1
|
Munusamy S, Zheng H, Jahani R, Zhou S, Chen J, Kong J, Guan X. Enzyme-free immunoassay for rapid, sensitive, and selective detection of C-reactive protein. Anal Bioanal Chem 2024; 416:6985-6994. [PMID: 39419834 DOI: 10.1007/s00216-024-05598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
C-reactive protein (CRP) is a protein made by the liver, which is released into the bloodstream in response to inflammation. Furthermore, CRP is a potential risk factor for heart disease. Hence, it is of great importance to develop a rapid, sensitive, accurate, and cost-effective method for CRP detection. Herein, we report an enzyme-free fluorescent assay for the rapid and ultra-sensitive detection of CRP with a limit of detection (LOD) reaching as low as 3.08 pg/mL (i.e., ~ 27 fM). The high sensitivity of our method was simply achieved via dual-functionalized gold nanoparticles (AuNPs). By regulating the molar ratio of DNA to CRP antibody immobilized on the AuNP surface, hundreds to thousands-fold amplification in the analyte signal could be instantly accomplished. Furthermore, our sensor was selective: non-target proteins such as interleukin-6, interleukin-1β, procalcitonin, bovine serum albumin, and human serum albumin did not interfere with the target CRP detection. Moreover, simulated serum samples were successfully analyzed. Given the excellent sensitivity, selectivity, and high resistance to complicated matrices, the enzyme-free CRP detection strategy developed in this work can be used as a generic platform to construct sensors for a wide variety of protein biomarkers and hence offers potential as a tool for rapid, accurate, and low-cost medical diagnosis.
Collapse
Affiliation(s)
| | - Haiyan Zheng
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Rana Jahani
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Shuo Zhou
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Jun Chen
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Juanhua Kong
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Xiyun Guan
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Makela M, Tu D, Lin Z, Coté G, Lin PT. Chip-Scale Aptamer Sandwich Assay Using Optical Waveguide-Assisted Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1927. [PMID: 39683314 DOI: 10.3390/nano14231927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Chip-scale optical waveguide-assisted surface-enhanced Raman spectroscopy (SERS) that used nanoparticles (NPs) was demonstrated. The Raman signals from Raman reporter (RR) molecules on NPs can be efficiently excited by the waveguide evanescent field when the molecules are in proximity to the waveguide surface. The Raman signal was enhanced by plasmon resonance due to the NPs close to the waveguide surface. The optical waveguide mode and the NP-induced field enhancement were calculated using a finite difference method (FDM). The sensing performance of the waveguide-assisted SERS device was experimentally characterized by measuring the Raman scattering from various RRs, including 4-mercaptobenzoic acid (4-MBA), 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB), and malachite green isothiocyanate (MGITC). The observed Raman spectral features were identified and assigned to the complex vibrational modes associated with different reporters. A low detection limit of 1 nM was achieved. In addition, the device sensing method was applied to the detection of the biomarker cardiac troponin I (cTnI) using an aptamer sandwich assay immobilized on the device surface. Overall, the optical waveguides integrated with SERS show a miniaturized sensing platform for the detection of small molecules and large proteins, potentially enabling multiplexed detection for clinically relevant applications.
Collapse
Affiliation(s)
- Megan Makela
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Systems and Technologies, Texas A&M University, College Station, TX 77843, USA
| | - Dandan Tu
- Center for Remote Health Systems and Technologies, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zhihai Lin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Gerard Coté
- Center for Remote Health Systems and Technologies, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Pao Tai Lin
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Systems and Technologies, Texas A&M University, College Station, TX 77843, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Yong T, Kim D, Kim S. Simultaneous multiple target detection platform based on vertical flow immunoassay. J Immunol Methods 2024; 530:113690. [PMID: 38759863 DOI: 10.1016/j.jim.2024.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
In general, vertical flow assay (VFA) has a disadvantage of requiring a complex analysis process that involves manually injecting various reagents (target analyte, washing buffer, detection conjugate, etc.) sequentially. However, in this study, we have developed an innovative paper-based VFA device that replaces the complex analysis process with one-step and enables the detection of multiple targets. The fabrication process of the multi-target detection VFA device is as follows: preparation and pre-treatment of the strip materials, design of strip cartridge, design of the multiple detection VFA device, optimization experiments for strip sample flow rates, determination of device analysis time, determination of device limit of detection (LOD), multiple target signal uniformity experiment, immunoglobulin G (IgG) and C-reactive protein (CRP) antigen-antibody multiple detection experiment, and data extraction and analysis method. The use of paper-based materials enables the device to be produced at cost-effective, and cartridge production allowed for uniform array formation. IgG and CRP are used to evaluate the performance of the device as common biomarkers. The device proposed in this study is currently under research. To validate multiple target detection capability of the VFA device proposed in this study, two types of antigens-antibodies (Human IgG and Human CRP) were employed. The detection limit is 0.15 μg/mL for IgG and 0.19 μg/mL for CRP in naked eye. Furthermore, it was confirmed that there is no cross-reactivity caused by the device structure through IgG and CRP antigens. In conclusion, the VFA device proposed in this study consists of a one-step analysis process, and it has been confirmed that it can detect multiple targets simultaneously.
Collapse
Affiliation(s)
- Taek Yong
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Dami Kim
- Philmedi R&D Center, Philmedi Incorporation, 33, Sagimakgol-ro 62beon-gil, Jungwon-gu, Seongnam 13211, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Republic of Korea; Philmedi R&D Center, Philmedi Incorporation, 33, Sagimakgol-ro 62beon-gil, Jungwon-gu, Seongnam 13211, Republic of Korea.
| |
Collapse
|
4
|
Kumar S, Kaushal JB, Lee HP. Sustainable Sensing with Paper Microfluidics: Applications in Health, Environment, and Food Safety. BIOSENSORS 2024; 14:300. [PMID: 38920604 PMCID: PMC11202065 DOI: 10.3390/bios14060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
This manuscript offers a concise overview of paper microfluidics, emphasizing its sustainable sensing applications in healthcare, environmental monitoring, and food safety. Researchers have developed innovative sensing platforms for detecting pathogens, pollutants, and contaminants by leveraging the paper's unique properties, such as biodegradability and affordability. These portable, low-cost sensors facilitate rapid diagnostics and on-site analysis, making them invaluable tools for resource-limited settings. This review discusses the fabrication techniques, principles, and applications of paper microfluidics, showcasing its potential to address pressing challenges and enhance human health and environmental sustainability.
Collapse
Affiliation(s)
- Sanjay Kumar
- Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, Scott Campus, Omaha, NE 68182-0816, USA
| | - Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore;
| |
Collapse
|
5
|
Yuan Y, Zhong Y, Yang Y, Li K. Rapid diagnosis of acute myocardial infarction through integrated microfluidic chips for detection of characteristic targets. Anal Biochem 2024; 689:115502. [PMID: 38453047 DOI: 10.1016/j.ab.2024.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Myoglobin (Myo), creatine kinase-MB (CKMB), and cardiac troponin I (cTnI) are crucial biomarkers for diagnosing acute myocardial infarction (AMI) The accurate and rapid detection of these three targets can greatly improve the prognosis of AMI patients. Herein, this study developed a microfluidic immunofluorescence method that can detect all three targets in 10-15 min. Ultrasonic atomization and spray technology are used to modify the surface of the injection-molded microfluidic chip (MFC), which effectively solves the problem of biological cross-linking and antibody immobilization on the MFC surface. In addition, it improves the hydrophilicity of the chip surface, thus enhancing fluid self-driving effect. The linear response towards Myo, CKMB and cTnI range from 5 ng/mL to 500 ng/mL, 1 ng/mL to 70 ng/mL, and 0.05 ng/mL to 30 ng/mL, respectively. The intra-batch precision is ≤ 10%, and the inter-batch precision is ≤ 15%. Furthermore, this method shows good consistency compared with the BECKMAN ACCESS2 chemiluminescent immunoanalyzer. The present work provides an AMI diagnostic method with high sensitivity, good repeatability, high accuracy and simple operation, which can satisfy the needs of clinical diagnosis, and shows promising application prospects.
Collapse
Affiliation(s)
- Yaling Yuan
- Department of Clinical Laboratory, Affiliated Central Hospital of Chongqing University of Technology, The Seventh People's Hospital of Chongqing, Chongqing, 400054, PR China
| | - Yue Zhong
- Chongqing Novos Biotechnology Co., Ltd., Chongqing, 401147, PR China
| | - Yanbin Yang
- Chongqing Novos Biotechnology Co., Ltd., Chongqing, 401147, PR China
| | - Ke Li
- Department of Clinical Laboratory, Affiliated Central Hospital of Chongqing University of Technology, The Seventh People's Hospital of Chongqing, Chongqing, 400054, PR China; Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 516600, PR China.
| |
Collapse
|
6
|
Son SE, Cheon SH, Hur W, Lee HB, Kim DH, Ha CH, Lee SJ, Han DK, Seong GH. One-step paper-based SlipChip for the sensitive detection of C-reactive protein with porous platinum nanozyme-assisted signal amplification. Biosens Bioelectron 2024; 243:115752. [PMID: 37852125 DOI: 10.1016/j.bios.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
The development of efficient and sensitive point-of-care testing is crucial for preparedness in the post-pandemic era. Although paper-based lateral flow assays have attracted attention and have various advantages for rapid, on-site diagnosis, they have low sensitivity. To overcome the limitations of the existing assays, in this study, we aimed to develop a new, one-step, nanozyme-amplified SlipChip for the sensitive detection of C-reactive protein (CRP). The SlipChip was constructed by combining wax-printed paper with different channel designs. The three-dimensional (3D) fluidic configuration of the SlipChip allowed for the sequential delivery of reagents, enabling mixing and signal amplification with a one-step sliding operation. As a signal-amplifying reagent, peroxidase-mimicking porous platinum nanozyme (pPtNZ) was synthesized using a simple wet chemical method. The pPtNZ conjugated on the test line catalyzes the oxidation of diaminobenzidine (DAB) in the presence of hydrogen peroxide, increasing the color intensity. The immunoassay results of the SlipChip were easily interpreted within 20 min, and the color intensity was visually enhanced by DAB precipitation over time, resulting in up to 6-fold signal amplification. The proposed pPtNZ-SlipChip exhibited high analytical performances for the one-step detection of serum and salivary CRP from 0.1 to 1000 ng/mL, with a limit of detection of 0.03 ng/mL. These results revealed the potential and applicability of the pPtNZ-SlipChip, with the advantages of simplicity, sensitivity, low cost, and portability for on-site detection and point-of-care testing.
Collapse
Affiliation(s)
- Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Se Hwa Cheon
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Do Hyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Su Jeong Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Do Kyoung Han
- Division of Materials Analysis and Research, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-Gu, Daejeon, 34133, Republic of Korea; Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, Republic of Korea.
| |
Collapse
|
7
|
Chen X, Zhang C, Liu X, Dong Y, Meng H, Qin X, Jiang Z, Wei X. Low-noise fluorescent detection of cardiac troponin I in human serum based on surface acoustic wave separation. MICROSYSTEMS & NANOENGINEERING 2023; 9:141. [PMID: 37954038 PMCID: PMC10632424 DOI: 10.1038/s41378-023-00600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 11/14/2023]
Abstract
Acute myocardial infarction (AMI) is a life-threatening disease when sudden blockage of coronary artery occurs. As the most specific biomarker, cardiac troponin I (cTnI) is usually checked separately to diagnose or eliminate AMI, and achieving the accurate detection of cTnI is of great significance to patients' life and health. Compared with other methods, fluorescent detection has the advantages of simple operation, high sensitivity and wide applicability. However, due to the strong fluorescence interference of biological molecules in body fluids, it is often difficult to obtain high sensitivity. In order to solve this problem, in this study, surface acoustic wave separation is designed to purify the target to achieve more sensitive detection performance of fluorescent detection. Specifically, the interference of background noise is almost completely removed on a microfluidic chip by isolating microbeads through acoustic radiation force, on which the biomarkers are captured by the immobilized detection probe. And then, the concentration of cTnI in human serum is detected by the fluorescence intensity change of the isolated functionalized beads. By this way, the detection limit of our biosensor calculated by 3σ/K method is 44 pg/mL and 0.34 ng/mL in PBS buffer and human serum respectively. Finally, the reliability of this method has been validated by comparison with clinical tests from the nephelometric analyzer in hospital.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Chuanyu Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xianglian Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi’an, 710032 China
| | - Hao Meng
- The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Xianming Qin
- School of Mechano-Electronic Engineering, Xidian University, Xi’an, 710071 China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
8
|
Pradela-Filho LA, Veloso WB, Arantes IVS, Gongoni JLM, de Farias DM, Araujo DAG, Paixão TRLC. Paper-based analytical devices for point-of-need applications. Mikrochim Acta 2023; 190:179. [PMID: 37041400 PMCID: PMC10089827 DOI: 10.1007/s00604-023-05764-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Paper-based analytical devices (PADs) are powerful platforms for point-of-need testing since they are inexpensive devices fabricated in different shapes and miniaturized sizes, ensuring better portability. Additionally, the readout and detection systems can be accomplished with portable devices, allying with the features of both systems. These devices have been introduced as promising analytical platforms to meet critical demands involving rapid, reliable, and simple testing. They have been applied to monitor species related to environmental, health, and food issues. Herein, an outline of chronological events involving PADs is first reported. This work also introduces insights into fundamental parameters to engineer new analytical platforms, including the paper type and device operation. The discussions involve the main analytical techniques used as detection systems, such as colorimetry, fluorescence, and electrochemistry. It also showed recent advances involving PADs, especially combining optical and electrochemical detection into a single device. Dual/combined detection systems can overcome individual barriers of the analytical techniques, making possible simultaneous determinations, or enhancing the devices' sensitivity and/or selectivity. In addition, this review reports on distance-based detection, which is also considered a trend in analytical chemistry. Distance-based detection offers instrument-free analyses and avoids user interpretation errors, which are outstanding features for analyses at the point of need, especially for resource-limited regions. Finally, this review provides a critical overview of the practical specifications of the recent analytical platforms involving PADs, demonstrating their challenges. Therefore, this work can be a highly useful reference for new research and innovation.
Collapse
Affiliation(s)
- Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Juliana L M Gongoni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Davi M de Farias
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Diele A G Araujo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
9
|
Mohammadinejad A, Nooranian S, Kazemi Oskuee R, Mirzaei S, Aleyaghoob G, Zarrabi A, Selda Gunduz E, Nuri Ertas Y, Sheikh Beig Goharrizi MA. Development of Lateral Flow Assays for Rapid Detection of Troponin I: A Review. Crit Rev Anal Chem 2022; 54:1936-1950. [PMID: 36377822 DOI: 10.1080/10408347.2022.2144995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Troponin I as a particular and major biomarker of cardiac failure is released to blood demonstrating hurt of myocardial cells. Unfortunately, troponin I detection in the first hours of acute myocardial infarction usually faces with most negligence. Therefore, developments of point of care devices such as lateral flow strips are highly required for timely diagnosis and prognosis. Lateral flow assays are low-cost paper-based detection platforms relying on specific diagnostic agents such as aptamers and antibodies for a rapid, selective, quantitative and semi-quantitative detection of the analyte in a complex mixture. Moreover, lateral flow assay devices are portable, and their simplicity of use eliminates the need for experts or any complicated equipment to operate and interpret the test results. Additionally, by coupling the lateral flow assay technology with nanotechnology, for labeling and signal amplification, many breakthroughs in the field of diagnostics have been achieved. The present study reviews the use of lateral flow assays in early stage, quantitative, and sensitive detection of cardiac troponin I and mainly focuses on the structure of each type of developed lateral flow assays. Finally, this review summarized the improvements, detection time, and limit of detection of each study as well as the advantages and disadvantages.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Samin Nooranian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Emine Selda Gunduz
- Vocational School of Health Services, Department of First and Emergency Aid, Akdeniz University, Antalya, Turkey
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
10
|
Chen L, Zhou SY, Zhu W, Liu SP, Zhang JX, Zhuang H, Zhang JL, Li YS, Gao F. Highly Sensitive Lanthanide-Doped Nanoparticles-Based Point-of-Care Diagnosis of Human Cardiac Troponin I. Int J Nanomedicine 2022; 17:635-646. [PMID: 35177903 PMCID: PMC8843803 DOI: 10.2147/ijn.s346415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/22/2022] [Indexed: 12/30/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Lu Chen
- Department of paediatrics, Fujian Maternity and Child Health Hospital, Fuzhou, 350000, People’s Republic of China
| | - Shan-Yong Zhou
- Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People’s Republic of China
| | - Wei Zhu
- Department of Urology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, People’s Republic of China
| | - Sheng-Ping Liu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Jing-Xi Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - He Zhuang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Jing-Ling Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Yong-Sheng Li
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Fei Gao
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
- Correspondence: Fei Gao; Yongsheng Li, Tel/Fax +86 591-83357896-8242, Email ;
| |
Collapse
|
11
|
Lei X, Xu X, Liu L, Kuang H, Xu L, Xu C. Immunochromatographic assays for ultrasensitive and high specific determination of enrofloxacin in milk, eggs, honey, and chicken meat. J Dairy Sci 2022; 105:1999-2010. [PMID: 34998562 DOI: 10.3168/jds.2021-20276] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
Enrofloxacin, a veterinary antibiotic that persists in food, poses a risk to human health. Here, a monoclonal antibody against enrofloxacin, 1H12, was prepared based on the hapten ENR-1, and showed excellent sensitivity with a 50% inhibitory concentration (IC50) of 0.03 ng/mL. Using this antibody, 2 lateral-flow immunochromatographic assays were developed for determination of enrofloxacin in egg, milk, honey, and chicken meat samples. The detection ranges (IC20-IC80) were 0.16-0.82 ng/g, 0.24-1.8 ng/g, 0.25-3.6 ng/g, and 0.61-3.9 ng/g by colloidal gold-immunochromatographic sensor (CG-ICS) analysis, and 0.022-0.42 ng/g, 0.054-0.42 ng/g, 0.069-1.4 ng/g, and 0.19-2.2 ng/g by Eu-fluorescence-immunochromatographic sensor (EF-ICS) analysis. The intraassay and interassay recovery rates were 88.9 to 108.5% with coefficients of variation of 1.3 to 7.0% by CG-ICS analysis, and 88.6 to 113.6% with coefficients of variation of 1.3 to 8.1% by EF-ICS analysis. Thus, our newly developed ICS are sensitive and reliable, providing an option for rapid quantitative detection of enrofloxacin in food samples.
Collapse
Affiliation(s)
- Xianlu Lei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China.
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, 214121, People's Republic of China.
| |
Collapse
|
12
|
Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021; 94:442-463. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuewei Du
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xujie Su
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanxue Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Suyan Yi
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ge Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shan Jiang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
13
|
Development of an accurate lateral flow immunoassay for PEDV detection in swine fecal samples with a filter pad design. ANIMAL DISEASES 2021; 1:27. [PMID: 34778887 PMCID: PMC8572657 DOI: 10.1186/s44149-021-00029-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), as the main causative pathogen of viral diarrhea in pigs, has been reported to result in high morbidity and mortality in neonatal piglets and cause significant economic losses to the swine industry. Rapid diagnosis methods are essential for preventing outbreaks and transmission of this disease. In this study, a paper-based lateral flow immunoassay for the rapid diagnosis of PEDV in swine fecal samples was developed using stable color-rich latex beads as the label. Under optimal conditions, the newly developed latex bead-based lateral flow immunoassay (LBs-LFIA) attained a limit of detection (LOD) as low as 103.60 TCID50/mL and no cross-reactivity with other related swine viruses. To solve swine feces impurity interference, by adding a filtration unit design of LFIA without an additional pretreatment procedure, the LBs-LFIA gave good agreement (92.59%) with RT-PCR results in the analysis of clinical swine fecal samples (n = 108), which was more accurate than previously reported colloidal gold LFIA (74.07%) and fluorescent LFIA (86.67%). Moreover, LBs-LFIA showed sufficient accuracy (coefficient of variance [CV] < 15%) and stable (room temperature storage life > 56 days) performance for PEDV detection, which is promising for on-site analysis and user-driven testing in pig production system.
Collapse
|
14
|
Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. LAB ON A CHIP 2021; 21:1433-1453. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lab-on-paper, or microfluidic paper-based analytical devices (μPADs), use paper as a substrate material, and are patterned with a system of microchannels, reaction zones and sensing elements to perform analysis and detection. The sample transfer in such devices is performed by capillary action. As a result, external driving forces are not required, and hence the size and cost of the device are significantly reduced. Lab-on-paper devices have thus attracted significant attention for point-of-care medical diagnostic purposes in recent years, particularly in less-developed regions of the world lacking medical resources and infrastructures. This review discusses the major advances in lab-on-paper technology for blood analysis and diagnosis in the past five years. The review focuses particularly on the many clinical applications of lab-on-paper devices, including diabetes diagnosis, acute myocardial infarction (AMI) detection, kidney function diagnosis, liver function diagnosis, cholesterol and triglyceride (TG) analysis, sickle-cell disease (SCD) and phenylketonuria (PKU) analysis, virus analysis, C-reactive protein (CRP) analysis, blood ion analysis, cancer factor analysis, and drug analysis. The review commences by introducing the basic transmission principles, fabrication methods, structural characteristics, detection techniques, and sample pretreatment process of modern lab-on-paper devices. A comprehensive review of the most recent applications of lab-on-paper devices to the diagnosis of common human diseases using blood samples is then presented. The review concludes with a brief summary of the main challenges and opportunities facing the lab-on-paper technology field in the coming years.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
15
|
Xia G, Wang J, Liu Z, Bai L, Ma L. Effect of sample volume on the sensitivity of lateral flow assays through computational modeling. Anal Biochem 2021; 619:114130. [PMID: 33600781 DOI: 10.1016/j.ab.2021.114130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow assays (LFAs) are extensively used in qualitative detection because of their convenience, low cost, fast results, and ease of operation. However, the sample volume used in a lateral flow assay is usually determined experimentally. We test and find that the flow velocity is influenced by sample volume, using fluorescent microspheres as label particles, when analyte concentration is fixed in a sandwich LFA. A model is developed based on mass-action kinetics and advection-diffusion-reaction equation, combing the conjugate pad and nitrocellulose membrane. The model shows predictions from 10 to 120 μL, and predicts accurately the experimental results from 50 to 120 μL where the fluid can flow to the test line. Over all, the model can provide predictions over a wide range of sample volumes for sensitivity analysis. On the basis of the model, the sensitivity of the LFA can be improved according to the sample volume added in the experiment.
Collapse
Affiliation(s)
- Guo Xia
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Jiangtao Wang
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Zhijian Liu
- School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Lihao Bai
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Long Ma
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China
| |
Collapse
|
16
|
Natarajan S, Jayaraj J, Prazeres DMF. A Cellulose Paper-Based Fluorescent Lateral Flow Immunoassay for the Quantitative Detection of Cardiac Troponin I. BIOSENSORS 2021; 11:49. [PMID: 33672906 PMCID: PMC7918919 DOI: 10.3390/bios11020049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
This paper presents a lateral flow assay (LFA) for the quantitative, fluorescence-based detection of the cardiac biomarker troponin I (cTnI) that features an analytical strip made of cellulose filter paper. The results show that the wicking and test time are comparable to those obtained with conventional nitrocellulose (NC)-based LFAs. Further, the cellulose paper provides an excellent background with no auto-fluorescence that is very adequate in detecting fluorescent lines. While fluorescence that was generated with cellulose strips was lower when compared to that generated in NC strips, signals could be improved by layering carbon nanofibers (CNF) on the cellulose. A nonlinear behavior of the concentration-response relationship was observed for the LFA architectures with NC, cellulose, and cellulose-CNF in the 0 to 200 ng/mL cTnI concentration range. The measurements were consistent and characterized by coefficients of variation lower than 2.5%. Detection and quantitation limits that were in the range 1.28-1.40 ng/mL and 2.10-2.75 ng/mL were obtained for LFA with cellulose and cellulose CNF strips that are equivalent to the limits obtained with the standard NC LFA. Overall, we showed that commercially available filter paper can be used in the analytical strip of LFA.
Collapse
Affiliation(s)
- Satheesh Natarajan
- Healthcare Technology Innovation Centre, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600113, India; (S.N.); (J.J.)
| | - Joseph Jayaraj
- Healthcare Technology Innovation Centre, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600113, India; (S.N.); (J.J.)
- Department of Electrical Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600113, India
| | - Duarte Miguel F. Prazeres
- IBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
17
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
18
|
Yu S, Sun W, Zhang P, Chen Y, Yan L, Geng L, Yulin D. High Sensitive Visual Protein Detection by Microfluidic Lateral Flow Assay with On-Stripe Multiple Concentration. Chromatographia 2020. [DOI: 10.1007/s10337-020-03932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Tu D, Holderby A, Coté GL. Aptamer-based surface-enhanced resonance Raman scattering assay on a paper fluidic platform for detection of cardiac troponin I. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200149RR. [PMID: 32901465 PMCID: PMC7477632 DOI: 10.1117/1.jbo.25.9.097001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/26/2020] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE Cardiac troponin I (cTnI) is a primary biomarker for diagnosis of myocardial infarction (MI). In contrast to central laboratory tests for cTnI, point-of-care (POC) testing has the advantage of providing results when the patient is first encountered, which helps high-risk patients to be treated more rapidly and low-risk patients to be released in a timely fashion. A paper fluidic platform is good for POC testing because the paper is abundant, low cost, and disposable. However, current cTnI assays on paper platforms use antibodies as the recognition element, which has limitations due to the high cost of production and antibody stability issues at the POC. AIM To develop an aptamer-based assay on a paper strip using surface-enhanced resonance Raman spectroscopy (SERRS) for detection of cTnI in the clinically relevant range at the POC. APPROACH Gold nanoparticles (AuNPs) were functionalized with a Raman reporter molecule, malachite green isothiocyanate. The functionalized AuNPs were encapsulated in a silica shell and provided a SERRS signal using a handheld Raman system with a 638-nm excitation wavelength. A primary aptamer and a secondary aptamer of cTnI were used in a sandwich assay format to bind the cTnI on a test line of a paper fluidic platform. By measuring the SERRS signal from the test line, the concentration of cTnI was quantitatively determined. RESULTS The aptamer-based SERRS assay on a paper strip had a detection range of 0.016 to 0.1 ng / ml for cTnI, had good selectivity for cTnI compared to three other markers, had good stability over 10 days, and had good performance in the more complex serum sample matrix. CONCLUSIONS The aptamer-based SERRS assay on a paper strip has the potential to provide a sensitive, selective, stable, repeatable, and cost-effective platform for the detection of cTnI toward eventual use in diagnosis of MI at the POC.
Collapse
Affiliation(s)
- Dandan Tu
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Allison Holderby
- Texas A&M University, Department of Chemistry, College Station, Texas, United States
| | - Gerard L. Coté
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
- Texas A&M Engineering Experiment Station Center for Remote Health Technologies and Systems, College Station, Texas, United States
| |
Collapse
|