1
|
Jiang W, Wang Q, Chang K, Zhao Y. Surface-enhanced Raman spectroscopy substrates for monitoring antibiotics in dairy products: Mechanisms, advances, and prospects. Compr Rev Food Sci Food Saf 2024; 23:e70024. [PMID: 39468939 DOI: 10.1111/1541-4337.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 10/30/2024]
Abstract
Antibiotic residues in dairy products have become an undeniable threat to human health. Surface-enhanced Raman spectroscopy (SERS) has been widely used in efficiently detecting antibiotics because of its characteristics including fast response, high resolution, and strong resistance to moisture interference. However, as a core part of SERS technology, the design principle and detection performance of enhanced substrates used in monitoring antibiotics in dairy products have not yet received enough attention. Thus, it is necessary to give a critical review of the recent developments of SERS substrates for monitoring antibiotics in dairy products, which can be expected to provide inspiration for the efficient utilization of SERS technology. In this work, advances in various SERS substrates applied in sensing antibiotics in dairy products were comprehensively reviewed. First, the enhancement mechanisms were introduced in detail. Significantly, the types of enhanced materials (plasmonic metal particles [PMPs], PMPs/semiconductor composite materials) and biometric design strategies including immunoassay, aptamer, and molecularly imprinted polymers-based SERS biosensors applied in dairy products were systematically summarized for the first time. Meanwhile, the performance of SERS substrates used for the detection of antibiotics in dairy products was addressed from the aspects of dynamic linear range and detection restriction strategy. Finally, the conclusions, challenges, and future prospects of SERS substrates for antibiotic monitoring in dairy products were deeply discussed, which also provide new opinions and key points for constructing SERS substrates applied in complex food matrix in the future.
Collapse
Affiliation(s)
- Wenshan Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qinzhi Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Kuan Chang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yijian Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Kaur J, Mirgane HA, Patil VS, Ahlawat GM, Bhosale SV, Singh PK. Expanding the scope of self-assembled supramolecular biosensors: a highly selective and sensitive enzyme-responsive AIE-based fluorescent biosensor for trypsin detection and inhibitor screening. J Mater Chem B 2024; 12:3786-3796. [PMID: 38546335 DOI: 10.1039/d4tb00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Trypsin, a pancreatic enzyme associated with diseases like pancreatic cancer and cystic fibrosis, requires effective diagnostic tools. Current detection systems seldom utilize macrocyclic molecules and tetraphenyl ethylene (TPE) derivative-based supramolecular assemblies, known for their biocompatibility and aggregation-induced emission (AIE) properties, for trypsin detection. This study presents an enzyme-responsive, AIE-based fluorescence 'Turn-On' sensing platform for trypsin detection, employing sulfated-β-cyclodextrin (S-βCD), an imidazolium derivative of TPE (TPE-IM), and protamine sulfate (PrS). The anionic S-βCD and cationic TPE-IM formed a strongly fluorescent supramolecular aggregation complex in an aqueous buffer. However, PrS suppresses fluorescence because of its strong binding affinity with S-βCD. The non-fluorescent TPE-IM/S-βCD/PrS supramolecular assembly system exhibits trypsin-responsive properties, as PrS is a known trypsin substrate. Trypsin restores fluorescence in the TPE-IM/S-βCD system through the enzymatic cleavage of PrS, correlating linearly with trypsin catalytic activity in the 0-10 nM concentration range. The limit of detection is 10 pM. This work contributes to the development of self-assembled supramolecular biosensors using charged TPE derivatives and β-cyclodextrin-based host-guest chemistry, offering an innovative fluorescence 'Turn-On' trypsin sensing platform. The sensing system is highly stable under various conditions, selective for trypsin, and demonstrates potential for biological analysis and disease diagnosis in human serum. Additionally, it shows promise for the screening of trypsin inhibitors.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- University Institute of Biotechnology, Chandigarh University, Panjab 140 413, India
| | - Harshad A Mirgane
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Vrushali S Patil
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- School of Nanoscience & Technology, Shivaji University Kolhapur, Vidya Nagar, Kolhapur 416004, Maharashtra, India
| | - Geetika M Ahlawat
- University Institute of Biotechnology, Chandigarh University, Panjab 140 413, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
3
|
Cui Z, Zhang Y, Zhang Z, Abudurexiti A, Yusuf A. Synthesis of an aggregation-induced emission-based fluorescent probe based on rupestonic acid. RSC Adv 2023; 13:25369-25378. [PMID: 37661955 PMCID: PMC10472508 DOI: 10.1039/d3ra03521b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Chinese herbal medicine and Chinese patent medicine have been widely applied for cancer care in China. Rupestonic acid, an active ingredient of Artemisia rupestris L., has recently been confirmed to have certain anti-tumor effects in vitro. In this study, we employed the application of a commonly devoted triphenylamine as a fluorophore and the addition of 2,4-thiazolidinedione as a bridge to integrate rupestonic acid into the AIE system to create an fluorescent probe with anti-tumor properties. The spectral, cytotoxic, and cellular imaging properties of the probe were measured. Its promising responses make possible the application of the probe in antitumor theragnostic systems.
Collapse
Affiliation(s)
- Zhichao Cui
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University Kashi 844000 China +86-18690293325
| | - Yucai Zhang
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University Kashi 844000 China +86-18690293325
| | - Zhonghui Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Adila Abudurexiti
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University Kashi 844000 China +86-18690293325
| | - Abdulla Yusuf
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University Kashi 844000 China +86-18690293325
| |
Collapse
|
4
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
5
|
Hong T, Cheng S, Zhong X, Zuo Y, Dong Y, Shi Z, Zhao Z. Novel fluorescent probe based on dicoumarin for detection of hydrogen sulfide in real samples. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tong Hong
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Song Cheng
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Xuefang Zhong
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Yiwei Zuo
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Yiming Dong
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Zhichuan Shi
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission Southwest Minzu University Chengdu PR China
| | - Zhigang Zhao
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission Southwest Minzu University Chengdu PR China
| |
Collapse
|
6
|
Barot YB, Anand V, Mishra R. AIE-active phenothiazine based Schiff-base for the selective sensing of the explosive picric acid in real water samples and paper-based device. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Gao F, Liu G, Qiao M, Li Y, Yi X. Biosensors for the Detection of Enzymes Based on Aggregation-Induced Emission. BIOSENSORS 2022; 12:bios12110953. [PMID: 36354464 PMCID: PMC9688369 DOI: 10.3390/bios12110953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 05/14/2023]
Abstract
Enzymes play a critical role in most complex biochemical processes. Some of them can be regarded as biomarkers for disease diagnosis. Taking advantage of aggregation-induced emission (AIE)-based biosensors, a series of fluorogens with AIE characteristics (AIEgens) have been designed and synthesized for the detection and imaging of enzymes. In this work, we summarized the advances in AIEgens-based probes and sensing platforms for the fluorescent detection of enzymes, including proteases, phosphatases, glycosidases, cholinesterases, telomerase and others. The AIEgens involve organic dyes and metal nanoclusters. This work provides valuable references for the design of novel AIE-based sensing platforms.
Collapse
Affiliation(s)
- Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence:
| |
Collapse
|
8
|
Assiri MA, Junaid HM, Waseem MT, Hamad A, Shah SH, Iqbal J, Rauf W, Shahzad SA. AIEE active sensors for fluorescence enhancement based detection of Ni2+ in living cells: Mechanofluorochromic and photochromic properties with reversible sensing of acid and base. Anal Chim Acta 2022; 1234:340516. [DOI: 10.1016/j.aca.2022.340516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/01/2022]
|
9
|
Cole MS, Hegde PV, Aldrich CC. β-Lactamase-Mediated Fragmentation: Historical Perspectives and Recent Advances in Diagnostics, Imaging, and Antibacterial Design. ACS Infect Dis 2022; 8:1992-2018. [PMID: 36048623 DOI: 10.1021/acsinfecdis.2c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The discovery of β-lactam (BL) antibiotics in the early 20th century represented a remarkable advancement in human medicine, allowing for the widespread treatment of infectious diseases that had plagued humanity throughout history. Yet, this triumph was followed closely by the emergence of β-lactamase (BLase), a bacterial weapon to destroy BLs. BLase production is a primary mechanism of resistance to BL antibiotics, and the spread of new homologues with expanded hydrolytic activity represents a pressing threat to global health. Nonetheless, researchers have developed strategies that take advantage of this defense mechanism, exploiting BLase activity in the creation of probes, diagnostic tools, and even novel antibiotics selective for resistant organisms. Early discoveries in the 1960s and 1970s demonstrating that certain BLs expel a leaving group upon BLase cleavage have spawned an entire field dedicated to employing this selective release mechanism, termed BLase-mediated fragmentation. Chemical probes have been developed for imaging and studying BLase-expressing organisms in the laboratory and diagnosing BL-resistant infections in the clinic. Perhaps most promising, new antibiotics have been developed that use BLase-mediated fragmentation to selectively release cytotoxic chemical "warheads" at the site of infection, reducing off-target effects and allowing for the repurposing of putative antibiotics against resistant organisms. This Review will provide some historical background to the emergence of this field and highlight some exciting recent reports that demonstrate the promise of this unique release mechanism.
Collapse
Affiliation(s)
- Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Pooja V Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Ji S, Lin M, Li Z, Xu L, Fu X, Chen G, Li Z, Sun J. Tunable Aggregation -Induced Emission Fluorophore with the Assistance of the Self -Assembly of Block Copolymers by Controlling the Morphology and Secondary Conformation for Bioimaging. Biomacromolecules 2022; 23:798-807. [PMID: 35041401 DOI: 10.1021/acs.biomac.1c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aggregation-induced emission (AIE) luminogens with highly tunable properties show great potential for many applications. In this study, we synthesized a new family of AIE-type poly(ethylene glycol)-block-poly(9-anthrylmethyl lysine) (PEG-b-PLys-An) diblock copolymers by taking advantage of amphiphilic self-assembly and rigid helical backbones. These copolymers can self-assemble into various assemblies through nanoprecipitation methods. The micelles using N,N-dimethylformamide (DMF) as a cosolvent present brighter fluorescence than the vesicles prepared from tetrahydrofuran (THF). We demonstrate that the decreased solubility of copolymers in DMF results in the formation of more compact micelles with more excimer formation during the self-assembly process, while better solvent THF favors the formation of vesicles with stretched core chains. In addition, the secondary conformation of the polypeptide block shows pronounced effects on the fluorescence property. We further show the internalization of the assemblies using two types of cells by cellular uptake experiments. By the delicate design of the block copolymer, we successfully prepare the morphology- and conformation-dependent AIE materials for potential biomedical applications.
Collapse
Affiliation(s)
- Sifan Ji
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zenghao Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lili Xu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Guo Y, Pan Y, Tang L. Progresses in Reactive Fluorescent Probes with Fused Aggregation- Induced Emission (AIE) and Excited State Intramolecular Proton Transfer (ESIPT) Structures. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Chen S, Xu J, Li Y, Peng B, Luo L, Feng H, Chen Z, Wang Z. Research Progress of Aggregation-Caused Quenching (ACQ) to Aggregation-Induced Emission (AIE) Transformation Based on Organic Small Molecules. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Bhalla V, Devi M, Sharma P, Kumar A, Kaur S, Kumar M. ESIPT Active Assemblies for 'On-On' Detection, Cell Imaging and Hampering Cellular Activity of 2, 6-dichloro-4-nitroaniline. Chem Asian J 2021; 17:e202101219. [PMID: 34942037 DOI: 10.1002/asia.202101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/19/2021] [Indexed: 11/05/2022]
Abstract
NIR-emissive ESIPT active PBI-keto/enol assemblies have been developed for the detection of 2, 6-dichloro-4-nitroaniline (DCN). These assemblies show 'on-on' optical response towards DCN due to combined ESIPT-AIEE phenomenon with a detection limit of 1.65 nM. The potential of PBI-keto/enol assemblies to detect DCN has also been explored in grapes juice/grape residue, and soil for six consecutive days. Further, the biological applications of PBI-keto/enol assemblies to detect DCN in blood serum and to image DCN in live cells and to restrict the DCN induced cell death has been demonstrated in MG-63 cell lines.
Collapse
Affiliation(s)
- Vandana Bhalla
- Guru Nanak Dev University, Amritsar, Chemistry, Assistant Professor, Department of Chemistry,, Guru Nanak Dev University, Amritsar, Punjab, 143005, AMRITSAR, INDIA
| | - Minakshi Devi
- Guru Nanak Dev University, Amritsar, Chemistry, INDIA
| | - Pooja Sharma
- Guru Nanak Dev University, Amritsar, Department of Chemistry, INDIA
| | - Ajay Kumar
- Guru Nanak Dev University, Amritsar, Botanical and Enviormental Sciences, INDIA
| | - Satwinderjeet Kaur
- Guru Nanak Dev University, Department of botanical and environmental sciences, INDIA
| | - Manoj Kumar
- Guru Nanak Dev University Department of Chemistry, Department of Chemistry, Amritsar, INDIA
| |
Collapse
|
14
|
Jing M, Zhang H, Li M, Mao Z, Shi X. Silver nanoparticle-decorated TiO 2 nanotube array for solid-phase microextraction and SERS detection of antibiotic residue in milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119652. [PMID: 33773431 DOI: 10.1016/j.saa.2021.119652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 05/25/2023]
Abstract
The excessive use or abuse of antibiotics on dairy cows leads to residues in milk, which can represent a public health risk. However, in recent years the β-Lactamase was illegally used to degrade residual antibiotics in milk, which makes the traditional antibiotic detection methods ineffective. Therefore, there is an extremely urgent need for multi-analyte analysis techniques for the detection of antibiotic residues. Herein, we reported an ultra-fast, facile, and sensitive solid-phase microextraction (SPME)-surface enhanced Raman scattering (SERS) platform for the detection of degraded antibiotics-2-mercapto-5-methyl-1,3,4-thiadiazole (MMT). The results showed that the log-log plot of SERS intensity to MMT concentration exhibits a superior linear relationship (R2 = 0.992) in the concentration range of 0.5-1000 μM, with a detection limit of 0.11 μM. The silver nanoparticle-decorated TiO2 nanotube array was successfully used as an all-in-one SPME-SERS substrate in the extraction and identification of the antibiotic degradation products in real milk. Due to the rapid pre-treatment, good reproducibility, and self-cleaning, the proposed SPME-SERS method has a great promise to be applied as a powerful tool for on-site detection in the field of food safety.
Collapse
Affiliation(s)
- Mengyu Jing
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hui Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Ming Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Zhu Mao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Xiumin Shi
- College of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
15
|
Gholap S, Yao C, Green O, Babjak M, Jakubec P, Malatinský T, Ihssen J, Wick L, Spitz U, Shabat D. Chemiluminescence Detection of Hydrogen Sulfide Release by β-Lactamase-Catalyzed β-Lactam Biodegradation: Unprecedented Pathway for Monitoring β-Lactam Antibiotic Bacterial Resistance. Bioconjug Chem 2021; 32:991-1000. [PMID: 33896185 PMCID: PMC8382227 DOI: 10.1021/acs.bioconjchem.1c00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Indexed: 12/20/2022]
Abstract
β-Lactamase positive bacteria represent a growing threat to human health because of their resistance to commonly used antibiotics. Therefore, development of new diagnostic methods for identification of β-lactamase positive bacteria is of high importance for monitoring the spread of antibiotic-resistant bacteria. Here, we report the discovery of a new biodegradation metabolite (H2S), generated through β-lactamase-catalyzed hydrolysis of β-lactam antibiotics. This discovery directed us to develop a distinct molecular technique for monitoring bacterial antibiotic resistance. The technique is based on a highly efficient chemiluminescence probe, designed for detection of the metabolite, hydrogen sulfide, that is released upon biodegradation of β-lactam by β-lactamases. Such an assay can directly indicate if antibiotic bacterial resistance exists for a certain examined β-lactam. The assay was successfully demonstrated for five different β-lactam antibiotics and eight β-lactam resistant bacterial strains. Importantly, in a functional bacterial assay, our chemiluminescence probe was able to clearly distinguish between a β-lactam resistant bacterial strain and a sensitive one. As far as we know, there is no previous documentation for such a biodegradation pathway of β-lactam antibiotics. Bearing in mind the data obtained in this study, we propose that hydrogen sulfide should be considered as an emerging β-lactam metabolite for detection of bacterial resistance.
Collapse
Affiliation(s)
- Sachin
Popat Gholap
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel
| | - Chunyan Yao
- Biosynth
Carbosynth, Rietlistrasse
4 Postfach 125 9422 Staad, Switzerland
| | - Ori Green
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel
| | - Matej Babjak
- Department
of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Pavol Jakubec
- Auchem
s.r.o., A. Hlinku 1452/3, 022 01 Čadca, Slovakia
| | | | - Julian Ihssen
- Biosynth
Carbosynth, Rietlistrasse
4 Postfach 125 9422 Staad, Switzerland
| | - Lukas Wick
- Biosynth
Carbosynth, Rietlistrasse
4 Postfach 125 9422 Staad, Switzerland
| | - Urs Spitz
- Biosynth
Carbosynth, Rietlistrasse
4 Postfach 125 9422 Staad, Switzerland
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 Israel
| |
Collapse
|
16
|
LU XL, HE W. Research Advances in Excited State Intramolecular Proton Transfer Fluorescent Probes Based on Combined Fluorescence Mechanism. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60078-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Li J, Zhang Y, Wang P, Yu L, An J, Deng G, Sun Y, Seung Kim J. Reactive oxygen species, thiols and enzymes activable AIEgens from single fluorescence imaging to multifunctional theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213559] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
The research progress of organic fluorescent probe applied in food and drinking water detection. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213557] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Tummala S, Huang W, Wu B, Chang K, Ho Y. Fluorescent Mesoporous Nanoparticles for β-Lactamase Screening Assays. ChemistryOpen 2020; 9:1074-1081. [PMID: 33117628 PMCID: PMC7582675 DOI: 10.1002/open.202000221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
We present a sensitive and rapid screening method for the determination of β-lactamase activity of antibiotic-resistant bacteria, by designing a pH-sensitive fluorescent dye-doped mesoporous silica nanoparticle encapsulated with penicillin G as a substrate. When penicillin G was hydrolysed by β-lactamase and converted into penicilloic acid, the acidic environment resulted in fluorescence quenching of the dye. The dye-doped mesoporous nanoparticles not only enhanced the β-lactamase-catalyzed reaction rate but also stablized the substrate, penicillin G, which degrades into penicilloic acid in a water solution without β-lactamase. Twentyfive clinical bacterial samples were tested and the antibiotic resistant and susceptible strains were identified. The proposed method may detect the presence of β -lactamases of clinically relevant samples in less than 1 hour. Moreover, the detection limit of β-lactamase activity was as low as 7.8×10-4 U/mL, which was determined within two hours.
Collapse
Affiliation(s)
- Srikrishna Tummala
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| | - Wei‐An Huang
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| | - Bo‐Hong Wu
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| | - Kai‐Chih Chang
- Department of Laboratory Medicine and BiotechnologyTzu Chi UniversityHualien970TaiwanRepublic of China
| | - Yen‐Peng Ho
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| |
Collapse
|
20
|
Huang X, Guo Q, Zhang R, Zhao Z, Leng Y, Lam JWY, Xiong Y, Tang BZ. AIEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Compr Rev Food Sci Food Saf 2020; 19:2297-2329. [PMID: 33337082 DOI: 10.1111/1541-4337.12591] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
As a global public health problem, food safety has attracted increasing concern. To minimize the risk exposure of food to harmful ingredients, food quality and safety inspection that covers the whole process of "from farm to fork" is much desired. Fluorescent sensing is a promising and powerful screening tool for sensing hazardous substances in food and thus plays a crucial role in promoting food safety assurance. However, traditional fluorphores generally suffer the problem of aggregation-caused quenching (ACQ) effect, which limit their application in food quality and safety inspection. In this regard, luminogens with aggregation-induced emission property (AIEgens) showed large potential in food analysis since AIEgens effectively surmount the ACQ effect with much better detection sensitivity, accuracy, and robustness. In this contribution, we review the latest developments of food safety monitoring by AIEgens, which will focus on the molecular design of AIEgens and their sensing principles. Several examples of AIE-based sensing applications for screening food contaminations are highlighted, and future perspectives and challenges in this emerging field are tentatively elaborated. We hope this review can motivate new research ideas and interest to aid food safety and quality control, and facilitate more collaborative endeavors to advance the state-of-the-art sensing developments and reduce actual translational gap between laboratory research and industrial production.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Qian Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Ruoyao Zhang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Zheng Zhao
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P. R. China.,School of Food Science and Technology, Nanchang University, Nanchang, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, the Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
21
|
Sathiyaraj M, Pavithra K, Thiagarajan V. Azine based AIEgens with multi-stimuli response towards picric acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj01324b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective detection of picric acid using AIEgens via fluorescence enhancement and quenching in the monomer and aggregated from respectively.
Collapse
|
22
|
Takashima I, Inoue Y, Matsumoto N, Takagi A, Okuda K. A fluorogenic probe using a catalytic reaction for the detection of trace intracellular zinc. Chem Commun (Camb) 2020; 56:13327-13330. [DOI: 10.1039/d0cc05315e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reaction-based fluorescent probe with cephem scaffold has been applied for signal amplification system to detect trace intracellular zinc.
Collapse
Affiliation(s)
- Ippei Takashima
- Laboratory of Bioorganic & Natural Products Chemistry
- Kobe Pharmaceutical University
- Kobe 658-8558
- Japan
| | - Yohei Inoue
- Laboratory of Bioorganic & Natural Products Chemistry
- Kobe Pharmaceutical University
- Kobe 658-8558
- Japan
| | | | - Akira Takagi
- Laboratory of Bioorganic & Natural Products Chemistry
- Kobe Pharmaceutical University
- Kobe 658-8558
- Japan
| | - Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry
- Kobe Pharmaceutical University
- Kobe 658-8558
- Japan
| |
Collapse
|
23
|
|
24
|
Bhattacharyya S, Chowdhury A, Saha R, Mukherjee PS. Multifunctional Self-Assembled Macrocycles with Enhanced Emission and Reversible Photochromic Behavior. Inorg Chem 2019; 58:3968-3981. [DOI: 10.1021/acs.inorgchem.9b00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|