhuojun Xie
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Zhou
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Xibo Pei
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
10
|
Wang P, Wang X. Mimicking the native bone regenerative microenvironment for in situ repair of large physiological and pathological bone defects. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
Farag AM, Harper DD, Cozzarelli IM, Kent DB, Mumford AC, Akob DM, Schaeffer T, Iwanowicz LR. Using Biological Responses to Monitor Freshwater Post-Spill Conditions over 3 years in Blacktail Creek, North Dakota, USA. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:253-271. [PMID: 36129489 DOI: 10.1007/s00244-022-00943-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
A pipeline carrying unconventional oil and gas (OG) wastewater spilled approximately 11 million liters of wastewater into Blacktail Creek, North Dakota, USA. Flow of the mix of stream water and wastewater down the channel resulted in storage of contaminants in the hyporheic zone and along the banks, providing a long-term source of wastewater constituents to the stream. A multi-level investigation was used to assess the potential effects of oil and brine spills on aquatic life. In this study, we used a combination of experiments using a native fish species, Fathead Minnow (Pimephales promelas), field sampling of the microbial community structure, and measures of estrogenicity. The fish investigation included in situ experiments and experiments with collected site water. Estrogenicity was measured in collected site water samples, and microbial community analyses were conducted on collected sediments. During the initial post-spill investigation, February 2015, performing in situ fish bioassays was impossible because of ice conditions. However, microbial community (e.g., the presence of members of the Halomonadaceae, a family that is indicative of elevated salinity) and estrogenicity differences were compared to reference sites and point to early biological effects of the spill. We noted water column effects on in situ fish survival 6 months post-spill during June 2015. At that time, total dissolved ammonium (sum of ammonium and ammonia, TAN) was 4.41 mg NH4/L with an associated NH3 of 1.09 mg/L, a concentration greater than the water quality criteria established to protect aquatic life. Biological measurements in the sediment defined early and long-lasting effects of the spill on aquatic resources. The microbial community structure was affected during all sampling events. Therefore, sediment may act as a sink for constituents spilled and as such provide an indication of continued and cumulative effects post-spill. However, lack of later water column effects may reflect pulse hyporheic flow of ammonia from shallow ground water. Combining fish toxicological, microbial community structure and estrogenicity information provides a complete ecological investigation that defines potential influences of contaminants at organismal, population, and community levels. In general, in situ bioassays have implications for the individual survival and changes at the population level, microbial community structure defines potential changes at the community level, and estrogenicity measurements define changes at the individual and molecular level. By understanding effects at these various levels of biological organization, natural resource managers can interpret how a course of action, especially for remediation/restoration, might affect a larger group of organisms in the system. The current work also reviews potential effects of additional constituents defined during chemistry investigations on aquatic resources.
Collapse
Affiliation(s)
- Aїda M Farag
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA.
| | - David D Harper
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA
| | | | - Douglas B Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, CA, USA
| | - Adam C Mumford
- U.S. Geological Survey, Laboratory Analytical Services Division, Reston, VA, USA
| | - Denise M Akob
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, USA
| | - Travis Schaeffer
- U.S. Geological Survey, Columbia Environmental Research Center, Yankton Field Research Station, Yankton, SD, USA
| | - Luke R Iwanowicz
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, WV, USA
| |
Collapse
|
12
|
Chen H, Shen M, Shen J, Li Y, Wang R, Ye M, Li J, Zhong C, Bao Z, Yang X, Li X, Gou Z, Xu S. A new injectable quick hardening anti-collapse bone cement allows for improving biodegradation and bone repair. BIOMATERIALS ADVANCES 2022; 141:213098. [PMID: 36063576 DOI: 10.1016/j.bioadv.2022.213098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The development of injectable cement-like biomaterials via a minimally invasive approach has always attracted considerable clinical interest for modern bone regeneration and repair. Although α-tricalcium phosphate (α-TCP) powders may readily react with water to form hydraulic calcium-deficient hydroxyapatite (CDHA) cement, its long setting time, poor anti-collapse properties, and low biodegradability are suboptimal for a variety of clinical applications. This study aimed to develop new injectable α-TCP-based bone cements via strontium doping, α-calcium sulfate hemihydrate (CSH) addition and liquid phase optimization. A combination of citric acid and chitosan was identified to facilitate the injectable and anti-washout properties, enabling higher resistance to structure collapse. Furthermore, CSH addition (5 %-15 %) was favorable for shortening the setting time (5-20 min) and maintaining the compressive strength (10-14 MPa) during incubation in an aqueous buffer medium. These α-TCP-based composites could also accelerate the biodegradation rate and new bone regeneration in rabbit lateral femoral bone defect models in vivo. Our studies demonstrate that foreign ion doping, secondary phase addition and liquid medium optimization could synergistically improve the physicochemical properties and biological performance of α-TCP-based bone cements, which will be promising biomaterials for repairing bone defects in situations of trauma and diseased bone.
Collapse
Affiliation(s)
- Huaizhi Chen
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Miaoda Shen
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Jian Shen
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Yifan Li
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Ruo Wang
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Meihan Ye
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Jiafeng Li
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Cheng Zhong
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Zhaonan Bao
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
| | - Xigong Li
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Sanzhong Xu
- Department of Orthopedics, the First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
13
|
Fan L, Körte F, Rudt A, Jung O, Burkhardt C, Barbeck M, Xiong X. Encapsulated vaterite-calcite CaCO 3 particles loaded with Mg 2+ and Cu 2+ ions with sustained release promoting osteogenesis and angiogenesis. Front Bioeng Biotechnol 2022; 10:983988. [PMID: 36032705 PMCID: PMC9403055 DOI: 10.3389/fbioe.2022.983988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Bioactive cations, including calcium, copper and magnesium, have shown the potential to become the alternative to protein growth factor-based therapeutics for bone healing. Ion substitutions are less costly, more stable, and more effective at low concentrations. Although they have been shown to be effective in providing bone grafts with more biological functions, the precise control of ion release kinetics is still a challenge. Moreover, the synergistic effect of three or more metal ions on bone regeneration has rarely been studied. In this study, vaterite-calcite CaCO3 particles were loaded with copper (Cu2+) and magnesium (Mg2+). The polyelectrolyte multilayer (PEM) was deposited on CaCuMg-CO3 particles via layer-by-layer technique to further improve the stability and biocompatibility of the particles and to enable controlled release of multiple metal ions. The PEM coated microcapsules were successfully combined with collagen at the outmost layer, providing a further stimulating microenvironment for bone regeneration. The in vitro release studies showed remarkably stable release of Cu2+ in 2 months without initial burst release. Mg2+ was released in relatively low concentration in the first 7 days. Cell culture studies showed that CaCuMg-PEM-Col microcapsules stimulated cell proliferation, extracellular maturation and mineralization more effectively than blank control and other microcapsules without collagen adsorption (Ca-PEM, CaCu-PEM, CaMg-PEM, CaCuMg-PEM). In addition, the CaCuMg-PEM-Col microcapsules showed positive effects on osteogenesis and angiogenesis in gene expression studies. The results indicate that such a functional and controllable delivery system of multiple bioactive ions might be a safer, simpler and more efficient alternative of protein growth factor-based therapeutics for bone regeneration. It also provides an effective method for functionalizing bone grafts for bone tissue engineering.
Collapse
Affiliation(s)
- Lu Fan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Experimental Medicine, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Fabian Körte
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Alexander Rudt
- Faculty of Applied Chemistry, Reutlingen University, Reutlingen, Germany
| | - Ole Jung
- Medical Center of Rostock University, Rostock, Germany
| | - Claus Burkhardt
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Mike Barbeck
- Medical Center of Rostock University, Rostock, Germany
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
14
|
You J, Zhang Y, Zhou Y. Strontium Functionalized in Biomaterials for Bone Tissue Engineering: A Prominent Role in Osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:928799. [PMID: 35875505 PMCID: PMC9298737 DOI: 10.3389/fbioe.2022.928799] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of bone tissue engineering bio-scaffold materials by adding metallic ions to improve bone healing have been extensively explored in the past decades. Strontium a non-radioactive element, as an essential osteophilic trace element for the human body, has received widespread attention in the medical field due to its superior biological properties of inhibiting bone resorption and promoting osteogenesis. As the concept of osteoimmunology developed, the design of orthopedic biomaterials has gradually shifted from “immune-friendly” to “immunomodulatory” with the aim of promoting bone healing by modulating the immune microenvironment through implanted biomaterials. The process of bone healing can be regarded as an immune-induced procedure in which immune cells can target the effector cells such as macrophages, neutrophils, osteocytes, and osteoprogenitor cells through paracrine mechanisms, affecting pathological alveolar bone resorption and physiological bone regeneration. As a kind of crucial immune cell, macrophages play a critical role in the early period of wound repair and host defense after biomaterial implantation. Despite Sr-doped biomaterials being increasingly investigated, how extracellular Sr2+ guides the organism toward favorable osteogenesis by modulating macrophages in the bone tissue microenvironment has rarely been studied. This review focuses on recent knowledge that the trace element Sr regulates bone regeneration mechanisms through the regulation of macrophage polarization, which is significant for the future development of Sr-doped bone repair materials. We will also summarize the primary mechanism of Sr2+ in bone, including calcium-sensing receptor (CaSR) and osteogenesis-related signaling pathways.
Collapse
Affiliation(s)
- Jiaqian You
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
15
|
Jiang M, Pan Y, Liu Y, Dai K, Zhang Q, Wang J. Effect of sulfated chitosan hydrogel on vascularization and osteogenesis. Carbohydr Polym 2022; 281:119059. [DOI: 10.1016/j.carbpol.2021.119059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
|
16
|
Yan MD, Ou YJ, Lin YJ, Liu RM, Fang Y, Wu WL, Zhou L, Yao X, Chen J. Does the incorporation of strontium into calcium phosphate improve bone repair? A meta-analysis. BMC Oral Health 2022; 22:62. [PMID: 35260122 PMCID: PMC8905839 DOI: 10.1186/s12903-022-02092-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/21/2022] [Indexed: 12/09/2022] Open
Abstract
Background The application of calcium phosphate (CaP)-based bone substitutes plays an important role in periodontal regeneration, implant dentistry and alveolar bone reconstruction. The incorporation of strontium (Sr) into CaP-based bone substitutes appears to improve their biological properties, but the reported in vivo bone repair performance is inconsistent among studies. Herein, we conducted a systematic review and meta-analysis to investigate the in vivo performance of Sr-doped materials. Methods We searched PubMed, EMBASE (via OVIDSP), and reference lists to identify relevant animal studies. The search, study selection, and data extraction were performed independently by two investigators. Meta-analyses and sub-group analyses were conducted using Revman version 5.4.1. The heterogeneity between studies were assessed by I2. Publication bias was investigated through a funnel plot. Results Thirty-five studies were finally enrolled, of which 16 articles that reported on new bone formation (NBF) were included in the meta-analysis, covering 31 comparisons and 445 defects. The overall effect for NBF was 2.25 (95% CI 1.61–2.90, p < 0.00001, I2 = 80%). Eight comparisons from 6 studies reported the outcomes of bone volume/tissue volume (BV/TV), with an overall effect of 1.42 (95% CI 0.65–2.18, p = 0.0003, I2 = 75%). Fourteen comparisons reported on the material remaining (RM), with the overall effect being -2.26 (95% CI − 4.02 to − 0.50, p = 0.0009, I2 = 86%). Conclusions Our study revealed that Sr-doped calcium phosphate bone substitutes improved in vivo performance of bone repair. However, more studies are also recommended to further verify this conclusion. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02092-7.
Collapse
Affiliation(s)
- Ming-Dong Yan
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yan-Jing Ou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Department of Oral Implantology, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, 350002, China
| | - Yan-Jun Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Rui-Min Liu
- ORAL Center, Fujian Provincial Governmental Hospital (Affiliated Hospital of Fujian Health College), Fuzhou, 350003, China
| | - Yan Fang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wei-Liang Wu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Lin Zhou
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Xiu Yao
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.,Institute of Stomatology and Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China.
| |
Collapse
|
17
|
Borciani G, Ciapetti G, Vitale-Brovarone C, Baldini N. Strontium Functionalization of Biomaterials for Bone Tissue Engineering Purposes: A Biological Point of View. MATERIALS 2022; 15:ma15051724. [PMID: 35268956 PMCID: PMC8911212 DOI: 10.3390/ma15051724] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023]
Abstract
Strontium (Sr) is a trace element taken with nutrition and found in bone in close connection to native hydroxyapatite. Sr is involved in a dual mechanism of coupling the stimulation of bone formation with the inhibition of bone resorption, as reported in the literature. Interest in studying Sr has increased in the last decades due to the development of strontium ranelate (SrRan), an orally active agent acting as an anti-osteoporosis drug. However, the use of SrRan was subjected to some limitations starting from 2014 due to its negative side effects on the cardiac safety of patients. In this scenario, an interesting perspective for the administration of Sr is the introduction of Sr ions in biomaterials for bone tissue engineering (BTE) applications. This strategy has attracted attention thanks to its positive effects on bone formation, alongside the reduction of osteoclast activity, proven by in vitro and in vivo studies. The purpose of this review is to go through the classes of biomaterials most commonly used in BTE and functionalized with Sr, i.e., calcium phosphate ceramics, bioactive glasses, metal-based materials, and polymers. The works discussed in this review were selected as representative for each type of the above-mentioned categories, and the biological evaluation in vitro and/or in vivo was the main criterion for selection. The encouraging results collected from the in vitro and in vivo biological evaluations are outlined to highlight the potential applications of materials’ functionalization with Sr as an osteopromoting dopant in BTE.
Collapse
Affiliation(s)
- Giorgia Borciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-6366748
| | - Gabriela Ciapetti
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratory for Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| |
Collapse
|
18
|
Tomazela L, Cruz MAE, Nascimento LA, Fagundes CC, da Veiga MAMS, Zamarioli A, Bottini M, Ciancaglini P, Brassesco MS, Engel EE, Ramos AP. Fabrication and characterization of a bioactive polymethylmethacrylate-based porous cement loaded with strontium/calcium apatite nanoparticles. J Biomed Mater Res A 2021; 110:812-826. [PMID: 34783455 DOI: 10.1002/jbm.a.37330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022]
Abstract
Polymethylmethacrylate (PMMA)-based cements are used for bone reparation due to their biocompatibility, suitable mechanical properties, and mouldability. However, these materials suffer from high exothermic polymerization and poor bioactivity, which can cause the formation of fibrous tissue around the implant and aseptic loosening. Herein, we tackled these problems by adding Sr2+ -substituted hydroxyapatite nanoparticles (NPs) and a porogenic compound to the formulations, thus creating a microenvironment suitable for the proliferation of osteoblasts. The NPs resembled the structure of the bone's apatite and enabled the controlled release of Sr2+ . Trends in the X-ray patterns and infrared spectra confirmed that Sr2+ replaced Ca2+ in the whole composition range of the NPs. The inclusion of an effervescent additive reduced the polymerization temperature and lead to the formation of highly porous cement exhibiting mechanical properties comparable to the trabecular bone. The formation of an opened and interconnected matrix allowed osteoblasts to penetrate the cement structure. Most importantly, the gas formation confined the NPs at the surface of the pores, guaranteeing the controlled delivery of Sr2+ within a concentration sufficient to maintain osteoblast viability. Additionally, the cement was able to form apatite when immersed into simulated body fluids, further increasing its bioactivity. Therefore, we offer a formulation of PMMA cement with improved in vitro performance supported by enhanced bioactivity, increased osteoblast viability and deposition of mineralized matrix assigned to the loading with Sr2+ -substituted hydroxyapatite NPs and the creation of an interconnected porous structure. Altogether, our results hold promise for enhanced bone reparation guided by PMMA cements.
Collapse
Affiliation(s)
- Larissa Tomazela
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Antônio Eufrásio Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa Aine Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Cecilia C Fagundes
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ariane Zamarioli
- Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Sol Brassesco
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Edgard E Engel
- Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Zheng X, Zhang X, Wang Y, Liu Y, Pan Y, Li Y, Ji M, Zhao X, Huang S, Yao Q. Hypoxia-mimicking 3D bioglass-nanoclay scaffolds promote endogenous bone regeneration. Bioact Mater 2021; 6:3485-3495. [PMID: 33817422 PMCID: PMC7988349 DOI: 10.1016/j.bioactmat.2021.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Large bone defect repair requires biomaterials that promote angiogenesis and osteogenesis. In present work, a nanoclay (Laponite, XLS)-functionalized 3D bioglass (BG) scaffold with hypoxia mimicking property was prepared by foam replication coupled with UV photopolymerization methods. Our data revealed that the incorporation of XLS can significantly promote the mechanical property of the scaffold and the osteogenic differentiation of human adipose mesenchymal stem cells (ADSCs) compared to the properties of the neat BG scaffold. Desferoxamine, a hypoxia mimicking agent, encourages bone regeneration via activating hypoxia-inducible factor-1 alpha (HIF-1α)-mediated angiogenesis. GelMA-DFO immobilization onto BG-XLS scaffold achieved sustained DFO release and inhibited DFO degradation. Furthermore, in vitro data demonstrated increased HIF-1α and vascular endothelial growth factor (VEGF) expressions on human adipose mesenchymal stem cells (ADSCs). Moreover, BG-XLS/GelMA-DFO scaffolds also significantly promoted the osteogenic differentiation of ADSCs. Most importantly, our in vivo data indicated BG-XLS/GelMA-DFO scaffolds strongly increased bone healing in a critical-sized mouse cranial bone defect model. Therefore, we developed a novel BG-XLS/GelMA-DFO scaffold which can not only induce the expression of VEGF, but also promote osteogenic differentiation of ADSCs to promote endogenous bone regeneration.
Collapse
Affiliation(s)
- Xiao Zheng
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xiaorong Zhang
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Yingting Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Yangxi Liu
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, USA
| | - Yining Pan
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, PR China
| | - Yijia Li
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, PR China
| | - Man Ji
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xueqin Zhao
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Qingqing Yao
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, PR China
| |
Collapse
|
20
|
Evaluation of fluorohydroxyapatite/strontium coating on titanium implants fabricated by hydrothermal treatment. Prog Biomater 2021; 10:185-194. [PMID: 34370267 DOI: 10.1007/s40204-021-00162-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
Titanium and its alloys are considered as appropriate replacements for the irreparable bone. Calcium phosphate coatings are widely used to improve the osteoinduction and osseointegration ability of titanium alloys. To further improve the performance of the calcium phosphate-coated implants, strontium (Sr) was introduced to partially replace the calcium ions. In this study, the effect of Sr ion addition on the fluorohydroxyapatite (FHA)-coated Ti6Al4V alloy was investigated and all the coatings were treated under hydrothermal condition. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the phases and microstructures, respectively. Shear tests were done to evaluate the bond strength of the coating layer. MTT, adhesion, and alkaline phosphatase tests were performed to evaluate the biocompatibility and osteogenic behavior of the samples. Results showed that the average crystallite size for the strontium-doped FHA samples was 48 nm and the bond strength had increased 13.15% in comparison with FHA-coated samples. Analysis of variance showed p value for all MTT tests at more than 0.322 and there was not any evidence of cell death after 7 days. The results of the ALP test showed that the increase of the cell activity in Sr samples from day 7 to 14 is three times higher than the FHA ones.
Collapse
|
21
|
Study of kinetic, thermodynamic, and isotherm of Sr adsorption from aqueous solutions on graphene oxide (GO) and (aminomethyl)phosphonic acid–graphene oxide (AMPA–GO). J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07845-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Jia B, Chen J, Wang Q, Sun X, Han J, Guastaldi F, Xiang S, Ye Q, He Y. SIRT6 Promotes Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells Through Antagonizing DNMT1. Front Cell Dev Biol 2021; 9:648627. [PMID: 34239868 PMCID: PMC8258422 DOI: 10.3389/fcell.2021.648627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/22/2021] [Indexed: 01/02/2023] Open
Abstract
Background Adipose-derived stem cells (ADSCs) are increasingly used in regenerative medicine because of their potential to differentiate into multiple cell types, including osteogenic lineages. Sirtuin protein 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that plays important roles in cell differentiation. NOTCH signaling has also been reported to involve in osteogenic differentiation. However, the function of SIRT6 in osteogenic differentiation of ADSCs and its relation to the NOTCH signaling pathways are yet to be explored. Methods The in vitro study with human ADSCs (hADSCs) and in vivo experiments with nude mice have been performed. Alkaline phosphatase (ALP) assays and ALP staining were used to detect osteogenic activity. Alizarin Red staining was performed to detect calcium deposition induced by osteogenic differentiation of ADSCs. Western blot, RT-qPCR, luciferase reporter assay, and co-immunoprecipitation assay were applied to explore the relationship between of SIRT6, DNA methyltransferases (DNMTs) and NOTCHs. Results SIRT6 promoted ALP activity, enhanced mineralization and upregulated expression of osteogenic-related genes of hADSCs in vitro and in vivo. Further mechanistic studies showed that SIRT6 deacetylated DNMT1, leading to its unstability at protein level. The decreased expression of DNMT1 prevented the abnormal DNA methylation of NOTCH1 and NOTCH2, resulting in the upregulation of their transcription. SIRT6 overexpression partially suppressed the abnormal DNA methylation of NOTCH1 and NOTCH2 by antagonizing DNMT1, leading to an increased capacity of ADSCs for their osteogenic differentiation. Conclusion This study demonstrates that SIRT6 physical interacts with the DNMT1 protein, deacetylating and destabilizing DNMT1 protein, leading to the activation of NOTCH1 and NOTCH2, Which in turn promotes the osteogenic differentiation of ADSCs.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China.,Department of Stomatology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Jun Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Sun
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiusong Han
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Fernando Guastaldi
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, United States
| | - Shijian Xiang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingsong Ye
- School of Stomatology and Medicine, Foshan University, Foshan, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Laboratory of Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Ding Z, Cheng W, Mia MS, Lu Q. Silk Biomaterials for Bone Tissue Engineering. Macromol Biosci 2021; 21:e2100153. [PMID: 34117836 DOI: 10.1002/mabi.202100153] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Silk is a natural fibrous polymer with application potential in regenerative medicine. Increasing interest remains for silk materials in bone tissue engineering due to their characteristics in biocompatibility, biodegradability and mechanical properties. Plenty of the in vitro and in vivo studies confirmed the advantages of silk in accelerating bone regeneration. Silk is processed into scaffolds, hydrogels, and films to facilitate different bone regenerative applications. Bioactive factors such as growth factors and drugs, and stem cells are introduced to silk-based matrices to create friendly and osteogenic microenvironments, directing cell behaviors and bone regeneration. The recent progress in silk-based bone biomaterials is discussed and focused on different fabrication and functionalization methods related to osteogenesis. The challenges and potential targets of silk bone materials are highlighted to evaluate the future development of silk-based bone materials.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Md Shipan Mia
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
24
|
Huang L, Yin X, Chen J, Liu R, Xiao X, Hu Z, He Y, Zou S. Lithium chloride promotes osteogenesis and suppresses apoptosis during orthodontic tooth movement in osteoporotic model via regulating autophagy. Bioact Mater 2021; 6:3074-3084. [PMID: 33778189 PMCID: PMC7960682 DOI: 10.1016/j.bioactmat.2021.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis is a widely distributed disease that may cause complications such as accelerated tooth movement, bone resorption, and tooth loss during orthodontic treatment. Promoting bone formation and reducing bone resorption are strategies for controlling these complications. For several decades, the autophagy inducer lithium chloride (LiCl) has been explored for bipolar . In this study, we investigated the autophagy-promoting effect of LiCl on bone remodeling under osteoporotic conditions during tooth movement. Ovariectomy was used to induce osteoporosis status in vivo. The results showed that LiCl rejuvenated autophagy, decreased apoptosis, and promoted bone formation, thus protecting tooth movement in osteoporotic mice. Furthermore, in vitro experiments showed that LiCl reversed the effects of ovariectomy on bone marrow-derived mesenchymal stem cells (BMSCs) extracted from ovariectomized mice, promoting osteogenesis and suppressing apoptosis by positively regulating autophagy. These findings suggest that LiCl can significantly decrease adverse effects of osteoporosis on bone remodeling, and that it has great potential significance in the field of bone formation during tooth movement in osteoporosis patients.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jun Chen
- The Medical & Nursing School, Chengdu University, Chengdu, 610106, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhiai Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan He
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
25
|
Costa AI, Gemini-Piperni S, Alves AC, Costa NA, Checca NR, Leite PE, Rocha LA, Pinto AMP, Toptan F, Rossi AL, Ribeiro AR. TiO 2 bioactive implant surfaces doped with specific amount of Sr modulate mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111735. [PMID: 33545878 DOI: 10.1016/j.msec.2020.111735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/27/2022]
Abstract
One of the main problems that remain in the implant industry is poor osseointegration due to bioinertness of implants. In order to promote bioactivity, calcium (Ca), phosphorus (P) and strontium (Sr) were incorporated into a TiO2 porous layer produced by micro-arc oxidation. Ca and P as bioactive elements are already well reported in the literature, however, the knowledge of the effect of Sr is still limited. In the present work, the effect of various amounts of Sr was evaluated and the morphology, chemical composition and crystal structure of the oxide layer were investigated. Furthermore, in vitro studies were carried out using human osteoblast-like cells. The oxide layer formed showed a triplex structure, where higher incorporation of Sr increased Ca/P ratio, amount of rutile and promoted the formation of SrTiO3 compound. Biological tests revealed that lower concentrations of Sr did not compromise initial cell adhesion neither viability and interestingly improved mineralization. However, higher concentration of Sr (and consequent higher amount of rutile) showed to induce collagen secretion but with compromised mineralization, possibly due to a delayed mineralization process or induced precipitation of deficient hydroxyapatite. Ca-P-TiO2 porous layer with less concentration of Sr seems to be an ideal candidate for bone implants.
Collapse
Affiliation(s)
- A I Costa
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; DEMM - Department of Metallurgical and Materials Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal.
| | - S Gemini-Piperni
- Postgraduate Program of Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - A C Alves
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal
| | - N A Costa
- IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Postgraduate Program in Materials Science and Technology, São Paulo State University, Bauru, São Paulo, Brazil
| | - N R Checca
- CBPF - Brazilian Centre for Research in Physics, Rio de Janeiro, Brazil
| | - P E Leite
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil; Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil
| | - L A Rocha
- IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Faculty of Science, Department of Physics, São Paulo State University, Bauru, São Paulo, Brazil
| | - A M P Pinto
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; DEM - Department of Mechanical Engineering, University of Minho, Guimarães, Portugal
| | - F Toptan
- CMEMS-UMinho - Center of MicroElectroMechanical Systems, University of Minho, Guimarães, Portugal; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - A L Rossi
- CBPF - Brazilian Centre for Research in Physics, Rio de Janeiro, Brazil
| | - A R Ribeiro
- Postgraduate Program of Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil; IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil; Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Xérem, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Wu X, Tang Z, Wu K, Bai Y, Lin X, Yang H, Yang Q, Wang Z, Ni X, Liu H, Yang L. Strontium-calcium phosphate hybrid cement with enhanced osteogenic and angiogenic properties for vascularised bone regeneration. J Mater Chem B 2021; 9:5982-5997. [PMID: 34139000 DOI: 10.1039/d1tb00439e] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascularized bone tissue engineering is regarded as one of the optimal treatment options for large bone defects. The lack of angiogenic properties and unsatisfactory physicochemical performance restricts calcium phosphate cement (CPC) from application in vascularized bone tissue engineering. Our previous studies have developed a starch and BaSO4 incorporated calcium phosphate hybrid cement (CPHC) with improved mechanical strength and handling properties. However, the bioactivity-especially the angiogenic ability-is still absent and requires further improvement. Herein, based on the reported CPHC and the osteogenic and angiogenic properties of strontium (Sr) ions, a strontium-enhanced calcium phosphate hybrid cement (Sr-CPHC) was developed to improve both biological and physicochemical properties of CPC. Compared to CPC, the initial setting time of Sr-CPHC was prolonged from 2.2 min to 20.7 min. The compressive strength of Sr-CPHC improved from 11.21 MPa to 45.52 MPa compared with CPC as well. Sr-CPHC was biocompatible and showed promotion of alkaline phosphatase (ALP) activity, calcium nodule formation and osteogenic relative gene expression, suggesting high osteogenic-inductivity. Sr-CPHC also facilitated the migration and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and up-regulated the expression of the vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang-1). In vivo evaluation showed marked new bone formation in a rat calvarial defect model with Sr-CPHC implanted. Sr-CPHC also exhibited enhancement of neovascularization in subcutaneous connective tissue in a rat subcutaneous implantation model. Thus, the Sr-CPHC with the dual effects of osteogenesis and angiogenesis shows great potential for clinical applications such as the repair of ischemic osteonecrosis and critical-size bone defects.
Collapse
Affiliation(s)
- Xiexing Wu
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China
| | - Ziniu Tang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China
| | - Kang Wu
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China
| | - Yanjie Bai
- School of Public Health, Medical College, Soochow University, Suzhou 215006, P. R. China
| | - Xiao Lin
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China
| | - Huilin Yang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, P. R. China
| | - Zheng Wang
- Department of Orthopedics, PLA General Hospital, Beijing 100853, P. R. China
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, No. 68 Gehu Road, Changzhou 213003, P. R. China.
| | - Huiling Liu
- Institute of Orthopedics, Medical College, Soochow University, Suzhou 215006, P. R. China.
| | - Lei Yang
- Institute of Orthopedics and Department of Orthopedics, The First Affiliated Hospital, Soochow University, No. 708 Renmin Road, Suzhou 215006, P. R. China and Center for Health Science and Engineering (CHSE), School of Materials Science and Engineering, Hebei University of Technology, No. 8 Guangrong Road, Tianjin 300130, P. R. China.
| |
Collapse
|
27
|
Geng Z, Ji L, Li Z, Wang J, He H, Cui Z, Yang X, Liu C. Nano-needle strontium-substituted apatite coating enhances osteoporotic osseointegration through promoting osteogenesis and inhibiting osteoclastogenesis. Bioact Mater 2020; 6:905-915. [PMID: 33102935 PMCID: PMC7553892 DOI: 10.1016/j.bioactmat.2020.09.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
Implant loosening remains a major clinical challenge for osteoporotic patients. This is because osteoclastic bone resorption rate is higher than osteoblastic bone formation rate in the case of osteoporosis, which results in poor bone repair. Strontium (Sr) has been widely accepted as an anti-osteoporosis element. In this study, we fabricated a series of apatite and Sr-substituted apatite coatings via electrochemical deposition under different acidic conditions. The results showed that Ca and Sr exhibited different mineralization behaviors. The main mineralization products for Ca were CaHPO4·2H2O and Ca3(PO4)2 with the structure changed from porous to spherical as the pH values increased. The main mineralization products for Sr were SrHPO4 and Sr5(PO4)3OH with the structure changed from flake to needle as the pH values increased. The in vitro experiment demonstrated that coatings fabricated at high pH condition with the presence of Sr were favorable to MSCs adhesion, spreading, proliferation, and osteogenic differentiation. In addition, Sr-substituted apatite coatings could evidently inhibit osteoclast differentiation and fusion. Moreover, the in vivo study indicated that nano-needle like Sr-substituted apatite coating could suppress osteoclastic activity, improve new bone formation, and enhance bone-implant integration. This study provided a new theoretical guidance for implant coating design and the fabricated Sr-substituted coating might have potential applications for osteoporotic patients. Ca2+ and Sr2+ showed different mineralization behaviors in acidic environments. Apatites fabricated at high pH conditions were beneficial to MSCs growth. Sr-substituted apatite exhibited superior anti-osteoclast activity ability. Sr-substituted apatite facilitated osteogenesis, bone growth, and osseointegration.
Collapse
Affiliation(s)
- Zhen Geng
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Luli Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhaoyang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenduo Cui
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xianjin Yang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
28
|
Wan B, Wang R, Sun Y, Cao J, Wang H, Guo J, Chen D. Building Osteogenic Microenvironments With Strontium-Substituted Calcium Phosphate Ceramics. Front Bioeng Biotechnol 2020; 8:591467. [PMID: 33117789 PMCID: PMC7576675 DOI: 10.3389/fbioe.2020.591467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Bioceramics have experienced great development over the past 50 years. Modern bioceramics are designed to integrate bioactive ions within ceramic granules to trigger living tissue regeneration. Preclinical and clinical studies have shown that strontium is a safe and effective divalent metal ion for preventing osteoporosis, which has led to its incorporation in calcium phosphate-based ceramics. The local release of strontium ions during degradation results in moderate concentrations that trigger osteogenesis with few systemic side effects. Moreover, strontium has been proven to generate a favorable immune environment and promote early angiogenesis at the implantation site. Herein, the important aspects of strontium-enriched calcium phosphate bioceramics (Sr-CaPs), and how Sr-CaPs affect the osteogenic microenvironment, are described.
Collapse
Affiliation(s)
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | | | | | | | | | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
29
|
Tovani CB, Oliveira TM, Soares MPR, Nassif N, Fukada SY, Ciancaglini P, Gloter A, Ramos AP. Strontium Calcium Phosphate Nanotubes as Bioinspired Building Blocks for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43422-43434. [PMID: 32876428 DOI: 10.1021/acsami.0c12434] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Calcium phosphate (CaP)-based ceramics are the most investigated materials for bone repairing and regeneration. However, the clinical performance of commercial ceramics is still far from that of the native tissue, which remains as the gold standard. Thus, reproducing the structural architecture and composition of bone matrix should trigger biomimetic response in synthetic materials. Here, we propose an innovative strategy based on the use of track-etched membranes as physical confinement to produce collagen-free strontium-substituted CaP nanotubes that tend to mimic the building block of bone, i.e., the mineralized collagen fibrils. A combination of high-resolution microscopic and spectroscopic techniques revealed the underlying mechanisms driving the nanotube formation. Under confinement, poorly crystalline apatite platelets assembled into tubes that resembled the mineralized collagen fibrils in terms of diameter and structure of bioapatite. Furthermore, the synergetic effect of Sr2+ and confinement gave rise to the stabilization of amorphous strontium CaP nanotubes. The nanotubes were tested in long-term culture of osteoblasts, supporting their maturation and mineralization without eliciting any cytotoxicity. Sr2+ released from the particles reduced the differentiation and activity of osteoclasts in a Sr2+ concentration-dependent manner. Their bioactivity was evaluated in a serum-like solution, showing that the particles spatially guided the biomimetic remineralization. Further, these effects were achieved at strikingly low concentrations of Sr2+ that is crucial to avoid side effects. Overall, these results open simple and promising pathways to develop a new generation of CaP multifunctional ceramics that are active in tissue regeneration and able to simultaneously induce biomimetic remineralization and control the imbalanced osteoclast activity responsible for bone density loss.
Collapse
Affiliation(s)
- Camila B Tovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Tamires M Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Mariana P R Soares
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005 Paris, France
| | - Sandra Y Fukada
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Alexandre Gloter
- Laboratoire de Physique des Solides, Université Paris-Saclay, 91405 Orsay, France
| | - Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
30
|
Miao Q, Yang S, Ding H, Liu J. Controlled degradation of chitosan-coated strontium-doped calcium sulfate hemihydrate composite cement promotes bone defect repair in osteoporosis rats. Biomed Mater 2020; 15:055039. [DOI: 10.1088/1748-605x/ab9fcf] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Marx D, Rahimnejad Yazdi A, Papini M, Towler M. A review of the latest insights into the mechanism of action of strontium in bone. Bone Rep 2020; 12:100273. [PMID: 32395571 PMCID: PMC7210412 DOI: 10.1016/j.bonr.2020.100273] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Interest in strontium (Sr) has persisted over the last three decades due to its unique mechanism of action: it simultaneously promotes osteoblast function and inhibits osteoclast function. While this mechanism of action is strongly supported by in vitro studies and small animal trials, recent large-scale clinical trials have demonstrated that orally administered strontium ranelate (SrRan) may have no anabolic effect on bone formation in humans. Yet, there is a strong correlation between Sr accumulation in bone and reduced fracture risk in post-menopausal women, suggesting Sr acts via a purely physiochemical mechanism to enhance bone strength. Conversely, the local administration of Sr with the use of modified biomaterials has been shown to enhance bone growth, osseointegration and bone healing at the bone-implant interface, to a greater degree than Sr-free materials. This review summarizes current knowledge of the main cellular and physiochemical mechanisms that underly Sr's effect in bone, which center around Sr's similarity to calcium (Ca). We will also summarize the main controversies in Sr research which cast doubt on the 'dual-acting mechanism'. Lastly, we will explore the effects of Sr-modified bone-implant materials both in vitro and in vivo, examining whether Sr may act via an alternate mechanism when administered locally.
Collapse
Affiliation(s)
- Daniella Marx
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada
| | - Alireza Rahimnejad Yazdi
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| | - Marcello Papini
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| | - Mark Towler
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| |
Collapse
|
32
|
Effect of Bone Morphogenic Protein-2-Loaded Mesoporous Strontium Substitution Calcium Silicate/Recycled Fish Gelatin 3D Cell-Laden Scaffold for Bone Tissue Engineering. Processes (Basel) 2020. [DOI: 10.3390/pr8040493] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone has a complex hierarchical structure with the capability of self-regeneration. In the case of critical-sized defects, the regeneration capabilities of normal bones are severely impaired, thus causing non-union healing of bones. Therefore, bone tissue engineering has since emerged to solve problems relating to critical-sized bone defects. Amongst the many biomaterials available on the market, calcium silicate-based (CS) cements have garnered huge interest due to their versatility and good bioactivity. In the recent decade, scientists have attempted to modify or functionalize CS cement in order to enhance the bioactivity of CS. Reports have been made that the addition of mesoporous nanoparticles onto scaffolds could enhance the bone regenerative capabilities of scaffolds. For this study, the main objective was to reuse gelatin from fish wastes and use it to combine with bone morphogenetic protein (BMP)-2 and Sr-doped CS scaffolds to create a novel BMP-2-loaded, hydrogel-based mesoporous SrCS scaffold (FGSrB) and to evaluate for its composition and mechanical strength. From this study, it was shown that such a novel scaffold could be fabricated without affecting the structural properties of FGSr. In addition, it was proven that FGSrB could be used for drug delivery to allow stable localized drug release. Such modifications were found to enhance cellular proliferation, thus leading to enhanced secretion of alkaline phosphatase and calcium. The above results showed that such a modification could be used as a potential alternative for future bone tissue engineering research.
Collapse
|
33
|
Enhanced Proliferation and Differentiation of Human Mesenchymal Stem Cell-laden Recycled Fish Gelatin/Strontium Substitution Calcium Silicate 3D Scaffolds. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-encapsulated bioscaffold is a promising and novel method to allow fabrication of live functional organs for tissue engineering and regenerative medicine. However, traditional fabrication methods of 3D scaffolds and cell-laden hydrogels still face many difficulties and challenges. This study uses a newer 3D fabrication technique and the concept of recycling of an unutilized resource to fabricate a novel scaffold for bone tissue engineering. In this study, fish-extracted gelatin was incorporated with bioactive ceramic for bone tissue engineering, and with this we successfully fabricated a novel fish gelatin methacrylate (FG) polymer hydrogel mixed with strontium-doped calcium silicate powder (FGSr) 3D scaffold via photo-crosslinking. Our results indicated that the tensile strength of FGSr was almost 2.5-fold higher as compared to FG thus making it a better candidate for future clinical applications. The in-vitro assays illustrated that the FGSr scaffolds showed good biocompatibility with human Wharton jelly-derived mesenchymal stem cells (WJMSC), as well as enhancing the osteogenesis differentiation of WJMSC. The WJMSC-laden FGSr 3D scaffolds expressed a higher degree of alkaline phosphatase activity than those on cell-laden FG 3D scaffolds and this result was further proven with the subsequent calcium deposition results. Therefore, these results showed that 3D-printed cell-laden FGSr scaffolds had enhanced mechanical property and osteogenic-related behavior that made for a more suitable candidate for future clinical applications.
Collapse
|
34
|
Recent developments in strontium-based biocomposites for bone regeneration. J Artif Organs 2020; 23:191-202. [PMID: 32100147 DOI: 10.1007/s10047-020-01159-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/25/2020] [Indexed: 12/13/2022]
Abstract
Recent advances in biomaterial designing techniques offer immense support to tailor biomimetic scaffolds and to engineer the microstructure of biomaterials for triggering bone regeneration in challenging bone defects. The current review presents the different categories of recently explored strontium-integrated biomaterials, including calcium silicate, calcium phosphate, bioglasses and polymer-based synthetic implants along with their in vivo bone formation efficacies and/or in vitro cell responses. The role and significance of controlled drug release scaffold/carrier design in strontium-triggered osteogenesis was also comprehensively described. Furthermore, the effects of stem cells and growth factors on bone remodeling are also elucidated.
Collapse
|
35
|
Guo F, Huang K, Niu J, Kuang T, Zheng Y, Gu Z, Zou J. Enhanced osseointegration of double network hydrogels via calcium polyphosphate incorporation for bone regeneration. Int J Biol Macromol 2019; 151:1126-1132. [PMID: 31751714 DOI: 10.1016/j.ijbiomac.2019.10.155] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
To overcome the low mechanical strength and difficult bonding of hydrogels to bones which are the major limitations of hydrogels used in bone-regeneration, a new type of calcium polyphosphate incorporated into bioinspired alginate/polyacrylic acid (CPP/PAA-Alg) hybrid double network (DN) hydrogel with both high strength and enhanced osseointergration was prepared by a two-step polymerization with alginate and polyacrylic acid for bone regeneration. The morphology, mechanical properties, swelling, biocompatibility, osseointegration and osteogenic ability of this CPP/PAA-Alg DN hydrogel were investigated. The results show that CPP/PAA-Alg DN hydrogel with highly porous microstructure possesses high water absorption capacity and highly strength properties which meet the requirements of bone repairing. The results of in vitro studies revealed that the CPP/PAA-Alg DN hydrogels can support the spread of cells and promote the cell proliferation. Animal studies demonstrated that the CPP incorporated would enhance the osseointegration of DN hydrogel with host bone at an early stage after implantation to accelerate the regeneration of bone. This research may provide a new way to develop biocompatible biomaterials with high mechanical strength and good osseointegration to meet the needs of bone regeneration.
Collapse
Affiliation(s)
- Fang Guo
- Department of Obstetrics & Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Keqing Huang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Junjie Niu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006, PR China
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yongjiang Zheng
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, PR China.
| | - Zhipeng Gu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
36
|
Prince GAE, Yang X, Fu J, Pan Z, Zhuang C, Ke X, Zhang L, Xie L, Gao C, Gou Z. Yolk-porous shell biphasic bioceramic granules enhancing bone regeneration and repair beyond homogenous hybrid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:433-444. [DOI: 10.1016/j.msec.2019.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
|
37
|
Cruz M, Zanatta M, da Veiga M, Ciancaglini P, Ramos A. Lipid-mediated growth of SrCO3/CaCO3 hybrid films as bioactive coatings for Ti surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:762-769. [DOI: 10.1016/j.msec.2019.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 01/10/2023]
|
38
|
Qi H, Cheng C, Wang X, Yu X. Preparation and investigation of novel SrCl2/DCMC-modified (via DOPA) decellularized arteries with excellent physicochemical properties and cytocompatibility for vascular scaffolds. RSC Adv 2018; 8:30098-30105. [PMID: 35546814 PMCID: PMC9085529 DOI: 10.1039/c8ra06427j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 12/02/2022] Open
Abstract
A new method of fabricating vascular scaffolds was designed in this article by crosslinking the porcine arteries using dialdehyde carboxymethyl (DCMC) and further introducing the Sr element on the surface of modified arteries using DOPA. DCMC had been selected as an ideal crosslinking reagent for its excellent cytobiocompatibility and suitable chemical reactivity. Unfortunately, the endothelialization of biological vascular scaffolds fixed by DCMC was unsatisfactory. To overcome this deficiency, the Sr element was introduced onto arteries to improve the endothelialization of fixed arteries due to the Sr element being able to promote the expression of vascular endothelial growth factor (VEGF) being crucial for growth and proliferation of HUVECs. After modifying and crosslinking, their chemical structures, mechanical properties, stability, and cytocompatibility were examined. Our findings demonstrated that DCMC could improve the mechanical properties of animal-derived materials successfully and possess suitable biocompatibility compared with glutaraldehyde (GA). The Sr element can easily be introduced onto the surface of DCMC modified arteries by DOPA. Compared with purely DCMC-crosslinked ones, SrCl2/DCMC modification has no significant effect on the mechanical strength of fixed arteries, but a slight tendancy to improve the stability of fixed samples in D-Hanks solution. MTT assay and fluorescence tests implied that SrCl2/DCMC modification could effectively stimulate HUVECs' adhesion and proliferation, and thus promote the endothelialization process of fixed arteries. SrCl2/DCMC-modified arteries with excellent physicochemical properties and appealing HUVEC-cytocompatibility should be promising materials for fabricating vascular scaffolds. A new method of fabricating vascular scaffolds was designed in this article by crosslinking the porcine arteries using dialdehyde carboxymethyl (DCMC) and further introducing the Sr element on the surface of modified arteries using DOPA.![]()
Collapse
Affiliation(s)
- Hao Qi
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Can Cheng
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xu Wang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xixiun Yu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|