1
|
Filippova TA, Masamrekh RA, Khudoklinova YY, Shumyantseva VV, Kuzikov AV. The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity. Biochimie 2024; 222:169-194. [PMID: 38494106 DOI: 10.1016/j.biochi.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Yulia Yu Khudoklinova
- Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia.
| |
Collapse
|
2
|
Rai P, Hoba SN, Buchmann C, Subirana-Slotos RJ, Kersten C, Schirmeister T, Endres K, Bufe B, Tarasov A. Protease detection in the biosensor era: A review. Biosens Bioelectron 2024; 244:115788. [PMID: 37952320 DOI: 10.1016/j.bios.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Proteases have been proposed as potential biomarkers for several pathological conditions including cancers, multiple sclerosis and cardiovascular diseases, due to their ability to break down the components of extracellular matrix and basement membrane. The development of protease biosensors opened up the possibility to investigate the proteolytic activity of dysregulated proteases with higher efficiency over the traditional detection assays due to their quick detection capability, high sensitivity and selectivity, simple instrumentation and cost-effective fabrication processes. In contrast to the recently published review papers that primarily focused on one specific class of proteases or one specific detection method, this review article presents different optical and electrochemical detection methods that can be used to design biosensors for all major protease families. The benefits and drawbacks of various transducer techniques integrated into protease biosensing platforms are analyzed and compared. The main focus is on activity-based biosensors that use peptides as biorecognition elements. The effects of nanomaterials on biosensor performance are also discussed. This review should help readers to select the biosensor that best fits their needs, and contribute to the further development of this research field. Protease biosensors may allow better comprehension of protease overexperession and potentially enable novel devices for point-of-care testing.
Collapse
Affiliation(s)
- Pratika Rai
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Celine Buchmann
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Robert J Subirana-Slotos
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Bernd Bufe
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Alexey Tarasov
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany.
| |
Collapse
|
3
|
Uçar A, González-Fernández E, Staderini M, Murray AF, Mount AR, Bradley M. pH-Activated Dissolvable Polymeric Coatings to Reduce Biofouling on Electrochemical Sensors. J Funct Biomater 2023; 14:329. [PMID: 37367293 DOI: 10.3390/jfb14060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Implantable electrochemical sensors that enable the real-time detection of significant biomarkers offer huge potential for the enhancement and personalisation of therapies; however, biofouling is a key challenge encountered by any implantable system. This is particularly an issue immediately after implantation, when the foreign body response and associated biofouling processes are at their most active in passivating a foreign object. Here, we present the development of a sensor protection and activation strategy against biofouling, based on coatings consisting of a pH-triggered, dissolvable polymer, that covered a functionalised electrode surface. We demonstrate that reproducible delayed sensor activation can be achieved, and that the length of this delay can be controlled by the optimisation of coating thickness, homogeneity and density through tuning of the coating method and temperature. Comparative evaluation of the polymer-coated and uncoated probe-modified electrodes in biological media revealed significant improvements in their anti-biofouling characteristics, demonstrating that this offers a promising approach to the design of enhanced sensing devices.
Collapse
Affiliation(s)
- Ahmet Uçar
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
- Department of Energy Systems Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, 06010 Ankara, Turkey
| | - Eva González-Fernández
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FJ, UK
| | - Matteo Staderini
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FJ, UK
| | - Alan F Murray
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Andrew R Mount
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FJ, UK
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3FJ, UK
| |
Collapse
|
4
|
Filippova TA, Masamrekh RA, Shumyantseva VV, Latsis IA, Farafonova TE, Ilina IY, Kanashenko SL, Moshkovskii SA, Kuzikov AV. Electrochemical biosensor for trypsin activity assay based on cleavage of immobilized tyrosine-containing peptide. Talanta 2023; 257:124341. [PMID: 36821964 DOI: 10.1016/j.talanta.2023.124341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
In this work, we proposed a biosensor for trypsin proteolytic activity assay using immobilization of model peptides on screen-printed electrodes (SPE) modified with gold nanoparticles (AuNPs) prepared by electrosynthetic method. Sensing of proteolytic activity was based on electrochemical oxidation of tyrosine residues of peptides. We designed peptides containing N-terminal cysteine residue for immobilization on an SPE, modified with gold nanoparticles, trypsin-specific cleavage site and tyrosine residue as a redox label. The peptides were immobilized on SPE by formation of chemical bonds between mercapto groups of the N-terminal cysteine residues and AuNPs. After the incubation with trypsin, time-dependent cleavage of the immobilized peptides was observed by decline in tyrosine electrochemical oxidation signal. The kinetic parameters of trypsin, such as the catalytic constant (kcat), the Michaelis constant (KM) and the catalytic efficiency (kcat/KM), toward the CGGGRYR peptide were determined as 0.33 ± 0.01 min-1, 198 ± 24 nM and 0.0016 min-1 nM-1, respectively. Using the developed biosensor, we demonstrated the possibility of analysis of trypsin specificity toward the peptides with amino acid residues disrupting proteolysis. Further, we designed the peptides with proline or glutamic acid residues after the cleavage site (CGGRPYR and CGGREYR), and trypsin had reduced activity toward both of them according to the existing knowledge of the enzyme specificity. The developed biosensor system allows one to perform a comparative analysis of the protease steady-state kinetic parameters and specificity toward model peptides with different amino acid sequences.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia; Institute of Biomedical Chemistry, 10, Pogodinskaya st., Moscow, 119121, Russia
| | - Rami A Masamrekh
- Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia; Institute of Biomedical Chemistry, 10, Pogodinskaya st., Moscow, 119121, Russia
| | - Victoria V Shumyantseva
- Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia; Institute of Biomedical Chemistry, 10, Pogodinskaya st., Moscow, 119121, Russia
| | - Ivan A Latsis
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a Malaya Pirogovskaya st., Moscow, 119435, Russia
| | | | - Irina Y Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, 1a Malaya Pirogovskaya st., Moscow, 119435, Russia
| | - Sergey L Kanashenko
- Institute of Biomedical Chemistry, 10, Pogodinskaya st., Moscow, 119121, Russia
| | - Sergei A Moshkovskii
- Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine, 1a Malaya Pirogovskaya st., Moscow, 119435, Russia.
| | - Alexey V Kuzikov
- Pirogov Russian National Research Medical University, 1 Ostrovityanova st., Moscow 117997, Russia; Institute of Biomedical Chemistry, 10, Pogodinskaya st., Moscow, 119121, Russia.
| |
Collapse
|
5
|
Uçar A, Aydoğdu Tığ G, Er E. Recent advances in two dimensional nanomaterial-based electrochemical (bio)sensing platforms for trace-level detection of amino acids and pharmaceuticals. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Poma N, Vivaldi F, Bonini A, Biagini D, Bottai D, Tavanti A, Di Francesco F. Voltammetric sensing of trypsin activity using gelatin as a substrate. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
7
|
Paul J, Moniruzzaman M, Kim J. Framing of Poly(arylene-ethynylene) around Carbon Nanotubes and Iodine Doping for the Electrochemical Detection of Dopamine. BIOSENSORS 2023; 13:308. [PMID: 36979520 PMCID: PMC10046453 DOI: 10.3390/bios13030308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/01/2023]
Abstract
Dopamine (DA), an organic biomolecule that acts as both a hormone and a neurotransmitter, is essential in regulating emotions and metabolism in living organisms. The accurate determination of DA is important because it indicates early signs of serious neurological disorders. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) have received considerable attention in recent years as promising porous materials with an unrivaled degree of tunability for electrochemical biosensing applications. This study adopted a solvothermal strategy for the synthesis of a conjugated microporous poly(arylene ethynylene)-4 (CMP-4) network using the Sonagashira-Hagihara cross-coupling reaction. To increase the crystallinity and electrical conductivity of the material, CMP-4 was enveloped around carbon nanotubes (CNTs), followed by iodine doping. When used as an electrochemical probe, the as-synthesized material (I2-CMP-CNT-4) exhibited excellent selectivity and sensitivity to dopamine in the phosphate-buffered solution. The detection limits of the electrochemical sensor were 1 and 1.7 μM based on cyclic voltammetry (CV) and differential pulse voltammetry (DPV).
Collapse
Affiliation(s)
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
8
|
Alafeef M, Pan D. Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward. ACS NANO 2022; 16:11545-11576. [PMID: 35921264 PMCID: PMC9364978 DOI: 10.1021/acsnano.2c01697] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/12/2022] [Indexed: 05/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a transmitted respiratory disease caused by the infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although humankind has experienced several outbreaks of infectious diseases, the COVID-19 pandemic has the highest rate of infection and has had high levels of social and economic repercussions. The current COVID-19 pandemic has highlighted the limitations of existing virological tests, which have failed to be adopted at a rate to properly slow the rapid spread of SARS-CoV-2. Pandemic preparedness has developed as a focus of many governments around the world in the event of a future outbreak. Despite the largely widespread availability of vaccines, the importance of testing has not diminished to monitor the evolution of the virus and the resulting stages of the pandemic. Therefore, developing diagnostic technology that serves as a line of defense has become imperative. In particular, that test should satisfy three criteria to be widely adopted: simplicity, economic feasibility, and accessibility. At the heart of it all, it must enable early diagnosis in the course of infection to reduce spread. However, diagnostic manufacturers need guidance on the optimal characteristics of a virological test to ensure pandemic preparedness and to aid in the effective treatment of viral infections. Nanomaterials are a decisive element in developing COVID-19 diagnostic kits as well as a key contributor to enhance the performance of existing tests. Our objective is to develop a profile of the criteria that should be available in a platform as the target product. In this work, virus detection tests were evaluated from the perspective of the COVID-19 pandemic, and then we generalized the requirements to develop a target product profile for a platform for virus detection.
Collapse
Affiliation(s)
- Maha Alafeef
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
- Biomedical Engineering Department, Jordan
University of Science and Technology, Irbid 22110,
Jordan
| | - Dipanjan Pan
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
| |
Collapse
|
9
|
Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity. Chem Soc Rev 2022; 51:2081-2120. [PMID: 35188510 DOI: 10.1039/d1cs00798j] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Alicia Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Daniel J Norman
- Technical University of Munich, Trogerstrasse, 30, 81675, Munich, Germany
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
10
|
Patterson C, Dietrich B, Wilson C, Mount AR, Adams DJ. Electrofabrication of large volume di- and tripeptide hydrogels via hydroquinone oxidation. SOFT MATTER 2022; 18:1064-1070. [PMID: 35022641 DOI: 10.1039/d1sm01626a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fabrication of protected peptide-based hydrogels on electrode surfaces can be achieved by employing the electrochemical oxidation of hydroquinone to benzoquinone, liberating protons at the electrode-solution interface. The localised reduction in pH below the dipeptide gelator molecules pKa initiates the neutralisation, self-assembly and formation of self-supporting hydrogels exclusively at the electrode surface. Previous examples have been on a nanometre to millimetre scale, using deposition times ranging from seconds to minutes. However, the maximum size to which these materials can grow and their subsequent mechanical properties have not yet been investigated. Here, we report the fabrication of the largest reported di- and tri-peptide based hydrogels using this electrochemical method, employing deposition times of two to five hours. To overcome the oxidation of hydroquinone in air, the fabrication process was performed under an inert nitrogen atmosphere. We show that this approach can be used to form multilayer gels, with the mechanical properties of each layer determined by gelator composition. We also describe examples where gel-to-crystal transitions and syneresis occur within the material.
Collapse
Affiliation(s)
| | - Bart Dietrich
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| | - Andrew R Mount
- EastCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
11
|
Arivazhagan M, Maduraiveeran G. Gold dispersed hierarchical flower-like copper oxide microelectrodes for the sensitive detection of glucose and lactic acid in human serum and urine. Biomater Sci 2022; 10:4538-4548. [DOI: 10.1039/d2bm00527a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report self-supported gold dispersed copper oxide microflowers (Au@CuO MFs) on copper microelectrodes (CME) as a sensitive platform for the sensing of glucose and lactic acid in human serum...
Collapse
|
12
|
Wang M, Li L, Zhang L, Zhao J, Jiang Z, Wang W. Peptide-Derived Biosensors and Their Applications in Tumor Immunology-Related Detection. Anal Chem 2021; 94:431-441. [PMID: 34846861 DOI: 10.1021/acs.analchem.1c04461] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small-molecular targeting peptides possess features of biocompatibility, affinity, and specificity, which is widely applied in molecular recognition and detection. Moreover, peptides can be developed into highly ordered supramolecular assemblies with boosting binding affinities, diverse functions, and enhanced stabilities suitable for biosensors construction. In this Review, we summarize recent progress of peptide-based biosensors for precise detection, especially on tumor-related analysis, as well as further provide a brief overview of the progress in tumor immune-related detection. Also, we are looking forward to the prospective future of peptide-based biosensors.
Collapse
Affiliation(s)
- Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhenqi Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
13
|
Zhou S, Cui P, Sheng J, Zhang X, Jiang P, Ni X, Cao K, Qiu L. A novel assay for the determination of PreScission protease by capillary electrophoresis. Biophys Chem 2021; 281:106696. [PMID: 34954553 DOI: 10.1016/j.bpc.2021.106696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
The detection of protease activity in the body plays a significant role in the early diagnosis of diseases. However, enzymes inevitably come into contact with various complex biological fluids in the body during the flow, which greatly increases the detection difficulty. Therefore, protease detection in vivo has great challenges. Herein, we report a new assay for detecting protease using capillary electrophoresis inside a capillary with semicircular bends. We first designed a peptide substrate, and then the peptide was self-assembled with quantum dots to form a QDs-peptide substrate. The capillary was bent to semicircular-shaped turns and served as a micro-reactor to allow protease and substrate react in it. Due to the different electrophoretic velocity, the protease and the substrate were mixed inside the bent capillary with sequential injections and the cleavage of the substrate can be detected using capillary electrophoresis combined with Förster resonance energy transfer technology. This novel assay will greatly expand the detection of enzyme activity in vivo.
Collapse
Affiliation(s)
- Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China; The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, PR China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China; The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, PR China
| | - Jingyu Sheng
- Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, PR China; The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, Jiangsu, PR China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, PR China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, PR China.
| | - Kai Cao
- Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, Jiangsu, PR China; The Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, Jiangsu, PR China.
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China.
| |
Collapse
|
14
|
Sfragano PS, Moro G, Polo F, Palchetti I. The Role of Peptides in the Design of Electrochemical Biosensors for Clinical Diagnostics. BIOSENSORS-BASEL 2021; 11:bios11080246. [PMID: 34436048 PMCID: PMC8391273 DOI: 10.3390/bios11080246] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
Peptides represent a promising class of biorecognition elements that can be coupled to electrochemical transducers. The benefits lie mainly in their stability and selectivity toward a target analyte. Furthermore, they can be synthesized rather easily and modified with specific functional groups, thus making them suitable for the development of novel architectures for biosensing platforms, as well as alternative labelling tools. Peptides have also been proposed as antibiofouling agents. Indeed, biofouling caused by the accumulation of biomolecules on electrode surfaces is one of the major issues and challenges to be addressed in the practical application of electrochemical biosensors. In this review, we summarise trends from the last three years in the design and development of electrochemical biosensors using synthetic peptides. The different roles of peptides in the design of electrochemical biosensors are described. The main procedures of selection and synthesis are discussed. Selected applications in clinical diagnostics are also described.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Giulia Moro
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (G.M.); (F.P.)
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (G.M.); (F.P.)
| | - Ilaria Palchetti
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
- Correspondence:
| |
Collapse
|
15
|
Suni II. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. BIOSENSORS 2021; 11:239. [PMID: 34356710 PMCID: PMC8301891 DOI: 10.3390/bios11070239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
Electrochemical biosensors have potential applications for agriculture, food safety, environmental monitoring, sports medicine, biomedicine, and other fields. One of the primary challenges in this field is the immobilization of biomolecular probes atop a solid substrate material with adequate stability, storage lifetime, and reproducibility. This review summarizes the current state of the art for covalent bonding of biomolecules onto solid substrate materials. Early research focused on the use of Au electrodes, with immobilization of biomolecules through ω-functionalized Au-thiol self-assembled monolayers (SAMs), but stability is usually inadequate due to the weak Au-S bond strength. Other noble substrates such as C, Pt, and Si have also been studied. While their nobility has the advantage of ensuring biocompatibility, it also has the disadvantage of making them relatively unreactive towards covalent bond formation. With the exception of Sn-doped In2O3 (indium tin oxide, ITO), most metal oxides are not electrically conductive enough for use within electrochemical biosensors. Recent research has focused on transition metal dichalcogenides (TMDs) such as MoS2 and on electrically conductive polymers such as polyaniline, polypyrrole, and polythiophene. In addition, the deposition of functionalized thin films from aryldiazonium cations has attracted significant attention as a substrate-independent method for biofunctionalization.
Collapse
Affiliation(s)
- Ian Ivar Suni
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA; ; Tel.: +1-618-453-7822
- School of Chemistry and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- School of Mechanical, Aerospace and Materials Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
16
|
Lakard S, Pavel IA, Lakard B. Electrochemical Biosensing of Dopamine Neurotransmitter: A Review. BIOSENSORS 2021; 11:179. [PMID: 34204902 PMCID: PMC8229248 DOI: 10.3390/bios11060179] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
Neurotransmitters are biochemical molecules that transmit a signal from a neuron across the synapse to a target cell, thus being essential to the function of the central and peripheral nervous system. Dopamine is one of the most important catecholamine neurotransmitters since it is involved in many functions of the human central nervous system, including motor control, reward, or reinforcement. It is of utmost importance to quantify the amount of dopamine since abnormal levels can cause a variety of medical and behavioral problems. For instance, Parkinson's disease is partially caused by the death of dopamine-secreting neurons. To date, various methods have been developed to measure dopamine levels, and electrochemical biosensing seems to be the most viable due to its robustness, selectivity, sensitivity, and the possibility to achieve real-time measurements. Even if the electrochemical detection is not facile due to the presence of electroactive interfering species with similar redox potentials in real biological samples, numerous strategies have been employed to resolve this issue. The objective of this paper is to review the materials (metals and metal oxides, carbon materials, polymers) that are frequently used for the electrochemical biosensing of dopamine and point out their respective advantages and drawbacks. Different types of dopamine biosensors, including (micro)electrodes, biosensing platforms, or field-effect transistors, are also described.
Collapse
Affiliation(s)
| | | | - Boris Lakard
- Institut UTINAM, UMR CNRS 6213, University of Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France; (S.L.); (I.-A.P.)
| |
Collapse
|
17
|
Vanova V, Mitrevska K, Milosavljevic V, Hynek D, Richtera L, Adam V. Peptide-based electrochemical biosensors utilized for protein detection. Biosens Bioelectron 2021; 180:113087. [PMID: 33662844 DOI: 10.1016/j.bios.2021.113087] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Proteins are generally detected as biomarkers for tracing or determining various disorders in organisms. Biomarker proteins can be tracked in samples with various origins and in different concentrations, revealing whether an organism is in a healthy or unhealthy state. In regard to detection, electrochemical biosensors are a potential fusion of electronics, chemistry, and biology, allowing for fast and early point-of-care detection from a biological sample with the advantages of high sensitivity, simple construction, and easy operation. Peptides present a promising approach as a biorecognition element when connected with electrochemical biosensors. The benefits of short peptides lie mainly in their good stability and selective affinity to a target analyte. Therefore, peptide-based electrochemical biosensors (PBEBs) represent an alternative approach for the detection of different protein biomarkers. This review provides a summary of the past decade of recently proposed PBEBs designed for protein detection, dividing them according to different protein types: (i) enzyme detection, including proteases and kinases; (ii) antibody detection; and (iii) other protein detection. According to these protein types, different sensing mechanisms are discussed, such as the peptide cleavage by a proteases, phosphorylation by kinases, presence of antibodies, and exploiting of affinities; furthermore, measurements are obtained by different electrochemical methods. A discussion and comparison of various constructions, modifications, immobilization strategies and different sensing techniques in terms of high sensitivity, selectivity, repeatability, and potential for practical application are presented.
Collapse
Affiliation(s)
- Veronika Vanova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Katerina Mitrevska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61 200, Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61 200, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61 200, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61 200, Brno, Czech Republic.
| |
Collapse
|
18
|
Shumeiko V, Paltiel Y, Bisker G, Hayouka Z, Shoseyov O. A Paper-Based Near-Infrared Optical Biosensor for Quantitative Detection of Protease Activity Using Peptide-Encapsulated SWCNTs. SENSORS 2020; 20:s20185247. [PMID: 32937986 PMCID: PMC7570893 DOI: 10.3390/s20185247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
A protease is an enzyme that catalyzes proteolysis of proteins into smaller polypeptides or single amino acids. As crucial elements in many biological processes, proteases have been shown to be informative biomarkers for several pathological conditions in humans, animals, and plants. Therefore, fast, reliable, and cost-effective protease biosensors suitable for point-of-care (POC) sensing may aid in diagnostics, treatment, and drug discovery for various diseases. This work presents an affordable and simple paper-based dipstick biosensor that utilizes peptide-encapsulated single-wall carbon nanotubes (SWCNTs) for protease detection. Upon enzymatic digestion of the peptide, a significant drop in the photoluminescence (PL) of the SWCNTs was detected. As the emitted PL is in the near-infrared region, the developed biosensor has a good signal to noise ratio in biological fluids. One of the diseases associated with abnormal protease activity is pancreatitis. In acute pancreatitis, trypsin concentration could reach up to 84 µg/mL in the urine. For proof of concept, we demonstrate the feasibility of the proposed biosensor for the detection of the abnormal levels of trypsin activity in urine samples.
Collapse
Affiliation(s)
- Vlad Shumeiko
- Department of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Yossi Paltiel
- Center for Nanoscience and Nanotechnology, Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel;
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- Correspondence: (Z.H.); (O.S.)
| | - Oded Shoseyov
- Department of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
- Correspondence: (Z.H.); (O.S.)
| |
Collapse
|