1
|
Bose S, Das SK. Biofilm Microenvironment-Sensitive Anti-Virulent and Immunomodulatory Nano-on-Nanodroplets to Combat Refractory Biofilm Infection Through Toxin Neutralization and Phagocytosis. Adv Healthc Mater 2024:e2403528. [PMID: 39449220 DOI: 10.1002/adhm.202403528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Biofilm-associated wound infection is principally perceived as the bacterial defense mechanism that hinders antibiotic penetration, causes toxin impairment, and suppresses the immunological responses of the host immune system. Several antibiofilm agents have been developed, but the least of these agents can simultaneously cornerstone on the biofilm-associated immunosuppression and bacterial toxin-induced cellular dysfunction. Inspired by the fusogenic property of nanodroplets and immunomodulatory functions of metal nanoparticles, biofilm targeted anti-virulent immunomodulatory cationic nanoparticle shelled nanodroplets (C-AgND) is fabricated to completely disintegrate and eradicate the Staphylococcus aureus (S. aureus) biofilm. The specific binding of C-AgND neutralizes the negatively charged EPS layer, causing their destabilization followed by penetration of the nanoformulation into the biofilm matrix, killing the persister cells. Consequently, C-AgND eliminates the virulence property of the S. aureus biofilm through α-hemolysin neutralization. C-AgND promotes a strong immunomodulatory effect by polarizing macrophages into their M1 phenotype to induce phagocytosis of the disintegrated biofilm-released residual cells, rejuvenating the host's innate immune responses for the complete eradication of the biofilm. Moreover, the ex vivo skin wound infection model illustrates an excellent biofilm eradication efficacy of C-AgND in comparison to the commercial ones, rendering them to be a promising replacement of existing antibiofilm agents in clinical application.
Collapse
Affiliation(s)
- Somashree Bose
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sujoy K Das
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Firdaus N, Altaf I, Iqubal Z, Sherwani OAK, Khan S, Kashif M, Kumar B, Owais M. Green synthesis of silver nanoparticles employing hamdard joshanda extract: putative antimicrobial potential against gram positive and gram negative bacteria. Biometals 2024; 37:389-403. [PMID: 38055071 DOI: 10.1007/s10534-023-00556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/21/2023] [Indexed: 12/07/2023]
Abstract
The bio-mediated synthesis of nanoparticles offers a sustainable and eco-friendly approach. In the present study, silver nanoparticles (AgNPs) were synthesized using Joshanda extract, a commercially available herbal formulation derived from a traditional medicinal plant, as a reducing and stabilizing agent. The as-synthesized AgNPs were characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), X-ray Diffraction (XRD) study, and Fourier-transform infrared (FTIR) analysis. UV-Vis spectroscopy exhibited a prominent absorption peak at 430 nm, confirming the formation of AgNPs. DLS analysis revealed the size distribution of the nanoparticles, ranging from 80 to 100 nm, and zeta potential measurements indicated a surface charge of - 14.4 mV. The XRD analysis provide evidence for the presence of a face-centered cubic structure within the silver nanoparticles. FTIR analysis further elucidated the interaction of bioactive compounds from the Joshanda extract with the AgNPs' surface. Strong peaks at 765-829 cm-1 indicated C-Cl stretching vibrations of alkyl halides, while the stretching of alkenes C=C was observed at 1641 cm-1. Moreover, the presence of alcohols and phenol (OH) groups was identified at 3448 cm-1, suggesting their involvement in nanoparticle stabilization. The antimicrobial potential of the synthesized AgNPs was evaluated against both gram-negative Pseudomonas aeruginosa and gram-positive Streptococcus mutans using zone of inhibition assays. The AgNPs exhibited remarkable inhibitory effects against both types of bacteria. Additionally, AgNPs-treated groups demonstrated a significant increase in reactive oxygen species (ROS) levels, indicating potential of as-synthesized AgNPs in disruption of the target microbial membranes. Furthermore, the as-synthesized AgNPs exhibited notable anti-biofilm properties by effectively hindering the development of mature biofilms. This study highlights the efficient green synthesis of AgNPs using Joshanda extract and also provides insights into their physico-chemical properties of as-synthesized nanoparticles. The demonstrated antimicrobial activity against both gram-negative and gram-positive bacteria, along with biofilm inhibition potential, underscores the promising applications of the as-synthesized AgNPs in the field of biomedical and environmental sciences. The study bridges traditional knowledge with contemporary nanotechnology, offering a novel avenue for the development of eco-friendly antimicrobial agents.
Collapse
Affiliation(s)
- Nikhat Firdaus
- Interdiciplinary Biotechnology Unit, AMU, Aligarh, India
| | - Ishrat Altaf
- Interdiciplinary Biotechnology Unit, AMU, Aligarh, India
| | - Zafar Iqubal
- Interdiciplinary Biotechnology Unit, AMU, Aligarh, India
| | | | | | - Mohd Kashif
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Bhupendra Kumar
- Center for Plant Molecular Biology and Biotechnology Division, CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Mohammad Owais
- Interdiciplinary Biotechnology Unit, AMU, Aligarh, India.
| |
Collapse
|
3
|
Bose S, Dahat Y, Kumar D, Haldar S, Das SK. A membrane targeted multifunctional cationic nanoparticle conjugated fusogenic nanoemulsion (CFusoN): induced membrane depolarization and lipid solubilization to accelerate the killing of Staphylococcus aureus. MATERIALS HORIZONS 2024; 11:661-679. [PMID: 37830433 DOI: 10.1039/d3mh01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Bacterial infections caused by Staphylococcus aureus are one of the growing concerns for human health care management globally. Antibiotic-associated adverse effects and the emergence of bacterial resistant strains necessitate the development of an alternative yet effective approach. Nanoemulsion-based therapy has emerged as a potential therapeutic strategy to combat bacterial infestation. Herein, we designed a cationic metal nanoparticle-conjugated fusogenic nanoemulsion (CFusoN) as a lipid solubilizing nanovesicle for the effective treatment of S. aureus infection with a killing efficiency of 99.999%. The cationic nanoparticle-conjugated nanoemulsion (viz. NECNP) (24.4 ± 2.9 mV) electrostatically bound with the negatively charged bacterial cell membrane (-10.2 ± 3.7 mV) causing alteration of the bacterial surface charge. The fluorometric and flow cytometry studies confirmed the bacterial membrane depolarization and altered cell membrane permeability leading to cell death. The atomic force microscopic studies further demonstrated the damage of the cellular ultrastructure, while the transmission electron microscopic image and membrane lipid solubilization analysis depicted the solubilization of the bacterial membrane lipid bilayer along with the leakage of the intracellular contents. The cell membrane fatty acid analysis revealed that the methyl esters of palmitic acid, stearic acid and octadecadienoic acid isomers were solubilized after the treatment of S. aureus with CFusoN. The bactericidal killing efficiency of CFusoN is proposed to occur through the synergistic efficacy of the targeted attachment of CNP to the bacterial cells along with the lipid solubilization property of NE. Interestingly, NECNP didn't elicit any in vitro hemolytic activity or cytotoxicity against red blood cells (RBCs) and L929 fibroblast cells, respectively, at its bactericidal concentration. Furthermore, a porcine skin wound infection model exhibited the enhanced wound cleansing potency of CFusoN in comparison to the commercially available wound cleansers. The obtained antibacterial activity, biocompatibility and skin wound disinfection efficacy of the NECNP demonstrated the formulation of a cell targeted CFusoN as a promising translatable strategy to combat bacterial infection.
Collapse
Affiliation(s)
- Somashree Bose
- Infectious Diseases and Immunology Division, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yogita Dahat
- Organic and Medicinal Chemistry, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division (ARDD), CSIR-North East Institute of Science and Technology (NEIST), NH37, Pulibor, Jorhat, Assam 785006, India
| | - Sujoy K Das
- Infectious Diseases and Immunology Division, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Marković K, Kesić A, Novaković M, Grujović M, Simijonović D, Avdović EH, Matić S, Paunović M, Milutinović M, Nikodijević D, Stefanović O, Marković Z. Biosynthesis and characterization of silver nanoparticles synthesized using extracts of Agrimonia eupatoria L. and in vitro and in vivo studies of potential medicinal applications. RSC Adv 2024; 14:4591-4606. [PMID: 38318620 PMCID: PMC10839552 DOI: 10.1039/d3ra07819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
This research explores the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) derived from acetone (AgNPs-acetone) and aqueous (AgNPs-H2O) extracts of Agrimonia eupatoria. The nanoparticles exhibit isometric morphology and uniform size distribution, as elucidated through Transmission Electron Microscopy (TEM) and high-resolution TEM (HRTEM) analyses. The utilization of Scanning Transmission Microscopy (STEM) with High-Angle Annular Dark-Field (HAADF) imaging and energy dispersive spectrometry (EDS) confirms the crystalline nature of AgNPs. Fourier Transform Infrared (FTIR) analysis reveals identical functional groups in the plant extracts and their corresponding AgNPs, suggesting the involvement of phytochemicals in the reduction of silver ions. Spectrophotometric monitoring of the synthesis process, influenced by various parameters, provides insights into the kinetics and optimal conditions for AgNP formation. The antioxidant activities of the plant extracts and synthesized AgNPs are evaluated through DPPH and ABTS methods, highlighting AgNPs-acetone as a potent antioxidant. Third-instar larvae exposed to the extracts have differential effects on DNA damage, with the acetone extract demonstrating antigenotoxic properties. Similarly, biosynthesized AgNPs-acetone displays antigenotoxic effects against EMS-induced DNA damage. The genotoxic effect of water extract and AgNPs-acetone was dose-dependent. Hemolytic potential is assessed on rat erythrocytes, revealing that low concentrations of AgNPs-acetone and AgNPs-H2O had a nontoxic effect on erythrocytes. Cytotoxicity assays demonstrate time-dependent and dose-dependent effects, with AgNPs-acetone exhibiting superior cytotoxicity. Proapoptotic activity is confirmed through apoptosis induction, emphasizing the potential therapeutic applications of AgNPs. The antimicrobial activity of AgNPs reveals concentration-dependent effects. AgNPs-H2O display better antibacterial activity, while antifungal activities are comparable between the two nanoparticle types.
Collapse
Affiliation(s)
- Katarina Marković
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Ana Kesić
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Mirjana Novaković
- University of Belgrade, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Department of Atomic Physics Belgrade Serbia
| | - Mirjana Grujović
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Edina H Avdović
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Sanja Matić
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| | - Milica Paunović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology Radoja Damjanovic 12 Kragujevac Serbia
| | - Milena Milutinović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology Radoja Damjanovic 12 Kragujevac Serbia
| | - Danijela Nikodijević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology Radoja Damjanovic 12 Kragujevac Serbia
| | - Olgica Stefanović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology Radoja Damjanovic 12 Kragujevac Serbia
| | - Zoran Marković
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijica bb 34000 Kragujevac Serbia
| |
Collapse
|
5
|
Qamer S, Che-Hamzah F, Misni N, Joseph NMS, Al-Haj NA, Amin-Nordin S. Deploying a Novel Approach to Prepare Silver Nanoparticle Bellamya bengalensis Extract Conjugate Coating on Orthopedic Implant Biomaterial Discs to Prevent Potential Biofilm Formation. Antibiotics (Basel) 2023; 12:1403. [PMID: 37760700 PMCID: PMC10526060 DOI: 10.3390/antibiotics12091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
This study is based on the premise of investigating antibacterial activity through a novel conjugate of silver nanoparticles (AgNPs) and antimicrobial peptides (AMPs) in line with a green synthesis approach by developing antimicrobial-coated implants to prevent bacterial resistance. The AMPs were obtained from Bellamya Bengalensis (BB), a freshwater snail, to prepare the nanocomposite conjugate, e.g., AgNPs@BB extract, by making use of UV-Visible spectroscopy. The antimicrobial assessment of AgNPs@BB extract conjugate was performed using the Resazurin Microtiter Assay Method (REMA), followed by the use of three biocompatible implant materials (titanium alloys, Ti 6AL-4V stainless steel 316L, and polyethylene). Finally, the coating was analyzed under confocal microscopy. The results revealed a significant reduction of biofilm formation on the surfaces of implants coated with conjugate (AgNPs@BB extract) in comparison to uncoated implants. For the MTT assay, no significant changes were recorded for the cells grown on the AgNPs/AMP++ sample in high concentrations. Staphylococcus epidermidis, however, showed more prominent growth on all implants in comparison to Staphylococcus aureus. It is evident from the results that Staphylococcus epidermidis is more susceptible to AgNPs@BB extract, while the minimum inhibitory concentration (MIC) value of AgNPs@BB extract conjugates and biosynthesized AgNPs was also on the higher side. This study indicates that AgNPs@BB extract carries antibacterial activity, and concludes that an excessive concentration of AgNPs@BB extract may affect the improved biocompatibility. This study recommends using robust, retentive, and antimicrobial coatings of AgNPs@BB extract for implantable biocompatible materials in accordance with the novel strategy of biomaterial applications.
Collapse
Affiliation(s)
- Shafqat Qamer
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia 43400, Selangor, Malaysia; (S.Q.); (N.M.); (N.M.S.J.)
| | - Fahrudin Che-Hamzah
- Orthopedic Department, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia 43400, Selangor, Malaysia;
| | - Norashiqin Misni
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia 43400, Selangor, Malaysia; (S.Q.); (N.M.); (N.M.S.J.)
| | - Narcisse M. S. Joseph
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia 43400, Selangor, Malaysia; (S.Q.); (N.M.); (N.M.S.J.)
| | - Nagi A. Al-Haj
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a 009671, Yemen;
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia 43400, Selangor, Malaysia; (S.Q.); (N.M.); (N.M.S.J.)
| |
Collapse
|
6
|
Zeng YJ, Wu XL, Yang HR, Zong MH, Lou WY. 1,4-α-Glucosidase from Fusarium solani for Controllable Biosynthesis of Silver Nanoparticles and Their Multifunctional Applications. Int J Mol Sci 2023; 24:ijms24065865. [PMID: 36982937 PMCID: PMC10057468 DOI: 10.3390/ijms24065865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
In the study, monodispersed silver nanoparticles (AgNPs) with an average diameter of 9.57 nm were efficiently and controllably biosynthesized by a reductase from Fusarium solani DO7 only in the presence of β-NADPH and polyvinyl pyrrolidone (PVP). The reductase responsible for AgNP formation in F. solani DO7 was further confirmed as 1,4-α-glucosidase. Meanwhile, based on the debate on the antibacterial mechanism of AgNPs, this study elucidated in further depth that antibacterial action of AgNPs was achieved by absorbing to the cell membrane and destabilizing the membrane, leading to cell death. Moreover, AgNPs could accelerate the catalytic reaction of 4-nitroaniline, and 86.9% of 4-nitroaniline was converted to p-phenylene diamine in only 20 min by AgNPs of controllable size and morphology. Our study highlights a simple, green, and cost-effective process for biosynthesizing AgNPs with uniform sizes and excellent antibacterial activity and catalytic reduction of 4-nitroaniline.
Collapse
Affiliation(s)
- Ying-Jie Zeng
- College of Food Science & Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiao-Ling Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Hui-Rong Yang
- College of Food Science & Technology, Southwest Minzu University, Chengdu 610041, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
7
|
Chinnasamy R, Chinnaperumal K, Venkatesan M, Jogikalmat K, Cherian T, Willie P, Malafaia G. Eco-friendly synthesis of Ag-NPs using Endostemon viscosus (Lamiaceae): Antibacterial, antioxidant, larvicidal, photocatalytic dye degradation activity and toxicity in zebrafish embryos. ENVIRONMENTAL RESEARCH 2023; 218:114946. [PMID: 36493805 DOI: 10.1016/j.envres.2022.114946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is a multidisciplinary area of study that has grown significantly in serving many functions and impacting human society. New fields of science have been facilitated by the clean, non-toxic, and biocompatible nature of plant-derived nanoparticles. The present study deals with the first green synthesis of silver nanoparticles (Ag-NPs) using Endostemon viscosus, and their synthesized Ag NPs were characterized by different spectral methods (UV-vis Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction Spectroscopy (XRD), Transmission Electron Microscopy (TEM) and Energy dispersive X-ray Spectroscopy (EDAX). The change initially observed the production of Ag-NPs in color from green to ash and then confirmed by SPR band at 435 nm in UV-vis spectral analysis. The FTIR findings indicate that many functional groups belong to the pharmaceutically useful phytochemicals, which interact as reducing, capping, and stabilizing agents in synthesizing silver nanoparticles. The predominant peaks in the XRD pattern belong to the planes 210°, 111°, 200°, 241°, and 311° and thus demonstrated the Ag-NPs FCC crystal structure. TEM analysis exhibited spherical-shaped particles with an average size of 13 nm, and the EDAX band showed a distinctive metallic silver peak at 3.0 keV. The antibacterial activity of Ag-NPs tested to show a maximum zone of inhibition of 19 mm for Staphylococcus aureus and 15 mm for Escherichia coli at 100 μg/mL, respectively. Bio-fabricated Ag-NPs were assessed for antioxidant activity (DPPH with % inhibition 57.54% and FRAP with % inhibition 70.89%). The biosynthesized Ag-NPs demonstrated potential larvicidal efficacy against Aedes aegypti with more than 90% at 250 μg/mL. Histological profiles were altered while treating with Ag-NPs at 250 μg/mL. The photocatalytic activity of synthesized E. viscosus Ag-NPs was tested against methylene blue (MB) and crystal violet (CV), and the maximum degradation efficiency was found as 90 and 94%, respectively. Furthermore, the toxicity test on zebrafish embryos demonstrated that aberrations have only been induced at concentrations higher than 500 μg/mL. We conclude that the greenly produced Ag-NPs may find use in biomedical applications based on bacteria and cost-effective industrial wastewater treatment.
Collapse
Affiliation(s)
- Ragavendran Chinnasamy
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, India
| | - Kamaraj Chinnaperumal
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - Manigandan Venkatesan
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Krithikadatta Jogikalmat
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, India
| | - Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair Campus, Brookshabad, Port Blair, Andamans, 744112, India
| | - Peijnenburg Willie
- Leiden University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
8
|
Development of Decellularized Fish Skin Scaffold Decorated with Biosynthesized Silver Nanoparticles for Accelerated Burn Wound Healing. Int J Biomater 2023; 2023:8541621. [PMID: 36760230 PMCID: PMC9904935 DOI: 10.1155/2023/8541621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, decellularized fish skin (DFS) scaffold decorated with silver nanoparticles was prepared for accelerating burn wound healing. The silver nanoparticles (AgNPs) synthesized by the green and facile method using Aloe vera leaf at different incubating times were characterized by using X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR) Spectroscopy, and Ultraviolet-Visible Spectroscopy (UV-Vis spectroscopy). The different characterizations confirmed that the sizes of AgNPs prepared by incubating for 6 hours and 12 hours were 29.1 nm and 35.2 nm, respectively. After that, the different concentrations of the smallest AgNPs were used to dope the DFS scaffold to determine the cell viability. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were used to correlate the concentration of AgNPs with its bactericidal effect which was seen from 50 μg/ml. Then, the toxicity with human cells was investigated using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay with no significant cell viability from the concentration of 50 μg/ml to 200 μg/ml compared to the cocultured and commercial treatments.
Collapse
|
9
|
Khodeer DM, Nasr AM, Swidan SA, Shabayek S, Khinkar RM, Aldurdunji MM, Ramadan MA, Badr JM. Characterization, antibacterial, antioxidant, antidiabetic, and anti-inflammatory activities of green synthesized silver nanoparticles using Phragmanthera austroarabica A. G. Mill and J. A. Nyberg extract. Front Microbiol 2023; 13:1078061. [PMID: 36687608 PMCID: PMC9849905 DOI: 10.3389/fmicb.2022.1078061] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Diabetes mellitus is a chronic metabolic disorder that exhibited great expansion all over the world. It is becoming an epidemic disease adding a major burden to the health care system, particularly in developing countries. Methods The plant under investigation in the current study Phragmanthera austroarabica A. G. Mill and J. A. Nyberg is traditionally used in Saudi Arabia for the treatment of diabetes mellitus. The methanolic extract (200 mg/kg) of the plant and pure gallic acid (40 mg/kg), a major metabolite of the plant, as well as their silver nanoparticle formulae (AgNPs) were evaluated for their antidiabetic activity. Results and Discussion The results showed a decrease in body fat, obesity, an improvement in lipid profiles, normalization of hyperglycemia, insulin resistance, and hyperinsulinemia, and an improvement in liver tissue structure and function. However, the results obtained from AgNPs for both extract and the pure gallic acid were better in most measured parameters. Additionally, the activity of both the crude extract of the plant and its AgNPs were evaluated against a number of gram-positive, gram-negative bacteria and fungi. Although the activity of the crude extract ranged from moderate to weak or even non-active, the AgNPs of the plant extract clearly enhanced the antimicrobial activity. AgNPs of the extract demonstrated remarkable activity, especially against the Gram-negative pathogens Proteus vulgaris (MIC 2.5 μg/ml) and Pseudomonas aeruginosa (MIC 5 μg/ml). Furthermore, a promising antimicrobial activity was shown against the Gram-positive pathogen Streptococcus mutants (MIC 1.25 μg/ml).
Collapse
Affiliation(s)
- Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt,*Correspondence: Dina M. Khodeer, ✉
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Shady A. Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt,The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Roaa M. Khinkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam A. Ramadan
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt,Jihan M. Badr, ✉
| |
Collapse
|
10
|
Vernet-Crua A, Cruz DM, Mostafavi E, Truong LB, Barabadi H, Cholula-Díaz JL, Guisbiers G, Webster TJ. Green-synthesized metallic nanoparticles for antimicrobial applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
11
|
Anitha S, Selvapriya R, Shankar R, Nalini B, Sasirekha V, Mayandi J. Evidence of charge donation through synergistic effect of bioconjugated silver nanoparticles with flavanols accomplishing augmented antimicrobial and antioxidant activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Ajose DJ, Abolarinwa TO, Oluwarinde BO, Montso PK, Fayemi OE, Aremu AO, Ateba CN. Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens. Biomedicines 2022; 10:2426. [PMID: 36289688 PMCID: PMC9599314 DOI: 10.3390/biomedicines10102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are regularly used in animal husbandry to treat diseases. This practice is beneficial to animals' health and helps ensure food security. However, the misuse of antibiotics, especially in food-producing animals, has resulted in the advent of antimicrobial resistance (AMR) and its dissemination among foodborne pathogens. The occurrence of AMR in bacteria pathogens that cause infections in animals and those associated with food spoilage is now considered a global health concern affecting humans, animals and the environment. The search for alternative antimicrobial agents has kindled the interest of many researchers. Among the alternatives, using plant-derived nanoparticles (PDNPs) for treating microbial dysfunctions in food-producing animals has gained significant attention. In traditional medicine, plant extracts are considered as safe, efficient and natural antibacterial agents for various animal diseases. Given the complexity of the AMR and concerns about issues at the interface of human health, animal health and the environment, it is important to emphasize the role of a One Health approach in addressing this problem. This review examines the potential of PDNPs as bio-control agents in food-producing animals, intending to provide consumers with microbiologically safe food while ensuring food safety and security, better health for animals and humans and a safe environment.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bukola Opeyemi Oluwarinde
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Adeyemi Oladapo Aremu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
13
|
Affiliation(s)
- Phuong Pham
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Susan Oliver
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
14
|
Flavonoid-based Polymeric Nanoparticles: A Promising Approach for Cancer and Diabetes Treatment. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Biogenic Synthesis of Silver Nanoparticle from Punica granatum L. and Evaluation of Its Antioxidant, Antimicrobial and Anti-biofilm Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Salatin S, Bazmani A, Shahi S, Naghili B, Memar MY, Dizaj SM. Antimicrobial benefits of flavonoids and their nanoformulations. Curr Pharm Des 2022; 28:1419-1432. [DOI: 10.2174/1381612828666220509151407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Nowadays, there is an urgent need to discover and develop long-term and effective antimicrobial and biofilm-inhibiting compounds. Employing combination therapies using novel drug delivery systems and also natural antimicrobial substances is a promising strategy in this field. Nanoparticles (NPs)-based materials have become well appreciated in recent times due to serve as antimicrobial agents or the carriers for promoting the bioavailability and effectiveness of antibiotics. Flavonoids belong to the promising groups of bioactive compounds abundantly found in fruits, vegetables, spices, and medicinal plants with strong antimicrobial features. Flavonoids and NPs have potential as alternatives to the conventional antimicrobial agents, both on their own as well as in combination. Different classes of flavonoid NPs may be particularly advantageous in handling microbial infections. The most important antimicrobial mechanisms of flavonoid NPs include oxidative stress induction, non-oxidative mechanisms, and metal ion release. However, the efficacy of flavonoid NPs against pathogens and drug-resistant pathogens changes according to their physicochemical characteristics as well as the particular structure of microbial cell wall and enzymatic composition. In this review, we provide an outlook on the antimicrobial mechanism of flavonoid-based NPs and the crucial factors that are involved.
Collapse
Affiliation(s)
- Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Ndayishimiye J, Kumeria T, Popat A, Falconer JR, Blaskovich MAT. Nanomaterials: The New Antimicrobial Magic Bullet. ACS Infect Dis 2022; 8:693-712. [PMID: 35343231 DOI: 10.1021/acsinfecdis.1c00660] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infections are a significant cause of mortality and morbidity worldwide, despite decades of use of numerous existing antibiotics and constant efforts by researchers to discover new antibiotics. The emergence of infections associated with antibiotic-resistant bacterial strains, has amplified the pressure to develop additional bactericidal therapies or new unorthodox approaches that can deal with antimicrobial resistance. Nanomaterial-based strategies, particularly those that do not rely on conventional small-molecule antibiotics, offer promise in part due to their ability to dodge existing mechanisms used by drug-resistant bacteria. Therefore, the use of nanomaterial-based formulations has attracted attention in the field of antibiotic therapy. In this Review, we highlight novel and emerging nanomaterial-based formulations along with details about the mechanisms by which nanoparticles can target bacterial infections and antimicrobial resistance. A detailed discussion about types and the activities of nanoparticles is presented, along with how they can be used as either delivery systems or as inherent antimicrobials, or a combination of both. Lastly, we highlight some toxicological concerns for the use of nanoparticles in antibiotic therapies.
Collapse
Affiliation(s)
- John Ndayishimiye
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Center for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amirali Popat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
18
|
Oliveira L, Arroyave M, Pistonesi MF, Fragoso W, Springer V. Capillary electrophoresis coupled to chemometrics for analysis of carbon dots in nanoparticles mixtures. Electrophoresis 2022; 43:901-908. [DOI: 10.1002/elps.202100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Levi Oliveira
- Grupo de Estudos Avançados em Química Analítica Department of Chemistry Federal University of Paraíba João Pessoa Brazil
| | - Manuel Arroyave
- INQUISUR Departamento de Química Universidad Nacional del Sur (UNS) ‐ CONICET Bahía Blanca Argentina
| | - Marcelo F. Pistonesi
- INQUISUR Departamento de Química Universidad Nacional del Sur (UNS) ‐ CONICET Bahía Blanca Argentina
| | - Wallace Fragoso
- Grupo de Estudos Avançados em Química Analítica Department of Chemistry Federal University of Paraíba João Pessoa Brazil
| | - Valeria Springer
- INQUISUR Departamento de Química Universidad Nacional del Sur (UNS) ‐ CONICET Bahía Blanca Argentina
| |
Collapse
|
19
|
Qiao ZP, Wang MY, Liu JF, Wang QZ. Green synthesis of silver nanoparticles using a novel endophytic fungus Letendraea sp. WZ07: Characterization and evaluation of antioxidant, antibacterial and catalytic activities (3-in-1 system). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
|
21
|
Tarassoli Z, Najjar R, Amani A. One-pot biosynthesis of silver nanoparticles using green tea plant extract/rosemary oil and investigation of their antibacterial activity. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zohreh Tarassoli
- Polymer Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Najjar
- Polymer Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Versace DL, Breloy L, Palierse E, Coradin T. Contributions of photochemistry to bio-based antibacterial polymer materials. J Mater Chem B 2021; 9:9624-9641. [PMID: 34807217 DOI: 10.1039/d1tb01801a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical site infections constitute a major health concern that may be addressed by conferring antibacterial properties to surgical tools and medical devices via functional coatings. Bio-sourced polymers are particularly well-suited to prepare such coatings as they are usually safe and can exhibit intrinsic antibacterial properties or serve as hosts for bactericidal agents. The goal of this Review is to highlight the unique contribution of photochemistry as a green and mild methodology for the development of such bio-based antibacterial materials. Photo-generation and photo-activation of bactericidal materials are illustrated. Recent efforts and current challenges to optimize the sustainability of the process, improve the safety of the materials and extend these strategies to 3D biomaterials are also emphasized.
Collapse
Affiliation(s)
- Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Estelle Palierse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France. .,Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), UMR 7197, 4 place Jussieu, 75005 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
23
|
Parandhaman T, Choudhary P, Ramalingam B, Schmidt M, Janardhanam S, Das SK. Antibacterial and Antibiofouling Activities of Antimicrobial Peptide-Functionalized Graphene-Silver Nanocomposites for the Inhibition and Disruption of Staphylococcus aureus Biofilms. ACS Biomater Sci Eng 2021; 7:5899-5917. [PMID: 34787388 DOI: 10.1021/acsbiomaterials.1c01253] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Owing to the emergence of antibiotic-resistant strains, bacterial infection and biofilm formation are growing concerns in healthcare management. Herein, we report an eco-benign strategy for the synthesis and functionalization of graphene-silver (rGOAg) nanocomposites with an antimicrobial peptide (AMP) for the treatment of Staphylococcus aureus infection. The synthesis of rGOAg nanocomposites was carried out by simple microwave reduction, and the as-synthesized rGOAg was covalently functionalized with an AMP. As a natural AMP, poly-l-lysine (PLL) functionalization of rGOAg enhanced the antibacterial efficacy and target specificity against the S. aureus biofilm. The robust bactericidal efficiency and biofilm disruption by AMP-functionalized rGOAg (designated as GAAP) occurred through the "contact-kill-release" mode of action, where the electrostatic interaction with bacterial cells together with intracellular ROS generation induced physical disruption to the cell membrane. The internalization of GAAP into the cytoplasm through the damaged cell membrane caused an outburst of intracellular proteins and DNA. Crystal violet staining along with fluorescence and confocal microscopic images showed an effective inhibition and disruption of the S. aureus biofilm upon treatment with GAAP. PLL functionalization also prevented the dissolution of Ag+ ions and thereby minimized the in vitro toxicity of GAAP to the 3 T6 fibroblast and human red blood cells. The ex vivo rat skin disinfection model further demonstrated the potency of GAAP in eliminating the biofilm formation and disruption of the S. aureus biofilm. The obtained results demonstrated a general approach for designing a functional nanocomposite material to disrupt the mature biofilm and provided a promising strategy for treating bacterial infection.
Collapse
Affiliation(s)
- Thanusu Parandhaman
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyadarshani Choudhary
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Baskaran Ramalingam
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Michael Schmidt
- Electron Microscopy Facility, Tyndall National Institute, University College Cork (UCC), Lee Maltings Complex, Dyke Parade, Cork T12 R5CP, Ireland
| | - Sridevi Janardhanam
- Centre for Analytical, Testing, Evaluation and Reporting Services, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Sujoy K Das
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Lamri M, Bhattacharya T, Boukid F, Chentir I, Dib AL, Das D, Djenane D, Gagaoua M. Nanotechnology as a Processing and Packaging Tool to Improve Meat Quality and Safety. Foods 2021; 10:2633. [PMID: 34828914 PMCID: PMC8623812 DOI: 10.3390/foods10112633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles are gaining momentum as a smart tool towards a safer, more cost-effective and sustainable food chain. This study aimed to provide an overview of the potential uses, preparation, properties, and applications of nanoparticles to process and preserve fresh meat and processed meat products. Nanoparticles can be used to reinforce the packaging material resulting in the improvement of sensory, functional, and nutritional aspects of meat and processed meat products. Further, these particles can be used in smart packaging as biosensors to extend the shelf-life of fresh and processed meat products and also to monitor the final quality of these products during the storage period. Nanoparticles are included in product formulation as carriers of health-beneficial and/or functional ingredients. They showed great efficiency in encapsulating bioactive ingredients and preserving their properties to ensure their functionality (e.g., antioxidant and antimicrobial) in meat products. As a result, nanoparticles can efficiently contribute to ensuring product safety and quality whilst reducing wastage and costs. Nevertheless, a wider implementation of nanotechnology in meat industry is highly related to its economic value, consumers' acceptance, and the regulatory framework. Being a novel technology, concerns over the toxicity of nanoparticles are still controversial and therefore efficient analytical tools are deemed crucial for the identification and quantification of nanocomponents in meat products. Thus, migration studies about nanoparticles from the packaging into meat and meat products are still a concern as it has implications for human health associated with their toxicity. Moreover, focused economic evaluations for implementing nanoparticles in meat packaging are crucial since the current literature is still scarce and targeted studies are needed before further industrial applications.
Collapse
Affiliation(s)
- Melisa Lamri
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, India;
| | - Fatma Boukid
- Food Safety and Functionality Programme, Institute of Agriculture and Food Research and Technology (IRTA), 17121 Monells, Spain;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agroressources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Amira Leila Dib
- GSPA Research Laboratory, Institut des Sciences Vétérinaires, Université Frères Mentouri Constantine 1, Constantine 25000 Algeria;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|
25
|
Al-Zahrani S, Astudillo-Calderón S, Pintos B, Pérez-Urria E, Manzanera JA, Martín L, Gomez-Garay A. Role of Synthetic Plant Extracts on the Production of Silver-Derived Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2021; 10:1671. [PMID: 34451715 PMCID: PMC8400420 DOI: 10.3390/plants10081671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/04/2023]
Abstract
The main antioxidants present in plant extracts-quercetin, β-carotene, gallic acid, ascorbic acid, hydroxybenzoic acid, caffeic acid, catechin and scopoletin-are able to synthesize silver nanoparticles when reacting with a Ag NO3 solution. The UV-visible absorption spectrum recorded with most of the antioxidants shows the characteristic surface plasmon resonance band of silver nanoparticles. Nanoparticles synthesised with ascorbic, hydroxybenzoic, caffeic, and gallic acids and scopoletin are spherical. Nanoparticles synthesised with quercetin are grouped together to form micellar structures. Nanoparticles synthesised by β-carotene, were triangular and polyhedral forms with truncated corners. Pentagonal nanoparticles were synthesized with catechin. We used Fourier-transform infrared spectroscopy to check that the biomolecules coat the synthesised silver nanoparticles. X-ray powder diffractograms showed the presence of silver, AgO, Ag2O, Ag3O4 and Ag2O3. Rod-like structures were obtained with quercetin and gallic acid and cookie-like structures in the nanoparticles obtained with scopoletin, as a consequence of their reactivity with cyanide. This analysis explained the role played by the various agents responsible for the bio-reduction triggered by nanoparticle synthesis in their shape, size and activity. This will facilitate targeted synthesis and the application of biotechnological techniques to optimise the green synthesis of nanoparticles.
Collapse
Affiliation(s)
- Sabah Al-Zahrani
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| | - Sergio Astudillo-Calderón
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| | - Beatriz Pintos
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| | - Elena Pérez-Urria
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| | - José Antonio Manzanera
- Research Group FiVe-A, College of Forestry and Natural Environment, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Luisa Martín
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| | - Arancha Gomez-Garay
- Research Group FiVe-A, Plant Physiology Unit, Faculty of Biology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (S.A.-Z.); (S.A.-C.); (B.P.); (E.P.-U.); (L.M.)
| |
Collapse
|
26
|
Barabadi H, Mojab F, Vahidi H, Marashi B, Talank N, Hosseini O, Saravanan M. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108647] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Li M, Lan X, Han X, Shi S, Sun H, Kang Y, Dan J, Sun J, Zhang W, Wang J. Acid-Induced Self-Catalyzing Platform Based on Dextran-Coated Copper Peroxide Nanoaggregates for Biofilm Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29269-29280. [PMID: 34143595 DOI: 10.1021/acsami.1c03409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoantibacterial agents based on catalytic activity were limited due to the low levels of endogenous H2O2 in the microenvironment of bacterial biofilms. However, the additional H2O2 will trigger more side effects to healthy surroundings, which is still a great challenge. Herein, we report an acid-induced self-catalyzing platform based on dextran-coated copper peroxide nanoaggregates (DCPNAs) for antibiofilm and local infection therapy applications. The dextran-functionalized DCPNAs were mediated and conveniently purified via a dextran and ethanol precipitation method, which can also cluster nanodots into nanoaggregates and show good penetrability as well as biocompatibility. Bacterial biofilms were inhibited and destroyed by the reactive oxygen species generated from the Fenton reaction between the Cu2+ and H2O2 released from DCPNAs in an acidic environment, which did not require additional H2O2. As expected, the DCPNAs exhibit low cytotoxicity and excellent acid-induced antibacterial and antibiofilm ability. Moreover, the DCPNAs realized great therapeutic outcomes in the application for in vivo wound healing. The overall excellent properties associated with the DCPNAs highlight that they could be considered as a kind of ideal antimicrobial agents for microbial biofilm infection treatment.
Collapse
Affiliation(s)
- Min Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ximei Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
28
|
Barabadi H, Mohammadzadeh A, Vahidi H, Rashedi M, Saravanan M, Talank N, Alizadeh A. Penicillium chrysogenum-Derived Silver Nanoparticles: Exploration of Their Antibacterial and Biofilm Inhibitory Activity Against the Standard and Pathogenic Acinetobacter baumannii Compared to Tetracycline. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02121-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Kumar S, Basumatary IB, Sudhani HP, Bajpai VK, Chen L, Shukla S, Mukherjee A. Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Material, antibacterial and anticancer properties of natural polyphenols incorporated soy protein isolate: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110494] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Nag S, Biswas A, Chattopadhyay D, Bhattacharyya M. Protein-stabilized silver nanoparticles encapsulating gentamycin for the therapy of bacterial biofilm infections. Nanomedicine (Lond) 2021; 16:801-818. [PMID: 33900109 DOI: 10.2217/nnm-2020-0451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: An antibiotic-conjugated protein-stabilized nanoparticle hybrid system was developed to combat the challenges faced during the treatment of drug-resistant bacterial biofilm-associated infections. Materials & methods: Biocompatible silver nanoparticles were synthesized using intracellular protein and gentamycin was attached. The resulting nanohybrid was characterized and its antibacterial efficiency was assessed against Gram-positive, Gram-negative and drug-resistant bacteria. Results: Spectroscopic and electron microscopic analysis revealed that the nanoparticles were spherical with a diameter of 2-6 nm. Red-shifting of the surface plasmon peak and an increase in hydrodynamic diameter confirmed attachment of gentamycin. The nanohybrid exhibited antibacterial efficiency against a range of bacteria with the ability to inhibit and disrupt bacterial biofilm. Conclusion: A unique nanohybrid was designed that has potential to be used to control drug-resistant bacterial infections in the future.
Collapse
Affiliation(s)
- Sudip Nag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Arpita Biswas
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | | | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.,Jagadis Bose National Science Talent Search, 1300 Rajdanga Main Road, Kolkata, 700107, India
| |
Collapse
|
32
|
Namivandi-Zangeneh R, Wong EHH, Boyer C. Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infect Dis 2021; 7:215-253. [PMID: 33433995 DOI: 10.1021/acsinfecdis.0c00635] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance is a critical global healthcare issue that urgently needs new effective solutions. While small molecule antibiotics have been safeguarding us for nearly a century since the discovery of penicillin by Alexander Fleming, the emergence of a new class of antimicrobials in the form of synthetic antimicrobial polymers, which was driven by the advances in controlled polymerization techniques and the desire to mimic naturally occurring antimicrobial peptides, could play a key role in fighting multidrug resistant bacteria in the near future. By harnessing the ability to control chemical and structural properties of polymers almost at will, synthetic antimicrobial polymers can be strategically utilized in combination therapy with various antimicrobial coagents in different formats to yield more potent (synergistic) outcomes. In this review, we present a short summary of the different combination therapies involving synthetic antimicrobial polymers, focusing on their combinations with nitric oxide, antibiotics, essential oils, and metal- and carbon-based inorganics.
Collapse
Affiliation(s)
- Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
33
|
da S. Fernandes DG, Andrade VB, Lucena LN, Ambrosio FN, de Souza ALM, Batista BL, Rolim WR, Seabra AB, Lombello CB, da Silva FD, Garcia W. Cytotoxicity and Antimicrobial Properties of Photosynthesized Silver Chloride Nanoparticles Using Plant Extract from Stryphnodendron adstringens (Martius) Coville. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02011-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Mao K, Zhu Y, Rong J, Qiu F, Chen H, Xu J, Yang D, Zhang T, Zhong L. Rugby-ball like Ag modified zirconium porphyrin metal–organic frameworks nanohybrid for antimicrobial activity: Synergistic effect for significantly enhancing photoactivation capacity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Mutlu S, Metin E, Aydin Yuksel S, Bayrak U, Nuhoglu C, Arsu N. In-situ photochemical synthesis and dielectric properties of nanocomposite thin films containing Au, Ag and MnO nanoparticles. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Oliver S, Pham TTP, Li Y, Xu FJ, Boyer C. More than skin deep: using polymers to facilitate topical delivery of nitric oxide. Biomater Sci 2021; 9:391-405. [PMID: 32856653 DOI: 10.1039/d0bm01197e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin, the largest organ in the human body, provides several important functions, including providing protection from mechanical impacts, micro-organisms, radiation and chemicals; regulation of body temperature; the sensations of touch and temperature; and the synthesis of several substances including vitamin D, melanin, and keratin. Common dermatological disorders (CDDs) include inflammatory or immune-mediated skin diseases, skin infection, skin cancer, and wounds. In the treatment of skin disorders, topical administration has advantages over other routes of administration, and polymers are widely used as vehicles to facilitate the delivery of topical therapeutic agents, serving as matrices to keep therapeutic agents in contact with the skin. Nitric oxide (NO), a cellular signalling molecule, has attracted significant interest in treating a broad spectrum of diseases, including various skin disorders. However, there are a number of challenges in effectively delivering NO. It must be delivered in a controlled manner at sufficient concentrations to be efficacious and the delivery system must be stable during storage. The use of polymer-based systems to deliver NO topically can be an effective strategy to overcome these challenges. There are three main approaches for incorporating NO with polymers in topical delivery systems: (i) physical incorporation of NO donors into polymer bases; (ii) covalent attachment of NO donors to polymers; and (iii) encapsulation of NO donors in polymer-based particles. The latter two approaches provide the greatest control over NO release and have been used by numerous researchers in treating CDDs, including chronic wounds and skin cancer.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Thi Thu Phuong Pham
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| |
Collapse
|
37
|
Facile Synthesis of Long-Term Stable Silver Nanoparticles by Kaempferol and Their Enhanced Antibacterial Activity Against Escherichia coli and Staphylococcus aureus. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01874-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Wu S, Lei L, Xia Y, Oliver S, Chen X, Boyer C, Nie Z, Shi S. PNIPAM-immobilized gold-nanoparticles with colorimetric temperature-sensing and reusable temperature-switchable catalysis properties. Polym Chem 2021. [DOI: 10.1039/d1py01180d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature-responsive core–shell hybrid nanoparticles PNIPAMs-AuNP have dual-functional applications as colorimetric temperature-sensors and reusable temperature-switchable catalysts.
Collapse
Affiliation(s)
- Si Wu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Lei
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuzheng Xia
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Susan Oliver
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaonong Chen
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zhiyong Nie
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shuxian Shi
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Phuong PT, Oliver S, He J, Wong EHH, Mathers RT, Boyer C. Effect of Hydrophobic Groups on Antimicrobial and Hemolytic Activity: Developing a Predictive Tool for Ternary Antimicrobial Polymers. Biomacromolecules 2020; 21:5241-5255. [DOI: 10.1021/acs.biomac.0c01320] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pham Thu Phuong
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Susan Oliver
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Junchen He
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert T. Mathers
- Department of Chemistry, Penn State University, New Kensington, Pennsylvania 15068, United States
| | - Cyrille Boyer
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
40
|
Hyaluronic acid and antimicrobial peptide-modified gold/silver hybrid nanocages to combat bacterial multidrug resistance. Int J Pharm 2020; 586:119505. [DOI: 10.1016/j.ijpharm.2020.119505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 01/20/2023]
|
41
|
Kalirajan C, Palanisamy T. Bioengineered Hybrid Collagen Scaffold Tethered with Silver-Catechin Nanocomposite Modulates Angiogenesis and TGF-β Toward Scarless Healing in Chronic Deep Second Degree Infected Burns. Adv Healthc Mater 2020; 9:e2000247. [PMID: 32378364 DOI: 10.1002/adhm.202000247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Management of burn wounds with diabetes and microbial infection is challenging in tissue engineering. The delayed wound healing further leads to scar formation in severe burn injury. Herein, a silver-catechin nanocomposite tethered collagen scaffold with angiogenic and antibacterial properties is developed to enable scarless healing in chronic wounds infected with Pseudomonas aeruginosa under diabetic conditions. Histological observations of the granulation tissues collected from an experimental rat model show characteristic structural organizations similar to normal skin, whereas the open wound and pristine collagen scaffold treated animals display elevated dermis with thick epidermal layer and lack of appendages. Epidermal thickness of the hybrid scaffold treated diabetic animals is lowered to 33 ± 2 µm compared to 90 ± 2 µm for pristine collagen scaffold treated groups. Further, the scar elevation index of 1.3 ± 0.1 estimated for the bioengineered scaffold treated diabetic animals is closer to the normal skin. Immunohistochemical analyses provide compelling evidence for the enhanced angiogenesis as well as downregulated transforming growth factor- β1 (TGF-β1) and upregulated TGF-β3 expressions in the hybrid scaffold treated animal groups. The insights from this study endorse the bioengineered collagen scaffolds for applications in tissue regeneration without scar in chronic burn wounds.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Advanced Materials LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research) Adyar Chennai 600020 India
- University of Madras Chepauk Chennai 600005 India
| | - Thanikaivelan Palanisamy
- Advanced Materials LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research) Adyar Chennai 600020 India
- University of Madras Chepauk Chennai 600005 India
| |
Collapse
|
42
|
Cao C, Ge W, Yin J, Yang D, Wang W, Song X, Hu Y, Yin J, Dong X. Mesoporous Silica Supported Silver-Bismuth Nanoparticles as Photothermal Agents for Skin Infection Synergistic Antibacterial Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000436. [PMID: 32406205 DOI: 10.1002/smll.202000436] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 05/22/2023]
Abstract
The emergence of multidrug resistant bacteria has resulted in plenty of stubborn nosocomial infections and severely threatens human health. Developing novel bactericide and therapeutic strategy is urgently needed. Herein, mesoporous silica supported silver-bismuth nanoparticles (Ag-Bi@SiO2 NPs) are constructed for synergistic antibacterial therapy. In vitro experiments indicate that the hyperthermia originating from Bi NPs can disrupt cell integrity and accelerate the Ag ions release, further exhibiting an excellent antibacterial performance toward methicillin-resistant Staphylococcus aureus (MRSA). Besides, under laser irradiation, Ag-Bi@SiO2 NPs at 100 µg mL-1 can effectively obliterate mature MRSA biofilm and cause a 69.5% decrease in the biomass, showing a better therapeutic effect than Bi@SiO2 NPs with laser (26.8%) or Ag-Bi@SiO2 NPs without laser treatment (30.8%) groups. More importantly, in vivo results confirm that ≈95.4% of bacteria in abscess are killed and the abscess ablation is accelerated using the Ag-Bi@SiO2 NPs antibacterial platform. Therefore, Ag-Bi@SiO2 NPs with photothermal-enhanced antibacterial activity are a potential nano-antibacterial agent for the treatment of skin infections.
Collapse
Affiliation(s)
- Changyu Cao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Wei Ge
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Jiajia Yin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Yanling Hu
- Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jie Yin
- Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
43
|
Eichhornia crassipes Mediated Bioinspired Synthesis of Crystalline Nano Silver as an Integrated Medicinal Material: A Waste to Value Approach. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01797-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Vimala RTV, Lija Escaline J, Sivaramakrishnan S. Characterization of self-assembled bioflocculant from the microbial consortium and its applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110000. [PMID: 31929048 DOI: 10.1016/j.jenvman.2019.110000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/17/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Bioflocculant has been recently exploited in various research activities. In this research, we report for the first time that a novel bioflocculant can self-assemble into nanoparticles with an irregular structure in solution. Bioflocculant has been developed from novel consortium encompassing Enterococcus faecalis, Proteus mirabilis, Lysini bacillus sp., inoculated into the modified medium such as hydrolyzed wheat bran and rice bran extract. Characterization of bioflocculant shows that it is made up of mannose, fructose, raffinose, and galactose with a slightly negative charges. They are further characterized by FTIR and XPS. 3D-EEM and MALDITOF-MS are confirmed the proteoglycan nature of the bioflocculant. These bioflocculant not only exhibits greater biosorption of heavy metals by self-flocculating (or) self-aggregating activity, but also possesses mosquitocidal and anti-biofilm activity due to its cell surface modification. Further research have to be carried out regarding the mechanism of self-assembly nature of bioflocculant into nanoparticle in solution which provide a new path for bioremediation and biomedical application.
Collapse
Affiliation(s)
- R T V Vimala
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - J Lija Escaline
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - S Sivaramakrishnan
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
45
|
Bai S, Li X, Zhao Y, Ren L, Yuan X. Antifogging/Antibacterial Coatings Constructed by N-Hydroxyethylacrylamide and Quaternary Ammonium-Containing Copolymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12305-12316. [PMID: 32068389 DOI: 10.1021/acsami.9b21871] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Endoscopic surgery has gained widespread applications in various clinical departments, and endoscope surfaces with antifogging and antibacterial properties are essential for elaborate procedures. In this work, novel antifogging/antibacterial coatings were developed from a cationic copolymer and a hydrophilic copolymer, polyhedral oligomeric silsesquioxane-poly(quaternary ammonium compound-co-2-aminoethyl methacrylate hydrochloride) [POSS-P(QAC-co-AEMA)] and poly(N-hydroxyethylacrylamide-co-glycidyl methacrylate) [P(HEAA-co-GMA)] via a facile and green blending method. Such transparent coatings showed excellent antifogging performance under both in vitro and in vivo fogging conditions, mainly attributed to the high water-absorbing capability of HEAA and QAC. Antibacterial assays proved that the blending coatings had a superior antibacterial property, which could be improved with the proportion of POSS-P(QAC-co-AEMA) because of the bactericidal efficiency of cationic QAC. Meanwhile, owing to the high hydratability of HEAA, the blending coatings exhibited a bacteria-repelling property. By simply tuning the blending ratio of POSS-P(QAC-co-AEMA) and P(HEAA-co-GMA), the comprehensive bacteria-killing and bacteria-repelling properties of the coatings were achieved. Moreover, after incubating with red blood cells, the prepared blending coatings presented a lower hemolytic rate of less than 5%. The findings provided a potential means for addressing the challenge of fogging and bacterial contamination occurring in endoscopic lenses and other medical devices.
Collapse
Affiliation(s)
- Shan Bai
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaohui Li
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Lixia Ren
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
46
|
Yang Y, Wu X, He C, Huang J, Yin S, Zhou M, Ma L, Zhao W, Qiu L, Cheng C, Zhao C. Metal–Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13698-13708. [PMID: 32129070 DOI: 10.1021/acsami.0c01666] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianbo Huang
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqi Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lang Ma
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li Qiu
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
47
|
Majumdar M, Khan SA, Biswas SC, Roy DN, Panja AS, Misra TK. In vitro and in silico investigation of anti-biofilm activity of Citrus macroptera fruit extract mediated silver nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112586] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Huang J, Liu J, Wang J. Optical properties of biomass-derived nanomaterials for sensing, catalytic, biomedical and environmental applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115800] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Latos-Brozio M, Masek A. Structure-Activity Relationships Analysis of Monomeric and Polymeric Polyphenols (Quercetin, Rutin and Catechin) Obtained by Various Polymerization Methods. Chem Biodivers 2019; 16:e1900426. [PMID: 31657102 DOI: 10.1002/cbdv.201900426] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023]
Abstract
Plant polyphenols, especially flavonoids, are active and pro-health substances found in fruits and vegetables. Quercetin and its glycoside rutin are representatives of flavonoids, commonly found in plant products. Catechins found in large quantities in tea are also a well-known group of natural polyphenols. These compounds are based on the structure of flavan-3-ol, which is why the number, positions and types of substitutions affect the scavenging of radicals and other properties. Despite some inconsistent evidence, several structure-activity relationships of monomeric flavonoids are well established in vitro. However, the relationships between the activity and other properties of the polymeric forms of flavonoids and their structures are poorly understood so far. The aim of this article is to compare the data on polymerization of quercetin, rutin and catechin, as well as to systematize knowledge about the structure-activity relationship of the polymeric forms of these compounds.
Collapse
Affiliation(s)
- Malgorzata Latos-Brozio
- Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye Technology, 90-924, Lodz, Stefanowskiego 12/16, Poland
| | - Anna Masek
- Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye Technology, 90-924, Lodz, Stefanowskiego 12/16, Poland
| |
Collapse
|
50
|
Role of Bacterial Bioflocculant on Antibiofilm Activity and Metal Removal Efficiency. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|