1
|
Xie P, Liu J, Liao Z, Zhou Q, Sun J, Liu Z, Xiong H, Wan H. Profiling the differential phosphoproteome between breast milk and infant formula through a titanium (IV)-immobilized magnetic nanoplatform. Food Chem 2024; 464:141541. [PMID: 39395339 DOI: 10.1016/j.foodchem.2024.141541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Breast milk (BM) fulfills the nutritional needs of infants and sets the standard for infant formula (IF). However, profiling the differential phosphoproteome between BM and IF remains unclear. Herein, a titanium (IV) (Ti4+)-immobilized magnetic nanoplatform (Fe3O4@GO@PDA-Ti4+) was constructed by self-assembly polymerization of dopamine on magnetic graphene oxide, followed by immobilizing Ti4+ through chelation for phosphopeptide enrichment. Fe3O4@GO@PDA-Ti4+ possessed outstanding selectivity (1/1000, a molar ratio of β-casein digests to bovine serum albumin digests) and favorable sensitivity (2.5 fmol/μL), along with rapid magnetic separation. Excellent phosphopeptide capture efficiencies were obtained for BM and IF using Fe3O4@GO@PDA-Ti4+ as an adsorbent coupled with liquid chromatography-mass spectrometry/mass spectrometry. There were 191 and 239 phosphopeptides found in BM and IF, respectively, with 36 phosphoproteins identified in both. However, BM and IF shared only 17 phosphopeptides and 4 phosphoproteins. The variation in the phosphoproteome between BM and IF provides valuable insights into the optimization of IF humanization.
Collapse
Affiliation(s)
- Pengcheng Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jialiang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zonggao Liao
- Jiangxi Maternal and Child Health Hospital, Nanchang 330006, China
| | - Qi Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiajiu Sun
- Bouvé College of Health Sciences, Northeastern University, Boston 02115, USA
| | - Zheyi Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Huihuang Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Hao Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Yang J, Zhou S, Zheng H, Jia Q. Enrichment of phosphopeptides by arginine-functionalized magnetic chitosan nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1785-1792. [PMID: 38421231 DOI: 10.1039/d4ay00154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
One of the most crucial and prevalent post-translational modifications is the phosphorylation of proteins. The study and examination of protein phosphorylation hold immense importance in comprehending disease mechanisms and discovering novel biomarkers. However, the inherent low abundance, low ionization efficiency, and coexistence with non phosphopeptides seriously affect the direct analysis of phosphopeptides by mass spectrometry. In order to tackle these problems, it is necessary to carry out selective enrichment of phosphopeptides prior to conducting mass spectrometry analysis. Herein, magnetic chitosan nanoparticles were developed by incorporating arginine, and were then utilized for phosphopeptide enrichment. A tryptic digest of β-casein was chosen as the standard substance. After enrichment, combined with matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), the detection limit of the method was 0.4 fmol. The synthesized magnetic material demonstrated great potential in the detection of phosphopeptides in complex samples, as proven by its successful application in detecting phosphopeptides in skim milk and human saliva samples.
Collapse
Affiliation(s)
- Junwei Yang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Si Zhou
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Haijiao Zheng
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Li J, Li N, Hou Y, Fan M, Zhang Y, Zhang Q, Dang F. Facile fabrication of Ti 4+-immobilized magnetic nanoparticles by phase-transitioned lysozyme nanofilms for enrichment of phosphopeptides. Anal Bioanal Chem 2024; 416:1657-1665. [PMID: 38319356 DOI: 10.1007/s00216-024-05170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
In this study, titanium (IV)-immobilized magnetic nanoparticles (Ti4+-PTL-MNPs) were firstly synthesized via a one-step aqueous self-assembly of lysozyme nanofilms for efficient phosphopeptide enrichment. Under physiological conditions, lysozymes readily self-organized into phase-transitioned lysozyme (PTL) nanofilms on Fe3O4@SiO2 and Fe3O4@C MNP surfaces with abundant functional groups, including -NH2, -COOH, -OH, and -SH, which can be used as multiple linkers to efficiently chelate Ti4+. The obtained Ti4+-PTL-MNPs possessed high sensitivity of 0.01 fmol μL-1 and remarkable selectivity even at a mass ratio of β-casein to BSA as low as 1:400 for phosphopeptide enrichment. Furthermore, the synthesized Ti4+-PTL-MNPs can also selectively identify low-abundance phosphopeptides from extremely complicated human serum samples and their rapid separation, good reproducibility, and excellent recovery were also proven. This one-step self-assembly of PTL nanofilms facilitated the facile and efficient surface functionalization of various nanoparticles for proteomes/peptidomes.
Collapse
Affiliation(s)
- Jianru Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Yawen Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Miao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Yuxiu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Qiqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, 710119, China.
| |
Collapse
|
4
|
Zhang N, Huang T, Xie P, Yang Z, Zhang L, Wu X, Cai Z. Epitaxial Growth of Guanidyl-Functionalized Magnetic Metal-Organic Frameworks with Multiaffinity Sites for Selective Capture of Global Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39364-39374. [PMID: 35993677 DOI: 10.1021/acsami.2c10353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The flexible and controlled synthesis of metal-organic framework (MOF)-derived hybrid nanostructures is of great significance in fine tuning of their enrichment performance in large-scale and in-depth phosphoproteome analysis. Herein, a magnetic guanidyl-functionalized MOF hybrid coating with multiaffinity sites, denoted as Fe3O4@G-ZIF-8, was fast fabricated via a one-pot epitaxial growth strategy for the first time and applied for selective and highly efficient enrichment of global phosphopeptides. The intrinsic unsaturated metal sites of ZIF-8 endow the surface-mounted MOF coatings with immobilized metal ion affinity chromatography interaction with multiphosphorylated peptides. The oriented anchoring of bifunctional guanidineacetic acid on the magnetic MOF nanospheres provides additional affinity sites (guanidyl groups) for specific recognition of phosphopeptides by "salt bridge" interaction, as well as active site carboxyl groups for the coordination with the metal ions. The as-prepared Fe3O4@G-ZIF-8 exhibits large surface area (382.5 m2 g-1), good superparamagnetic property (41.6 emu g-1) and stability, and size-exclusion effect (1.73 nm), which can serve as a specific adsorbent for global phosphopeptide analysis with satisfactory selectivity, great detection sensitivity (1 fmol), and rapid magnetic separation. Moreover, the successful application of Fe3O4@G-ZIF-8 for selective capture of both multi- and mono-phosphopeptides from human saliva and serum demonstrated the great potential of magnetic surface-mounted MOF coatings in effective identification of low-abundance phosphopeptides by matrix-assisted laser desorption ionization time-of-flight mass spectrometry from complicated biological matrices.
Collapse
Affiliation(s)
- Ning Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Institute of Environmental and Analytical Science, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Ting Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, SAR, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, SAR, China
| | - Lan Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiaoping Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, SAR, China
| |
Collapse
|
5
|
Magnetic guanidyl-functionalized covalent organic framework composite: a platform for specific capture and isolation of phosphopeptides and exosomes. Mikrochim Acta 2022; 189:330. [PMID: 35969309 DOI: 10.1007/s00604-022-05394-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 10/15/2022]
Abstract
A guanidine-functionalized (GF) covalent organic framework (COF) nanocomposite has been developed by a post-synthetic approach for specific capture and separation of phosphopeptides and exosomes. The abundant binding sites on COF can immobilize a large number of gold nanoparticles (AuNPs), which can be used to react with amino groups to graft polyethyleneimine (PEI). Finally, Fe3O4@COF@Au@PEI-GF is obtained through the reaction of PEI and guanidyl group for phosphopeptides and exosomes detection. This composite shows a low detection limit (0.02 fmol), size exclusion effect (β-casein digests:Albumin from bovine serum protein = 1:10,000), good reusability (10 cycles), and high selectivity (β-casein digests:Albumin from bovine serum digests = 1:10,000). For complex biological sample, 4 phosphopeptides can be successfully identified from human serum. Furthermore, for the first time, we used guanidyl-functionalized probe to capture exosomes in human serum, providing a new method for enriching exosomes. The above experiments showed that Fe3O4@COF@Au@PEI-GF not only effectively enrich phosphopeptides and remove macromolecular proteins, but also successfully separate and capture exosomes. This demonstrates the great potential of this composite for the specific enrichment of phosphopeptides and isolation of exosomes.
Collapse
|
6
|
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022; 20:305. [PMID: 35761279 PMCID: PMC9235206 DOI: 10.1186/s12951-022-01510-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. These characteristics depend on many factors, such as the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and other. Since the pharmacokinetics depends on the resultant of the physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. Almost every year there are new reports on the results of studies on the pharmacokinetics of specific magnetic nanoparticles, thus it is very important to follow the achievements on this matter. This paper reviews the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge and technical aspects have been described.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland.
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland
| |
Collapse
|
7
|
Lv X, Jiao S, Wei Z, Cui C, Wang W, Tan Y, Pang G. Preparation of Core‐Shell Structured Magnetic Superhydrophilic Extractant for Enrichment of Phosphopeptides. ChemistrySelect 2022. [DOI: 10.1002/slct.202200821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyan Lv
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Shihui Jiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zhonglin Wei
- Department of Organic Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Canyu Cui
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Wenwen Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yumei Tan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Guangsheng Pang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
8
|
He Y, Huang W, Zheng Q, Huang H, Ouyang D, Zhang S, Yan X, Ji Y, Wu Y, Lin Z. Two-dimensional guanidinium-based covalent organic nanosheets for controllable recognition and specific enrichment of global/multi-phosphopeptides. Talanta 2021; 233:122497. [PMID: 34215115 DOI: 10.1016/j.talanta.2021.122497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/15/2022]
Abstract
Highly specific capture of phosphopeptides, especially multi-phosphopeptides, from complex biological samples is critical for comprehensive phosphoproteomic analysis, but it still poses great challenges due to the lack of affinity material with ideal enrichment efficiency. Here, two-dimensional (2D) covalent organic framework (COFs) nanosheets was applied for selective separation of phosphopeptides for the first time. Particularly, by incorporating guanidinium units, the 2D guanidinium-based COF nanosheets (denoted as TpTGCl CONs) exhibited controllable and specific enrichment performance towards global/multi-phosphopeptides. TpTGCl CONs was easy to prepare and showed large surface area, low steric hindrance, abundant accessible interaction sites and high chemical stability. Taking these merits together, TpTGCl CONs exhibited excellent efficiency for phosphopeptide enrichment, such as low detection limits (0.05 fmol μL-1 for global phosphopeptides and 0.1 fmol μL-1 for multi-phosphopeptides), high selectivity (1:5000 of molar ratios of β-casein/BSA for both global and multi-phosphopeptides), high adsorption capacity (100 mg g-1 for global phosphopeptides and 50 mg g-1 for multi-phosphopeptides). Furthermore, TpTGCl CONs could be reused due to the high chemical stability. In addition, TpTGCl CONs were successfully applied to controllable and specific capture of endogenous global/multi-phosphopeptides from human serum and human saliva, indicating its good potential in rapid and sensitive detection of biomarkers from biological fluid. Finally, rat liver protein digest was used to confirm the high specificity of TpTGCl CONs towards multi-phosphopeptides and demonstrated its potential as an ideal enrichment probe for comprehensive phosphoproteomic analysis.
Collapse
Affiliation(s)
- Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Weini Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiong Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xi Yan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yin Ji
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yijing Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
9
|
[Advances in enrichment of phosphorylated peptides and glycopeptides by smart polymer-based materials]. Se Pu 2021; 39:15-25. [PMID: 34227355 PMCID: PMC9274847 DOI: 10.3724/sp.j.1123.2020.05036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
翻译后修饰是蛋白质组学研究的前沿和重点,它不仅调节着蛋白质的折叠、状态、活性、定位以及蛋白质间的相互作用,也能帮助科学家更全面地了解生物体的生命过程,为疾病的预测、诊断和治疗提供更加强大的支撑和依据。翻译后修饰产物(例如磷酸化肽和糖肽)丰度很低,且存在着强烈的背景干扰,很难直接用质谱进行分析,因此迫切需要开发高效的富集材料和技术来选择性富集翻译后修饰产物。近年来,智能聚合物基材料通过外部物理、化学或生物刺激可逆地改变其结构和功能,实现对磷酸化肽和糖肽高度可控的吸附和脱附,进而衍生开发出一系列新颖的富集方法,极大地吸引研究者们的兴趣。一方面,智能聚合物基材料的响应变化包括材料疏水性的增加或减少、形状和形貌的改变、表面电荷的重新分布以及亲和配体的暴露或隐藏等特性。这些特性使得目标物和智能聚合物基材料之间的亲和力可以通过简单改变外部条件(如温度、pH值、溶剂极性和生物分子等)实现更可控和更智能的精细调节。另一方面,智能聚合物基材料为集成功能模块提供了便捷的可扩展平台,例如特定的识别组件,显著提高了目标物质的分离选择性。智能聚合物基材料在分离方面展现出巨大的潜力,这为蛋白质翻译后修饰产物的分析和研究带来了希望。围绕上述主题,该文依据Web of Science近20年来近50篇代表性文献,概述了智能聚合物基材料在磷酸化肽和糖肽分离及富集中的发展方向。
Collapse
|
10
|
Zheng H, Zhang J, Ma J, Jia Q. Engineering Magnetic Guanidyl-Functionalized Supramolecular Organic Framework for Efficient Enrichment of Global Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57468-57476. [PMID: 33295748 DOI: 10.1021/acsami.0c18803] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Comprehensive mass spectrometry-based proteomics analysis is currently available but remains challenging, especially for post-translational modifications of phosphorylated proteins. Herein, multifunctional magnetic pillar[5]arene supramolecular organic frameworks were fabricated and immobilized with arginine (mP5SOF-Arg) for highly effective enrichment of global phosphopeptides. The specific phosphate-P5/phosphate-guanidine affinities and large surface area with regular porosity contribute to the high enrichment capacity. By coupling with mass spectrometry, high detection sensitivity (0.1 fmol), excellent selectivity (1:5000 molar ratios of β-casein/cytochrome c), and high recyclability (seven cycles) were achieved for phosphopeptide analysis. mP5SOF-Arg can efficiently enrich phosphopeptides from practical samples, including defatted milk, egg yolk, and human saliva. Notably, a total of 450 phosphopeptides were explored for highly selective identification from A594 cells and 1445 phosphopeptides were identified from mouse liver tissue samples. mP5SOF-Arg exhibited great potential to serve as the basis for peptidomic research to identify phosphopeptides and provided insight for biomarker discovery.
Collapse
Affiliation(s)
- Haijiao Zheng
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jingchun Zhang
- China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
11
|
Glycocyamine functionalized magnetic layered double hydroxides with multiple affinity sites for trace phosphopeptides enrichment. Anal Chim Acta 2020; 1136:25-33. [DOI: 10.1016/j.aca.2020.07.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/13/2023]
|
12
|
Thawornpan P, Jumpathong W, Thanapongpichat S, Tansila N, Win Tun A, de Jong L, Buncherd H. Magnetic Fraction of Fly Ash as a Low-Cost Magnetic Adsorbent for Selective Capture of Phosphoproteins. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1825467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Watthanachai Jumpathong
- Program on Chemical Biology, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | - Natta Tansila
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Aung Win Tun
- Faculty of Graduate Studies, Mahidol University, Salaya, Thailand
| | - Luitzen de Jong
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
- Medical Science Research and Innovation Institute, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
13
|
Design of guanidyl-functionalized magnetic covalent organic framework for highly selective capture of endogenous phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122080. [DOI: 10.1016/j.jchromb.2020.122080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022]
|
14
|
Qiu W, Evans CA, Landels A, Pham TK, Wright PC. Phosphopeptide enrichment for phosphoproteomic analysis - A tutorial and review of novel materials. Anal Chim Acta 2020; 1129:158-180. [PMID: 32891386 DOI: 10.1016/j.aca.2020.04.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Significant technical advancements in phosphopeptide enrichment have enabled the identification of thousands of p-peptides (mono and multiply phosphorylated) in a single experiment. However, it is still not possible to enrich all p-peptide species in a single step. A range of new techniques and materials has been developed, with the potential to provide a step-change in phosphopeptide enrichment. The first half of this review contains a tutorial for new potential phosphoproteomic researchers; discussing the key steps of a typical phosphoproteomic experiment used to investigate canonical phosphorylation sites (serine, threonine and tyrosine). The latter half then show-cases the latest developments in p-peptide enrichment including: i) Strategies to mitigate non-specific binding in immobilized metal ion affinity chromatography and metal oxide affinity chromatography protocols; ii) Techniques to separate multiply phosphorylated peptides from monophosphorylated peptides (including canonical from non-canonical phosphorylated peptides), or to simultaneously co-enrich other post-translational modifications; iii) New hybrid materials and methods directed towards enhanced selectivity and efficiency of metal-based enrichment; iv) Novel materials that hold promise for enhanced phosphotyrosine enrichment. A combination of well-understood techniques and materials is much more effective than any technique in isolation; but the field of phosphoproteomics currently requires benchmarking of novel materials against current methodologies to fully evaluate their utility in peptide based proteoform analysis.
Collapse
Affiliation(s)
- Wen Qiu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Caroline A Evans
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Andrew Landels
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Trong Khoa Pham
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Phillip C Wright
- School of Engineering, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
15
|
Yang Q, Dong Y, Qiu Y, Yang X, Cao H, Wu Y. Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids Surf B Biointerfaces 2020; 191:111014. [PMID: 32325362 DOI: 10.1016/j.colsurfb.2020.111014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Magnetic materials have been widely used in bioseparation in recent years due to their good biocompatibility, magnetic properties, and high binding capacity. In this review, we provide a brief introduction on the preparation and bioseparation applications of magnetic materials including the synthesis and surface modification of magnetic nanoparticles as well as the preparation and applications of magnetic nanocomposites in the separation of proteins, peptides, cells, exosomes and blood. The current limitations and remaining challenges in the fabrication process of magnetic materials for bioseparation will be also detailed.
Collapse
Affiliation(s)
- Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China; Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yi Dong
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yong Qiu
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Xinzhou Yang
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Han Cao
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
16
|
Xiong F, Jiang L, Jia Q. Facile synthesis of guanidyl-based magnetic ionic covalent organic framework composites for selective enrichment of phosphopeptides. Anal Chim Acta 2020; 1099:103-110. [DOI: 10.1016/j.aca.2019.11.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/17/2019] [Accepted: 11/23/2019] [Indexed: 11/15/2022]
|
17
|
Specific enrichment of phosphopeptides by using magnetic nanocomposites of type Fe3O4@graphene oxide and Fe3O4@C coated with self-assembled oligopeptides. Mikrochim Acta 2020; 187:144. [DOI: 10.1007/s00604-019-4096-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022]
|
18
|
Yu L, Luo B, Li Z, He J, Lan F, Wu Y. PAMAM–PMAA brush-functionalized magnetic composite nanospheres: a smart nanoprobe with tunable selectivity for effective enrichment of mono-, multi-, or global phosphopeptides. J Mater Chem B 2020; 8:1266-1276. [DOI: 10.1039/c9tb02577d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel PAMAM–PMAA brush functionalized magnetic composite nanosphere was successfully prepared for selective enrichment of mono-, multi-, or global phosphopeptides by modulating buffer polarity and acidity.
Collapse
Affiliation(s)
- Lingzhu Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bin Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhiyu Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jia He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
19
|
Layer-by-layer assembled magnetic bimetallic metal-organic framework composite for global phosphopeptide enrichment. J Chromatogr A 2019; 1601:45-52. [DOI: 10.1016/j.chroma.2019.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
|
20
|
Zhang X, Lu Q, Chen C, Li X, Qing G, Sun T, Liang X. Smart polymers driven by multiple and tunable hydrogen bonds for intact phosphoprotein enrichment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:858-869. [PMID: 31497179 PMCID: PMC6720224 DOI: 10.1080/14686996.2019.1643259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 05/04/2023]
Abstract
Separation of phosphoproteins is essential for understanding their vital roles in biological processes and pathology. Transition metal-based receptors and antibodies, the routinely used materials for phosphoproteins enrichment, both suffer from low sensitivity, low recovery and coverage. In this work, a novel smart copolymer material was synthesized by modifying porous silica gel with a poly[(N-isopropylacrylamide-co-4-(3-acryloylthioureido) benzoic acid)0.35] (denoted as NIPAAm-co-ATBA0.35@SiO2). Driven by the hydrogen bonds complexation of ATBA monomers with phosphate groups, the copolymer-modified surface exhibited a remarkable adsorption toward native α-casein (a model phosphoprotein), accompanied with significant changes in surface viscoelasticity and roughness. Moreover, this adsorption was tunable and critically dependent on the polarity of carrier solvent. Benefiting from these features, selective enrichment of phosphoprotein was obtained using NIPAAm-co-ATBA0.35@SiO2 under a dispersive solid-phase extraction (dSPE) mode. This result displays a good potential of smart polymeric materials in phosphoprotein enrichment, which may facilitate top-down phosphoproteomics studies.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Qi Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China
- Research & Development Center, Jushi Group. Co., P. R. China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
21
|
Kip Ç, Tosun RB, Alpaslan S, Koçer İ, Çelik E, Tuncel A. Ni(II)-decorated porous titania microspheres as a stationary phase for column chromatography applications: Highly selective purification of hemoglobin from human blood. Talanta 2019; 200:100-106. [PMID: 31036162 DOI: 10.1016/j.talanta.2019.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
Titania (TiO2)-based monodisperse-porous stationary phase/sorbent was synthesized by decoration of Ni(II) ions onto TiO2 microspheres 4.2 µm in size, obtained by a staged-shape template hydrolysis and condensation protocol. Ni(II) ions were attached onto iminodiacetic acid-3-glycidoxypropyltrimethoxysilane (IDA-GPTMS) bound-titania microspheres by metal-chelate complex formation. The appropriate mean size, sufficiently high surface area and high porosity providing an appropriate column permeability make Ni(II)-decorated TiO2 microspheres a good sorbent/stationary phase for batch/continuous-column chromatography applications. Ni(II)-decorated TiO2 microspheres were investigated as a sorbent for purification of a typical histidine-rich protein, hemoglobin (Hb) via immobilized metal affinity chromatography (IMAC) in batch fashion, by including bovine serum albumin (BSA) as reference. The saturation capacities of batch adsorption runs performed with bovine Hb and BSA were determined as 137 ± 9 and 45 ± 3 mg/g, respectively. Human Hb with the purity of > 95% was recovered from whole blood by IMAC conducted in batch-fashion. Ni(II)-decorated microspheres were also evaluated as a stationary phase in a microfluidic-IMAC system, in which, human Hb was recovered from whole blood with a purity of 85%. The microfluidic-IMAC system constructed here, based on monodisperse-porous TiO2 microspheres, is a promising tool for genomics/proteomics applications involving isolation of valuable biomolecules from low-volume samples.
Collapse
Affiliation(s)
- Çiğdem Kip
- Hacettepe University, Chemical Engineering Department, Ankara 06800, Turkey
| | - Rukiye Babacan Tosun
- Hacettepe University, Institute of Science, Division of Nanotechnology and Nanomedicine, 06800 Ankara, Turkey
| | - Sezgi Alpaslan
- Hacettepe University, Chemical Engineering Department, Ankara 06800, Turkey
| | - İlkay Koçer
- Hacettepe University, Chemical Engineering Department, Ankara 06800, Turkey
| | - Eda Çelik
- Hacettepe University, Chemical Engineering Department, Ankara 06800, Turkey; Hacettepe University, Institute of Science, Division of Bioengineering, 06800 Ankara, Turkey
| | - Ali Tuncel
- Hacettepe University, Chemical Engineering Department, Ankara 06800, Turkey.
| |
Collapse
|