1
|
Lou Y, Palermo EF. Dynamic Antimicrobial Poly(disulfide) Coatings Exfoliate Biofilms On Demand Via Triggered Depolymerization. Adv Healthc Mater 2024; 13:e2303359. [PMID: 38288658 DOI: 10.1002/adhm.202303359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 02/13/2024]
Abstract
Bacterial biofilms are notoriously problematic in applications ranging from biomedical implants to ship hulls. Cationic, amphiphilic antibacterial surface coatings delay the onset of biofilm formation by killing microbes on contact, but they lose effectiveness over time due to non-specific binding of biomass and biofilm formation. Harsh treatment methods are required to forcibly expel the biomass and regenerate a clean surface. Here, a simple, dynamically reversible method of polymer surface coating that enables both chemical killing on contact, and on-demand mechanical delamination of surface-bound biofilms, by triggered depolymerization of the underlying antimicrobial coating layer, is developed. Antimicrobial polymer derivatives based on α-lipoic acid (LA) undergo dynamic and reversible polymerization into polydisulfides functionalized with biocidal quaternary ammonium salt groups. These coatings kill >99.9% of Staphylococcus aureus cells, repeatedly for 15 cycles without loss of activity, for moderate microbial challenges (≈105 colony-forming units (CFU) mL-1, 1 h), but they ultimately foul under intense challenges (≈107 CFU mL-1, 5 days). The attached biofilms are then exfoliated from the polymer surface by UV-triggered degradation in an aqueous solution at neutral pH. This work provides a simple strategy for antimicrobial coatings that can kill bacteria on contact for extended timescales, followed by triggered biofilm removal under mild conditions.
Collapse
Affiliation(s)
- Yang Lou
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Edmund F Palermo
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
- Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| |
Collapse
|
2
|
Li ZY, Zhang X, Qian YL, Du FS, Li ZC. Synthesis and antibacterial properties of fluorinated biodegradable cationic polyesters. J Mater Chem B 2024; 12:1569-1578. [PMID: 38252543 DOI: 10.1039/d3tb02578k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Antimicrobial peptide-mimicking antibacterial polymers represent a practical strategy to conquer the ever-growing threat of antimicrobial resistance. Herein, we report the syntheses and antibacterial performance of degradable amphiphilic cationic polyesters containing pendent quaternary ammonium motifs and hydrophobic alkyl or fluoroalkyl groups. These polyesters were conveniently prepared from poly(3-methylene-1,5-dioxepan-2-one) via highly efficient one-pot successive thiol-Michael addition reactions. The antibacterial activity of these polyesters against S. aureus and E. coli and their hemolytic activity toward red blood cells were evaluated; some of them showed moderate antibacterial activity and selectivity against Gram-positive S. aureus. The membrane disruption mechanism of these cationic polyesters was briefly explored by monitoring the bacteria killing kinetics and SEM observations. Moreover, the effects of cationic/hydrophobic ratio and the incorporation of fluoroalkyl groups on the antibacterial activity and selectivity of the polyesters were demonstrated.
Collapse
Affiliation(s)
- Zhao-Yue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiaoying Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Yi-Lin Qian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China.
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Gong J, Borecki A, Gillies ER. Self-Immolative Hydrogels with Stimulus-Mediated On-Off Degradation. Biomacromolecules 2023; 24:3629-3637. [PMID: 37418699 DOI: 10.1021/acs.biomac.3c00382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly(ethyl glyoxylate) (PEtG) and poly(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications.
Collapse
Affiliation(s)
- Jue Gong
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Aneta Borecki
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
4
|
Li C, Deng Z, Gillies ER. Designing polymers with stimuli-responsive degradation for biomedical applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Hansen-Felby M, Pedersen SU, Daasbjerg K. Electrocatalytic Depolymerization of Self-Immolative Poly(Dithiothreitol) Derivatives. Molecules 2022; 27:6292. [PMID: 36234828 PMCID: PMC9573698 DOI: 10.3390/molecules27196292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
We report the use of electrogenerated anthraquinone radical anion (AQ•-) to trigger fast catalytic depolymerization of polymers derived from poly(dithiothreitol) (pDTT)-a self-immolative polymer (SIP) with a backbone of dithiothreitols connected with disulfide bonds and end-capped via disulfide bonds to pyridyl groups. The pDTT derivatives studied include polymers with simple thiohexyl end-caps or modified with AQ or methyl groups by Steglich esterification. All polymers were shown to be depolymerized using catalytic amounts of electrons delivered by AQ•-. For pDTT, as little as 0.2 electrons per polymer chain was needed to achieve complete depolymerization. We hypothesize that the reaction proceeds with AQ•- as an electron carrier (either molecularly or as a pendant group), which transfers an electron to a disulfide bond in the polymer in a dissociative manner, generating a thiyl radical and a thiolate. The rapid and catalytic depolymerization is driven by thiyl radicals attacking other disulfide bonds internally or between pDTT chains in a chain reaction. Electrochemical triggering works as a general method for initiating depolymerization of pDTT derivatives and may likely also be used for depolymerization of other disulfide polymers.
Collapse
Affiliation(s)
- Magnus Hansen-Felby
- Department of Chemistry and Interdiciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Steen U. Pedersen
- Department of Chemistry and Interdiciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Department of Chemistry and Interdiciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Novo Nordisk Foundation CO2 Research Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Kim JW, Kim HJ, Park J, Chae JA, Song HW, Choi E, Kim H. Self-Immolative and Amphiphilic Poly(benzyl ether)-Based Copolymers: Synthesis and Triggered Demicellization via Head-to-Tail Depolymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ji Woo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hea Ji Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Jieun Park
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Ji Ae Chae
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hyeong-Woo Song
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26, Cheomdangwagi-ro, 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26, Cheomdangwagi-ro, 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
7
|
Nam SY, Lee J, Shin SS, Yoo HJ, Yun M, Kim S, Kim JH, Lee JH. Antibacterial and cytotoxic properties of star-shaped quaternary ammonium-functionalized polymers with different pendant groups. Polym Chem 2022. [DOI: 10.1039/d2py00007e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The correlation between the structure and biological activity of polymers is critically important for rationally designing effective antibacterial polymers. Here, the antibacterial activity, cytotoxicity, and selectivity of structurally well-defined, star-shaped...
Collapse
|
8
|
Kopiasz RJ, Zabost A, Myszka M, Kuźmińska A, Drężek K, Mierzejewska J, Tomaszewski W, Iwańska A, Augustynowicz-Kopeć E, Ciach T, Jańczewski D. Main-chain flexibility and hydrophobicity of ionenes strongly impact their antimicrobial activity: an extended study on drug resistance strains and Mycobacterium. RSC Adv 2022; 12:26220-26232. [PMID: 36275090 PMCID: PMC9477016 DOI: 10.1039/d2ra04121a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The spread of antibiotic-resistant pathogens and the resurgence of tuberculosis disease are major motivations to search for novel antimicrobial agents. Some promising candidates in this respect are cationic polymers, also known as synthetic mimics of antimicrobial peptides (SMAMPs), which act through the membrane-lytic mechanism. Development of resistance toward SMAMPs is less likely than toward currently employed antibiotics; however, further studies are needed to better understand their structure–activity relationship. The main objective of this work is to understand the cross-influence of hydrophobicity, main-chain flexibility, and the topology of ionenes (polycations containing a cationic moiety within the main-chain) on activity. To fulfill this goal, a library of ionenes was developed and compared with previously investigated molecules. The obtained compounds display promising activity against the model microorganisms and drug-resistance clinical isolates, including Mycobacterium tuberculosis. The killing efficiency was also investigated, and results confirm a strong effect of hydrophobicity, revealing higher activity for molecules possessing the flexible linker within the polymer main-chain. A high significance of the main chain flexibility and an unexpected effect of hydrophobicity on the biological activity in series of ionenes was observed. The most potent among the tested polycations showed high activity toward clinical bacterial isolates.![]()
Collapse
Affiliation(s)
- Rafał Jerzy Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Anna Zabost
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, Warsaw 01-138, Poland
| | - Magdalena Myszka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Aleksandra Kuźmińska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Karolina Drężek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Waldemar Tomaszewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Agnieszka Iwańska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, Warsaw 01-138, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, Warsaw 01-138, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, Warsaw 00-645, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| |
Collapse
|
9
|
Gavriel A, Sambrook M, Russell AT, Hayes W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 2022. [DOI: 10.1039/d2py00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interest in self-immolative chemistry has grown over the past decade with more research groups harnessing the versatility to control the release of a compound from a larger chemical entity, given...
Collapse
|
10
|
Agergaard AH, Sommerfeldt A, Pedersen SU, Birkedal H, Daasbjerg K. Dual-Responsive Material Based on Catechol-Modified Self-Immolative Poly(Disulfide) Backbones. Angew Chem Int Ed Engl 2021; 60:21543-21549. [PMID: 34279056 PMCID: PMC8518080 DOI: 10.1002/anie.202108698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 01/18/2023]
Abstract
Functional materials engineered to degrade upon triggering are in high demand due their potentially lower impact on the environment as well as their use in sensing and in medical applications. Here, stimuli-responsive polymers are prepared by decorating a self-immolative poly(dithiothreitol) backbone with pendant catechol units. The highly functional polymer is fashioned into stimuli-responsive gels, formed through pH-dependent catecholato-metal ion cross-links. The gels degrade in response to specific environmental changes, either by addressing the pH responsive, non-covalent, catecholato-metal complexes, or by addition of a thiol. The latter stimulus triggers end-to-end depolymerization of the entire self-immolative backbone through end-cap replacement via thiol-disufide exchanges. Gel degradation is visualized by release of a dye from the supramolecular gel as it itself is converted into smaller molecules.
Collapse
Affiliation(s)
- Asger Holm Agergaard
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Andreas Sommerfeldt
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Steen Uttrup Pedersen
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Henrik Birkedal
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Kim Daasbjerg
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| |
Collapse
|
11
|
Agergaard AH, Sommerfeldt A, Pedersen SU, Birkedal H, Daasbjerg K. Dual‐Responsive Material Based on Catechol‐Modified Self‐Immolative Poly(Disulfide) Backbones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Asger Holm Agergaard
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Andreas Sommerfeldt
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Steen Uttrup Pedersen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Henrik Birkedal
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Kim Daasbjerg
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
12
|
Ratrey P, Das Mahapatra A, Pandit S, Hadianawala M, Majhi S, Mishra A, Datta B. Emergent antibacterial activity of N-(thiazol-2-yl)benzenesulfonamides in conjunction with cell-penetrating octaarginine. RSC Adv 2021; 11:28581-28592. [PMID: 35478531 PMCID: PMC9038147 DOI: 10.1039/d1ra03882f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Hybrid antimicrobials that combine the effect of two or more agents represent a promising antibacterial therapeutic strategy. In this work, we have synthesized N-(4-(4-(methylsulfonyl)phenyl)-5-phenylthiazol-2-yl)benzenesulfonamide derivatives that combine thiazole and sulfonamide, groups with known antibacterial activity. These molecules are investigated for their antibacterial activity, in isolation and in complex with the cell-penetrating peptide octaarginine. Several of the synthesized compounds display potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Compounds with 4-tert-butyl and 4-isopropyl substitutions exhibit attractive antibacterial activity against multiple strains. The isopropyl substituted derivative displays low MIC of 3.9 μg mL−1 against S. aureus and A. xylosoxidans. The comparative antibacterial behaviour of drug–peptide complex, drug alone and peptide alone indicates a distinctive mode of action of the drug–peptide complex, that is not the simple sum total of its constituent components. Specificity of the drug–peptide complex is evident from comparison of antibacterial behaviour with a synthetic intermediate–peptide complex. The octaarginine–drug complex displays faster killing-kinetics towards bacterial cells, creates pores in the bacterial cell membranes and shows negligible haemolytic activity towards human RBCs. Our results demonstrate that mere attachment of a hydrophobic moiety to a cell penetrating peptide does not impart antibacterial activity to the resultant complex. Conversely, the work suggests distinctive modes of antibiotic activity of small molecules when used in conjunction with a cell penetrating peptide. Hybrid antimicrobials that combine the effect of two or more agents represent a promising antibacterial therapeutic strategy.![]()
Collapse
Affiliation(s)
- Poonam Ratrey
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gujarat India +91-79-2397-2622 +91-79-2395-2073
| | - Shiny Pandit
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Murtuza Hadianawala
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gujarat India +91-79-2397-2622 +91-79-2395-2073
| | - Sasmita Majhi
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Abhijit Mishra
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gujarat India +91-79-2397-2622 +91-79-2395-2073.,Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| |
Collapse
|
13
|
Schwarz PS, Tebcharani L, Heger JE, Müller-Buschbaum P, Boekhoven J. Chemically fueled materials with a self-immolative mechanism: transient materials with a fast on/off response. Chem Sci 2021; 12:9969-9976. [PMID: 34349967 PMCID: PMC8317627 DOI: 10.1039/d1sc02561a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022] Open
Abstract
There is an increasing demand for transient materials with a predefined lifetime like self-erasing temporary electronic circuits or transient biomedical implants. Chemically fueled materials are an example of such materials; they emerge in response to chemical fuel, and autonomously decay as they deplete it. However, these materials suffer from a slow, typically first order decay profile. That means that over the course of the material's lifetime, its properties continuously change until it is fully decayed. Materials that have a sharp on-off response are self-immolative ones. These degrade rapidly after an external trigger through a self-amplifying decay mechanism. However, self-immolative materials are not autonomous; they require a trigger. We introduce here materials with the best of both, i.e., materials based on chemically fueled emulsions that are also self-immolative. The material has a lifetime that can be predefined, after which it autonomously and rapidly degrades. We showcase the new material class with self-expiring labels and drug-delivery platforms with a controllable burst-release.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Laura Tebcharani
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Julian E Heger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München James-Franck-Str. 1 85748 Garching Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München James-Franck-Str. 1 85748 Garching Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstr. 1 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
- Institute for Advanced Study, Technical University of Munich Lichtenbergstraße 2a 85748 Garching Germany
| |
Collapse
|
14
|
Regiospecific vs. non regiospecific click azide-alkyne polymerization: In vitro study of water-soluble antibacterial poly(amide aminotriazole)s. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112113. [PMID: 33965117 DOI: 10.1016/j.msec.2021.112113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/14/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
Novel linear cationic poly(amide aminotriazole)s (PATnD) with secondary amine groups in the backbone were obtained by using azide-alkyne 1,3-dipolar cycloaddition reactions: metal- and solvent-free (thermal conditions, PATTnD) or copper(I)-catalyzed (Sharpless conditions, PATCnD). PATnD were investigated in vitro against strains of E. coli, P. aeruginosa, S. aureus, and S. epidermidis. Hemolytic activity was tested using human red blood cells (hRBC), and very low or no hemolytic activity was observed. The cytotoxicity of PATnD polymers against Human Gingival Fibroblasts (HGnF) cells was concentration-dependent, and significant differences between PATT1D and PATC1D were observed. The ability of these polymers to induce resistance against both Gram-positive and Gram-negative bacteria was also assessed. Studied bacterial strains acquired resistance to catalytic polymers (PATCnD) in initial passages meanwhile resistance to thermal polymers (PATTnD) appears in later passages, being the increase of the minimum inhibitory concentration lower than in catalytic polymers. This result, together with the higher biocidal capacity of thermal polymers compared to catalytic ones, seems to suggest an influence of the regiospecificity of the polymers on their antibacterial characteristics. This study also demonstrates that PAT1D polymers, which do not appear to have strong hydrophobic residues, can exert significant antimicrobial activity against Gram-positive bacteria such as S. epidermidis. This pair of polymers, PATC1D and PATT1D, displays the greatest antimicrobial activity while not causing significant hemolysis along with the lowest susceptibility for resistance development of the polymers evaluated.
Collapse
|
15
|
Luo H, Yin XQ, Tan PF, Gu ZP, Liu ZM, Tan L. Polymeric antibacterial materials: design, platforms and applications. J Mater Chem B 2021; 9:2802-2815. [PMID: 33710247 DOI: 10.1039/d1tb00109d] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the past decades, the morbidity and mortality caused by pathogen invasion remain stubbornly high even though medical care has increasingly improved worldwide. Besides, impacted by the ever-growing multidrug-resistant bacterial strains, the crisis owing to the abuse and misuse of antibiotics has been further exacerbated. Among the wide range of antibacterial strategies, polymeric antibacterial materials with diversified synthetic strategies exhibit unique advantages (e.g., their flexible structural design, processability and recyclability, tuneable platform construction, and safety) for extensive antibacterial fields as compared to low molecular weight organic or inorganic antibacterial materials. In this review, polymeric antibacterial materials are summarized in terms of four structure styles and the most representative material platforms to achieve specific antibacterial applications. The superiority and defects exhibited by various polymeric antibacterial materials are elucidated, and the design of various platforms to elevate their efficacy is also described. Moreover, the application scope of polymeric antibacterial materials is summarized with regard to tissue engineering, personal protection, and environmental security. In the last section, the subsequent challenges and direction of polymeric antibacterial materials are discussed. It is highly expected that this critical review will present an insight into the prospective development of antibacterial functional materials.
Collapse
Affiliation(s)
- Hao Luo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | | | | | | | |
Collapse
|
16
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
17
|
Namivandi-Zangeneh R, Wong EHH, Boyer C. Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infect Dis 2021; 7:215-253. [PMID: 33433995 DOI: 10.1021/acsinfecdis.0c00635] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance is a critical global healthcare issue that urgently needs new effective solutions. While small molecule antibiotics have been safeguarding us for nearly a century since the discovery of penicillin by Alexander Fleming, the emergence of a new class of antimicrobials in the form of synthetic antimicrobial polymers, which was driven by the advances in controlled polymerization techniques and the desire to mimic naturally occurring antimicrobial peptides, could play a key role in fighting multidrug resistant bacteria in the near future. By harnessing the ability to control chemical and structural properties of polymers almost at will, synthetic antimicrobial polymers can be strategically utilized in combination therapy with various antimicrobial coagents in different formats to yield more potent (synergistic) outcomes. In this review, we present a short summary of the different combination therapies involving synthetic antimicrobial polymers, focusing on their combinations with nitric oxide, antibiotics, essential oils, and metal- and carbon-based inorganics.
Collapse
Affiliation(s)
- Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
18
|
Phuong PT, Oliver S, He J, Wong EHH, Mathers RT, Boyer C. Effect of Hydrophobic Groups on Antimicrobial and Hemolytic Activity: Developing a Predictive Tool for Ternary Antimicrobial Polymers. Biomacromolecules 2020; 21:5241-5255. [DOI: 10.1021/acs.biomac.0c01320] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pham Thu Phuong
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Susan Oliver
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Junchen He
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert T. Mathers
- Department of Chemistry, Penn State University, New Kensington, Pennsylvania 15068, United States
| | - Cyrille Boyer
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
19
|
Zheng L, Li J, Yu M, Jia W, Duan S, Cao D, Ding X, Yu B, Zhang X, Xu FJ. Molecular Sizes and Antibacterial Performance Relationships of Flexible Ionic Liquid Derivatives. J Am Chem Soc 2020; 142:20257-20269. [PMID: 33179921 DOI: 10.1021/jacs.0c10771] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cationic agents, such as ionic liquids (ILs)-based species, have broad-spectrum antibacterial activities. However, the antibacterial mechanisms lack systematic and molecular-level research, especially for Gram-negative bacteria, which have highly organized membrane structures. Here, we designed a series of flexible fluorescent diketopyrrolopyrrole-based ionic liquid derivatives (ILDs) with various molecular sizes (1.95-4.2 nm). The structure-antibacterial activity relationships of the ILDs against Escherichia coli (E. coli) were systematically studied thorough antibacterial tests, fluorescent tracing, morphology analysis, molecular biology, and molecular dynamics (MD) simulations. ILD-6, with a relatively small molecular size, could penetrate through the bacterial membrane, leading to membrane thinning and intracellular activities. ILD-6 showed fast and efficient antimicrobial activity. With the increase of molecular sizes, the corresponding ILDs were proven to intercalate into the bacterial membrane, leading to the destabilization of the lipid bilayer and further contributing to the antimicrobial activities. Moreover, the antibacterial activity of ILD-8 was limited, where the size was not large enough to introduce significant membrane disorder. Relative antibacterial experiments using another common Gram-negative bacteria, Pseudomonas aeruginosa (PAO1), further confirmed the proposed structure-antibacterial activity relationships of ILDs. More impressively, both ILD-6 and ILD-12 displayed significant in vivo therapeutic effects on the PAO1-infected rat model, while ILD-8 performed poorly, which confirmed the antibacterial mechanism of ILDs and proved their potentials for future application. This work clarifies the interactions between molecular sizes of ionic liquid-based species and Gram-negative bacteria and will provide useful guidance for the rational design of high-performance antibacterial agents.
Collapse
Affiliation(s)
- Liang Zheng
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Manman Yu
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weibin Jia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dapeng Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xianren Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
20
|
|
21
|
Krumm C, Trump S, Benski L, Wilken J, Oberhaus F, Köller M, Tiller JC. Fast-Acting Antibacterial, Self-Deactivating Polyionene Esters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21201-21209. [PMID: 31916737 DOI: 10.1021/acsami.9b19313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biocidal compounds that quickly kill bacterial cells and are then deactivated in the surrounding without causing environmental problems are of great current interest. Here, we present new biodegradable antibacterial polymers based on polyionenes with inserted ester functions (PBI esters). The polymers are prepared by polycondensation reaction of 1,4-dibromobutene and different tertiary diaminodiesters. The resulting PBI esters are antibacterially active against a wide range of bacterial strains and were found to quickly kill these cells within 1 to 10 min. Because of hydrolysis of the ester groups, the PBI esters are degraded and deactivated in aqueous media. The degradation rate depends on the backbone structure and the pH. The structure of the polymers also controls the deactivation mechanism. While the more hydrophilic polymers require hydrolyses of only 19 to 30% of the ester groups to become practically inactive, the more hydrophobic PBI esters require up to 85% hydrolysis to achieve the same result. Thus, depending on the environmental conditions and the chemical nature, the PBI esters can be active for only 20 min or for at least one week.
Collapse
Affiliation(s)
- Christian Krumm
- BG Universitätsklinikum Bergmannsheil/Surgical Research, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Sylvia Trump
- BG Universitätsklinikum Bergmannsheil/Surgical Research, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Lena Benski
- Chair of Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Jens Wilken
- BG Universitätsklinikum Bergmannsheil/Surgical Research, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Franziska Oberhaus
- Chair of Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Manfred Köller
- BG Universitätsklinikum Bergmannsheil/Surgical Research, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Joerg C Tiller
- Chair of Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| |
Collapse
|
22
|
Cuervo-Rodríguez R, Muñoz-Bonilla A, López-Fabal F, Fernández-García M. Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives. Polymers (Basel) 2020; 12:E972. [PMID: 32331281 PMCID: PMC7240493 DOI: 10.3390/polym12040972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
A series of well-defined antimicrobial polymers composed of comonomers bearing thiazole ring (2-(((2-(4-methylthiazol-5-yl)ethoxy)carbonyl)oxy)ethyl methacrylate monomer (MTZ)) and non-hemotoxic poly(ethylene glycol) side chains (poly(ethylene glycol) methyl ether methacrylate (PEGMA)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. By post-polymerization functionalization strategy, polymers were quaternized with either butyl or octyl iodides to result in cationic amphiphilic copolymers incorporating thiazolium groups, thus with variable hydrophobic/hydrophilic balance associated to the length of the alkylating agent. Likewise, the molar percentage of PEGMA was modulated in the copolymers, also affecting the amphiphilicity. The antimicrobial activities of these cationic polymers were determined against Gram-positive and Gram-negative bacteria and fungi. Minimum inhibitory concentration (MIC) was found to be dependent on both length of the alkyl hydrophobic chain and the content of PEGMA in the copolymers. More hydrophobic octylated copolymers were found to be more effective against all tested microorganisms. The incorporation of non-ionic hydrophilic units, PEGMA, reduces the hydrophobicity of the system and the activity is markedly reduced. This effect is dramatic in the case of butylated copolymers, in which the hydrophobic/hydrophilic balance is highly affected. The hemolytic properties of polymers analyzed against human red blood cells were greatly affected by the hydrophobic/hydrophilic balance of the copolymers and the content of PEGMA, which drastically reduces the hemotoxicity. The copolymers containing longer hydrophobic chain, octyl, are much more hemotoxic than their corresponding butylated copolymers.
Collapse
Affiliation(s)
- R. Cuervo-Rodríguez
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain;
| | - A. Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - F. López-Fabal
- Hospital Universitario de Móstoles C/ Luis Montes, s/n, 28935 Madrid, Spain;
| | - M. Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| |
Collapse
|
23
|
Abstract
Biomedical use cases for self-immolative polymers.
Collapse
Affiliation(s)
- Yue Xiao
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| | - Xuyu Tan
- Department of Chemistry and Chemical Biology
- Northeastern University
- Boston
- USA
| | - Zhaohui Li
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| | - Ke Zhang
- Department of Chemistry and Chemical Biology
- Northeastern University
- Boston
- USA
| |
Collapse
|
24
|
|
25
|
Neary WJ, Isais TA, Kennemur JG. Depolymerization of Bottlebrush Polypentenamers and Their Macromolecular Metamorphosis. J Am Chem Soc 2019; 141:14220-14229. [PMID: 31403783 DOI: 10.1021/jacs.9b05560] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The depolymerization of bottlebrush (BB) polymers with varying lengths of polycyclopentene (PCP) backbone and polystyrene (PS) grafts is investigated. In all cases, ring closing metathesis (RCM) depolymerization of the PCP BB backbone appears to occur through an end-to-end depolymerization mechanism as evidenced by size exclusion chromatography. Investigation on the RCM depolymerization of linear PCP reveals a more random chain degradation process. Quantitative depolymerization occurs under thermodynamic conditions (higher temperature and dilution) that drives RCM into cyclopentenes (CPs), each bearing one of the original PS grafts from the BB. Catalyst screening reveals Grubbs' third (G3) and second (G2) generation catalyst depolymerize BBs significantly faster than Grubbs' first generation (G1) and Hoveyda-Grubbs' second generation (HG2) catalyst under identical conditions while solvent (toluene versus CHCl3) plays a less significant role. The length of the BB backbone and PS side chains also play a minor role in depolymerization kinetics, which is discussed. The ability to completely deconstruct these BB architectures into linear grafts provides definitive insights toward the ATRP "grafting-from" mechanism originally used to construct the BBs. Core-shell BB block copolymers (BBCPs) are shown to quantitatively depolymerize into linear diblock polymer grafts. Finally, the complete depolymerization of BBs into α-cyclopentenyl-PS allows further transformation to other architectures, such as 3-arm stars, through thiol-ene coupling onto the CP end group. These unique materials open the door to stimuli-responsive reassembly of BBs and BBCPs into new morphologies driven by macromolecular metamorphosis.
Collapse
Affiliation(s)
- William J Neary
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Taylor A Isais
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Justin G Kennemur
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
26
|
Yardley RE, Kenaree AR, Gillies ER. Triggering Depolymerization: Progress and Opportunities for Self-Immolative Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00965] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Lan S, Lu Y, Zhang J, Guo Y, Li C, Zhao S, Sheng X, Dong A. Electrospun Sesbania Gum-Based Polymeric N-Halamines for Antibacterial Applications. Polymers (Basel) 2019; 11:E1117. [PMID: 31266230 PMCID: PMC6680915 DOI: 10.3390/polym11071117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Microorganism pollution induced by pathogens has become a serious concern in recent years. In response, research on antibacterial N-halamines has made impressive progress in developing ways to combat this pollution. While synthetic polymer-based N-halamines have been widely developed and in some cases even commercialized, N-halamines based on naturally occurring polymers remain underexplored. In this contribution, we report for the first time on a strategy for developing sesbania gum (SG)-based polymeric N-halamines by a four-step approach Using SG as the initial polymer, we obtained SG-based polymeric N-halamines (abbreviated as cSG-PAN nanofibers) via a step-by-step controllable synthesis process. With the assistance of advanced techniques, the as-synthesized cSG-PAN nanofibers were systematically characterized in terms of their chemical composition and morphology. In a series of antibacterial and cytotoxicity evaluations, the as-obtained cSG-PAN nanofibers displayed good antibacterial activity against Escherichia coli and Staphylococcus aureus, as well as low cytotoxicity towards A549 cells. We believe this study offers a guide for developing naturally occurring polymer-based antibacterial N-halamines that have great potential for antibacterial applications.
Collapse
Affiliation(s)
- Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yaning Lu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinghua Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanan Guo
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chun Li
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuang Zhao
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
28
|
Xiao Y, Li Y, Zhang B, Li H, Cheng Z, Shi J, Xiong J, Bai Y, Zhang K. Functionalizable, Side Chain-Immolative Poly(benzyl ether)s. ACS Macro Lett 2019; 8:399-402. [PMID: 35651122 DOI: 10.1021/acsmacrolett.9b00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report a poly(benzyl ether)-based self-immolative polymer (SIP) with pendant pyridine disulfide groups. Cleavage of the side-chain disulfides leads to the formation of phenolates, which initiate depolymerization from the side chain. Due to the higher density of the disulfide groups compared to that of the chain-end-capping group, which normally is responsible for initiating depolymerization of SIPs, the side chain-immolative polymer (ScIP) can be readily degraded in the solid state where the mobility of polymer chains is substantially limited. The ScIP was also further modified through the thiol-disulfide exchange reaction to prepare ScIP-g-poly(ethylene glycol) graft polymers and organogels, which were also able to undergo complete reductive self-immolative degradation.
Collapse
Affiliation(s)
- Yue Xiao
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Li
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bohan Zhang
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hui Li
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zehong Cheng
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianqiao Shi
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jing Xiong
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ke Zhang
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
29
|
Riga EK, Gillies E, Lienkamp K. Self-Regenerating Antimicrobial Polymer Surfaces via Multilayer-Design - Sequential and Triggered Layer Shedding under Physiological Conditions. ADVANCED MATERIALS INTERFACES 2019; 6:1802049. [PMID: 34405081 PMCID: PMC7611505 DOI: 10.1002/admi.201802049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 05/05/2023]
Abstract
Regeneration of materials properties through surface regeneration could extend the lifetime of devices and is still an emerging field of research. (Self-)regenerating antimicrobial polymer surfaces could help to fight biofilm formation and related bacterial infections. In this paper, four different polymer multilayer designs for the regeneration of antimicrobial surfaces by layer shedding are presented. The multilayer architectures consist of 100-200 nm thick, discrete polymer layers. They are made from poly(guanidinium oxanorbornene) networks as the antimicrobial component, and different interlayers made from degradable poly(adipic anhydrides), depolymerizable poly(ethyl glyoxylate), or water-soluble poly(acrylamide). Layer shedding is designed to occur after hydrolysis, dissolution or depolymerization under simulated physiological conditions. The multilayer fabrication and disassembly is monitored by fluorescence microscopy, ellipsometry FT-IR spectroscopy and atomic force microscopy. By testing the antimicrobial activity of the restored surfaces, their functional integrity after layer shedding is confirmed.
Collapse
Affiliation(s)
- Esther Karolin Riga
- Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität, Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Elizabeth Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Karen Lienkamp
- Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität, Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
30
|
Palermo EF, Lienkamp K, Gillies ER, Ragogna PJ. Antibacterial Activity of Polymers: Discussions on the Nature of Amphiphilic Balance. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Edmund F. Palermo
- Rensselaer Polytechnic InstituteMaterials Science and Engineering 110 8th St. Troy NY 12180 USA
| | - Karen Lienkamp
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK)Albert-Ludwigs-Universität Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Elizabeth R. Gillies
- Centre for Advanced Materials and Biomaterials ResearchDepartment of ChemistryThe University of Western Ontario 1151 Richmond St. London Canada
- Department of Chemical and Biochemical EngineeringThe University of Western Ontario 1151 Richmond St. London Canada
| | - Paul J. Ragogna
- Centre for Advanced Materials and Biomaterials ResearchDepartment of ChemistryThe University of Western Ontario 1151 Richmond St. London Canada
| |
Collapse
|
31
|
Palermo EF, Lienkamp K, Gillies ER, Ragogna PJ. Antibacterial Activity of Polymers: Discussions on the Nature of Amphiphilic Balance. Angew Chem Int Ed Engl 2019; 58:3690-3693. [DOI: 10.1002/anie.201813810] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Edmund F. Palermo
- Rensselaer Polytechnic Institute Materials Science and Engineering 110 8th St. Troy NY 12180 USA
| | - Karen Lienkamp
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK) Albert-Ludwigs-Universität Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Elizabeth R. Gillies
- Centre for Advanced Materials and Biomaterials Research Department of Chemistry The University of Western Ontario 1151 Richmond St. London Canada
- Department of Chemical and Biochemical Engineering The University of Western Ontario 1151 Richmond St. London Canada
| | - Paul J. Ragogna
- Centre for Advanced Materials and Biomaterials Research Department of Chemistry The University of Western Ontario 1151 Richmond St. London Canada
| |
Collapse
|