1
|
Escudero-Cernuda S, Clases D, Eiro N, González LO, Fraile M, Vizoso FJ, Fernández-Sánchez ML, Gonzalez de Vega R. Quantitative distribution of essential elements and non-essential metals in breast cancer tissues by LA-ICP-TOF-MS. Anal Bioanal Chem 2025; 417:361-371. [PMID: 39557687 PMCID: PMC11698889 DOI: 10.1007/s00216-024-05652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Breast cancer (BC) is the leading cause of cancer death among women worldwide, making the discovery and quantification of new biomarkers essential for improving diagnostic and preventive strategies to limit dissemination and improve prognosis. Essential trace metals such as Fe, Cu, and Zn may play critical roles in the pathophysiology of both benign and malignant breast tumors. However, due to the high metabolic activity and reduced element selectivity of cancer cells, also non-essential elements may be taken up and may even be implicated with disease progression. This study investigates the spatial distribution and concentrations of both essential and non-essential elements in breast tissues, assessing their potential for diagnostic applications. Laser ablation (LA)-inductively coupled plasma-mass spectrometry (ICP-MS) with a time-of-flight (ToF) mass analyzer (LA-ICP-ToF-MS) was used to inquire the distribution of almost all elements across the periodic table and their abundance in metastatic (n = 11), non-metastatic (n = 7), and healthy (n = 4) breast tissues. Quantification was achieved using gelatine-based standards for external calibration to quantitatively map various elements. Overall, the Fe, Cu, Zn, Sr, and Ba levels were significantly increased in tumor samples with Sr and Ba showing strong correlation, likely due to their similar chemistry. Comparison of calibrated LA-ICP-ToF-MS data with a histologic staining demonstrated the possibility to clearly differentiate between various tissue types and structures in breast tissues such as tumor niche and stroma. The levels of the studied elements were significantly higher in the tumor niche areas compared to the stroma, and for Fe, a significant accumulation was observed in the tumor niche areas from the metastatic patient group relative to the levels found in the same areas of the non-metastatic group.
Collapse
Affiliation(s)
- Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - David Clases
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Noemi Eiro
- Research Unit, Jove Hospital Foundation, Gijón, Spain
| | | | - María Fraile
- Research Unit, Jove Hospital Foundation, Gijón, Spain
| | | | | | | |
Collapse
|
2
|
Agrohia DK, Goswami R, Jantarat T, Çiçek YA, Thongsukh K, Jeon T, Bell JM, Rotello VM, Vachet RW. Suborgan Level Quantitation of Proteins in Tissues Delivered by Polymeric Nanocarriers. ACS NANO 2024; 18:16808-16818. [PMID: 38870478 PMCID: PMC11497159 DOI: 10.1021/acsnano.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Amidst the rapid growth of protein therapeutics as a drug class, there is an increased focus on designing systems to effectively deliver proteins to target organs. Quantitative monitoring of protein distributions in tissues is essential for optimal development of delivery systems; however, existing strategies can have limited accuracy, making it difficult to assess suborgan dosing. Here, we describe a quantitative imaging approach that utilizes metal-coded mass tags and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to quantify the suborgan distributions of proteins in tissues that have been delivered by polymeric nanocarriers. Using this approach, we measure nanomole per gram levels of proteins as delivered by guanidinium-functionalized poly(oxanorborneneimide) (PONI) polymers to various tissues, including the alveolar region of the lung. Due to the multiplexing capability of the LA-ICP-MS imaging, we are also able to simultaneously quantify protein and polymer distributions, obtaining valuable information about the relative excretion pathways of the protein cargo and carrier. This imaging approach will facilitate quantitative correlations between nanocarrier properties and protein cargo biodistributions.
Collapse
Affiliation(s)
- Dheeraj K. Agrohia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Teerapong Jantarat
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yağız Anil Çiçek
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Korndanai Thongsukh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Taewon Jeon
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jonathan M. Bell
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Jantarat T, Lauterbach JD, Doungchawee J, Agrohia DK, Vachet RW. Quantitative imaging of the sub-organ distributions of nanomaterials in biological tissues via laser ablation inductively coupled plasma mass spectrometry. Analyst 2023; 148:4479-4488. [PMID: 37575048 DOI: 10.1039/d3an00839h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nanomaterials have been employed in many biomedical applications, and their distributions in biological systems can provide an understanding of their behavior in vivo. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) can be used to determine the distributions of metal-based NMs in biological systems. However, LA-ICP-MS has not commonly been used to quantitatively measure the cell-specific or sub-organ distributions of nanomaterials in tissues. Here, we describe a new platform that uses spiked gelatin standards with control tissues on top to obtain an almost perfect tissue mimic for quantitative imaging purposes. In our approach, gelatin is spiked with both nanomaterial standards and an internal standard to improve quantitation and image quality. The value of the developed approach is illustrated by determining the sub-organ distributions of different metal-based and metal-tagged polymeric nanomaterials in mice organs. The LA-ICP-MS images reveal that the chemical and physical properties of the nanomaterials cause them to distribute in quantitatively different extents in spleens, kidneys, and tumors, providing new insight into the fate of nanomaterials in vivo. Furthermore, we demonstrate that this approach enables quantitative co-localization of nanomaterials and their cargo. We envision this method being a valuable tool in the development of nanomaterial drug delivery systems.
Collapse
Affiliation(s)
- Teerapong Jantarat
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Joshua D Lauterbach
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Dheeraj K Agrohia
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01002, USA.
| |
Collapse
|
4
|
Wang J, Zhang T, Liao Y, Chen W, Liang S, Xu S, Fang H, Wang M, Zheng L, Gu Z, Zhang Z, Wang B, Bi Y, Feng W. 3D-imaging and quantitative assessment for size-related penetration of HfO 2 nanoparticles in breast cancer tumor by synchrotron radiation microcomputed tomography. Anal Chim Acta 2023; 1266:341352. [PMID: 37244662 DOI: 10.1016/j.aca.2023.341352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/22/2023] [Accepted: 05/09/2023] [Indexed: 05/29/2023]
Abstract
The development of quantitative analytical methods to assess the heterogeneous distribution and penetration of nanodrugs in solid tumors is of great importance for anticancer nanomedicine. Herein, Expectation-Maximization (EM) iterate algorithm and threshold segmentation methods were used to visualize and quantify the spatial distribution patterns, penetration depth and diffusion features of two-sized hafnium oxide nanoparticles (s-HfO2 NPs in 2 nm and l-HfO2 NPs in 50 nm sizes) in mouse models of breast cancer using synchrotron radiation micro-computed tomography (SR-μCT) imaging technique. The three-dimensional (3D) SR-μCT images were reconstructed based on the EM iterate algorithm thus clearly displayed the size-related penetration and distribution within the tumors after intra-tumoral injection of HfO2 NPs and X-ray irradiation treatment. The obtained 3D animations clearly show that a considerable amount of s-HfO2 and l-HfO2 NPs diffused into tumor tissues at 2 h post-injection and displayed the obvious increase in the tumor penetration and distribution area within the tumors at day 7 after combination with low-dose X-ray irradiation treatment. A thresholding segmentation for 3D SR-μCT image was developed to assess the penetration depth and quantity of HfO2 NPs along the injection sites in tumors. The developed 3D-imaging techniques revealed that the s-HfO2 NPs presented more homogeneous distribution pattern, diffused more quickly and penetrated more deeply within tumor tissues than the l-HfO2 NPs did. Whereas, the low-dose X-ray irradiation treatment greatly enhanced the wide distribution and deep penetration of both s-HfO2 and l-HfO2 NPs. This developed method may provide quantitative distribution and penetration information for the X-ray sensitive high-Z metal nanodrugs in the cancer imaging and therapy.
Collapse
Affiliation(s)
- Jiali Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingfeng Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Zhang X, Liu Y, Doungchawee J, Castellanos-García LJ, Sikora KN, Jeon T, Goswami R, Fedeli S, Gupta A, Huang R, Hirschbiegel CM, Cao-Milán R, Majhi PKD, Cicek YA, Liu L, Jerry DJ, Vachet RW, Rotello VM. Bioorthogonal nanozymes for breast cancer imaging and therapy. J Control Release 2023; 357:31-39. [PMID: 36948419 PMCID: PMC10164715 DOI: 10.1016/j.jconrel.2023.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Bioorthogonal catalysis via transition metal catalysts (TMCs) enables the generation of therapeutics locally through chemical reactions not accessible by biological systems. This localization can enhance the efficacy of anticancer treatment while minimizing off-target effects. The encapsulation of TMCs into nanomaterials generates "nanozymes" to activate imaging and therapeutic agents. Here, we report the use of cationic bioorthogonal nanozymes to create localized "drug factories" for cancer therapy in vivo. These nanozymes remained present at the tumor site at least seven days after a single injection due to the interactions between cationic surface ligands and negatively charged cell membranes and tissue components. The prodrug was then administered systemically, and the nanozymes continuously converted the non-toxic molecules into active drugs locally. This strategy substantially reduced the tumor growth in an aggressive breast cancer model, with significantly reduced liver damage compared to traditional chemotherapy.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | | - Kristen N Sikora
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | | - Roberto Cao-Milán
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Prabin K D Majhi
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Liang Liu
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - D Joseph Jerry
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
6
|
Clases D, Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences-Part 1: fundamentals, stand-alone and hyphenated techniques. Anal Bioanal Chem 2022; 414:7337-7361. [PMID: 36028724 PMCID: PMC9482897 DOI: 10.1007/s00216-022-04259-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022]
Abstract
Since its inception in the early 80s, inductively coupled plasma-mass spectrometry has developed to the method of choice for the analysis of elements in complex biological systems. High sensitivity paired with isotopic selectivity and a vast dynamic range endorsed ICP-MS for the inquiry of metals in the context of biomedical questions. In a stand-alone configuration, it has optimal qualities for the biomonitoring of major, trace and toxicologically relevant elements and may further be employed for the characterisation of disrupted metabolic pathways in the context of diverse pathologies. The on-line coupling to laser ablation (LA) and chromatography expanded the scope and application range of ICP-MS and set benchmarks for accurate and quantitative speciation analysis and element bioimaging. Furthermore, isotopic analysis provided new avenues to reveal an altered metabolism, for the application of tracers and for calibration approaches. In the last two decades, the scope of ICP-MS was further expanded and inspired by the introduction of new instrumentation and methodologies including novel and improved hardware as well as immunochemical methods. These additions caused a paradigm shift for the biomedical application of ICP-MS and its impact in the medical sciences and enabled the analysis of individual cells, their microenvironment, nanomaterials considered for medical applications, analysis of biomolecules and the design of novel bioassays. These new facets are gradually recognised in the medical communities and several clinical trials are underway. Altogether, ICP-MS emerged as an extremely versatile technique with a vast potential to provide novel insights and complementary perspectives and to push the limits in the medical disciplines. This review will introduce the different facets of ICP-MS and will be divided into two parts. The first part will cover instrumental basics, technological advances, and fundamental considerations as well as traditional and current applications of ICP-MS and its hyphenated techniques in the context of biomonitoring, bioimaging and elemental speciation. The second part will build on this fundament and describe more recent directions with an emphasis on nanomedicine, immunochemistry, mass cytometry and novel bioassays.
Collapse
Affiliation(s)
- David Clases
- Nano Mirco LAB, Institute of Chemistry, University of Graz, Graz, Austria.
| | | |
Collapse
|
7
|
Johnson D, Clases D, Fernández-Sánchez ML, Eiro N, González LO, Vizoso FJ, Doble PA, de Vega RG. Quantitative multiplexed analysis of MMP-11 and CD45 in metastatic breast cancer tissues by immunohistochemistry-assisted LA-ICP-MS. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6648710. [PMID: 35867868 DOI: 10.1093/mtomcs/mfac052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022]
Abstract
Breast cancer is the leading cause of cancer death and tremendous efforts are undertaken to limit dissemination and to provide effective treatment. Various histopathological parameters are routinely assessed in breast cancer biopsies to provide valuable diagnostic and prognostic information. MMP-11 and CD45 are tumour associated antigens and potentially valuable biomarkers for grading aggressiveness and metastatic probability. This paper presents methods for quantitative and multiplexed imaging of MMP-11 and CD45 in breast cancer tissues and investigates their potential for improved cancer characterisation and patient stratification. An immunohistochemistry (IHC)-assisted LA-ICP-MS method was successfully developed and optimised using lanthanide tagged monoclonal antibodies as proxies to determine spatial distributions and concentrations of the two breast cancer biomarkers. The labelling degree of antibodies was determined via size exclusion-inductively coupled plasma-tandem mass spectrometry (SEC-ICP-MS/MS) employing on-line calibration via post-column isotope dilution analysis. The calibration of spatial distributions of labelled lanthanides in tissues was performed by ablating mould prepared gelatine standards spiked with element standards. Knowledge of labelling degrees enabled the translation of lanthanide concentrations into biomarkers concentrations. k-means clustering was used to select tissue areas for statistical analysis and mean concentrations were compared for sets of metastatic, non-metastatic and healthy samples. MMP-11 was expressed in stroma surrounding tumour areas, while CD45 was predominantly found inside tumour areas of high cell density. There was no significant correlation between CD45 and metastasis (p = 0.70), however, MMP-11 was significantly upregulated (202%) in metastatic samples compared to non-metastatic (p = 0.0077) and healthy tissues (p = 0.0087).
Collapse
Affiliation(s)
- Dylan Johnson
- The Atomic Medicine Initiative, University of Technology Sydney, NSW, Australia
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, NSW, Australia.,TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Austria
| | | | - Noemi Eiro
- Research Unit, Hospital de Jove Foundation, Gijón, Spain
| | | | | | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, NSW, Australia
| | - Raquel Gonzalez de Vega
- The Atomic Medicine Initiative, University of Technology Sydney, NSW, Australia.,TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Austria
| |
Collapse
|
8
|
Schwarz C, Buchholz R, Jawad M, Hoesker V, Terwesten-Solé C, Karst U, Linsen L, Vogl T, Hoerr V, Wildgruber M, Faber C. Fingerprints of Element Concentrations in Infective Endocarditis Obtained by Mass Spectrometric Imaging and t-Distributed Stochastic Neighbor Embedding. ACS Infect Dis 2022; 8:360-372. [PMID: 35045258 DOI: 10.1021/acsinfecdis.1c00485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus-induced infective endocarditis (IE) is a life-threatening disease. Differences in virulence between distinct S. aureus strains, which are partly based on the molecular mechanisms during bacterial adhesion, are not fully understood. Yet, distinct molecular or elemental patterns, occurring during specific steps in the adhesion process, may help to identify novel targets for accelerated diagnosis or improved treatment. Here, we use laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of post-mortem tissue slices of an established mouse model of IE to obtain fingerprints of element distributions in infected aortic valve tissue. Three S. aureus strains with different virulence due to deficiency in distinct adhesion molecules (fibronectin-binding protein A and staphylococcal protein A) were used to assess strain-specific patterns. Data analysis was performed by t-distributed stochastic neighbor embedding (t-SNE) of mass spectrometry imaging data, using manual reference tissue classification in histological specimens. This procedure allowed for obtaining distinct element patterns in infected tissue for all three bacterial strains and for comparing those to patterns observed in healthy mice or after sterile inflammation of the valve. In tissue from infected mice, increased concentrations of calcium, zinc, and magnesium were observed compared to noninfected mice. Between S. aureus strains, pronounced variations were observed for manganese. The presented approach is sensitive for detection of S. aureus infection. For strain-specific tissue characterization, however, further improvements such as establishing a database with elemental fingerprints may be required.
Collapse
Affiliation(s)
- Christian Schwarz
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University Hospital Münster, 48149 Münster, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Muhammad Jawad
- Institute of Computer Science, University of Münster, 48149 Münster, Germany
| | - Vanessa Hoesker
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University Hospital Münster, 48149 Münster, Germany
| | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Lars Linsen
- Institute of Computer Science, University of Münster, 48149 Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University Hospital Münster, 48149 Münster, Germany
| | - Verena Hoerr
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University Hospital Münster, 48149 Münster, Germany
| | - Moritz Wildgruber
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University Hospital Münster, 48149 Münster, Germany
- Department for Radiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Cornelius Faber
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
9
|
Laser Ablation ICP-MS Analysis of Chemically Different Regions of Rat Prostate Gland with Implanted Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The comparison of tissues analyzed by LA-ICP-MS is challenging in many aspects, both medical and mathematical. The concept of distinguishing regions of interest (ROIs) was proposed in the literature, allowing for data reduction and targeted comparative analysis. ROIs can be drawn before any analysis, by indicating the anatomical parts of tissue, or after the first step of analysis, by using elemental distribution maps and characteristic regions of enrichment in selected elements. A simple method for identifying different regions, without the manual extraction of image fragments, is highly needed in biological experiments, where large groups of individuals (with samples taken from each of them) is very common. In the present study, two ROIs were distinguished: (1) tissue-rich in fat (and tissue-poor in water); and (2) tissue-rich in water (and tissue-poor in fat). ROIs were extracted mathematically, using an algorithm based on the relationship between 13C and 23Na signal intensities. A cut-off point was indicated in the point of the simultaneous decrease in 13C and increase in 23Na signal intensity. Separate analyses of chemically different ROIs allow for targeted comparison, which is a great advantage of laser ablation over liquid introductions to ICP-MS. In the present experiment, tissues were provided from animals with implanted prostate cancer cells as well as supplemented with mineral compounds particularly important both for prostate gland functions (Zn and Se) and neoplastic processes (Ca, Fe, and Cu). One of the goals was to try to determine whether dietary supplementation qualitatively and quantitatively affects the mineral composition of the prostate gland.
Collapse
|
10
|
Castellanos-Garcia LJ, Sikora KN, Doungchawee J, Vachet RW. LA-ICP-MS and MALDI-MS image registration for correlating nanomaterial biodistributions and their biochemical effects. Analyst 2021; 146:7720-7729. [PMID: 34821231 DOI: 10.1039/d1an01783g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) imaging and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) are complementary methods that measure distributions of elements and biomolecules in tissue sections. Quantitative correlations of the information provided by these two imaging modalities requires that the datasets be registered in the same coordinate system, allowing for pixel-by-pixel comparisons. We describe here a computational workflow written in Python that accomplishes this registration, even for adjacent tissue sections, with accuracies within ±50 μm. The value of this registration process is demonstrated by correlating images of tissue sections from mice injected with gold nanomaterial drug delivery systems. Quantitative correlations of the nanomaterial delivery vehicle, as detected by LA-ICP-MS imaging, with biochemical changes, as detected by MALDI-MSI, provide deeper insight into how nanomaterial delivery systems influence lipid biochemistry in tissues. Moreover, the registration process allows the more precise images associated with LA-ICP-MS imaging to be leveraged to achieve improved segmentation in MALDI-MS images, resulting in the identification of lipids that are most associated with different sub-organ regions in tissues.
Collapse
Affiliation(s)
| | - Kristen N Sikora
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
11
|
Sikora KN, Castellanos-García LJ, Hardie JM, Liu Y, Farkas ME, Rotello VM, Vachet RW. Nanodelivery vehicles induce remote biochemical changes in vivo. NANOSCALE 2021; 13:12623-12633. [PMID: 34264256 PMCID: PMC8380036 DOI: 10.1039/d1nr02563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanomaterial-based platforms are promising vehicles for the controlled delivery of therapeutics. For these systems to be both efficacious and safe, it is essential to understand where the carriers accumulate and to reveal the site-specific biochemical effects they produce in vivo. Here, a dual-mode mass spectrometry imaging (MSI) method is used to evaluate the distributions and biochemical effects of anti-TNF-α nanoparticle stabilized capsules (NPSCs) in mice. It is found that most of the anticipated biochemical changes occur in sub-organ regions that are separate from where the nanomaterials accumulate. In particular, TNF-α-specific lipid biomarker levels change in immune cell-rich regions of organs, while the NPSCs accumulate in spatially isolated filtration regions. Biochemical changes that are associated with the nanomaterials themselves are also observed, demonstrating the power of matrix-assisted laser desorption/ionization (MALDI) MSI to reveal markers indicating possible off-target effects of the delivery agent. This comprehensive assessment using MSI provides spatial context of nanomaterial distributions and efficacy that cannot be easily achieved with other imaging methods, demonstrating the power of MSI to evaluate both expected and unexpected outcomes associated with complex therapeutic delivery systems.
Collapse
Affiliation(s)
- Kristen N Sikora
- Department of Chemistry, University of Massachusetts Amherst, 240 Thatcher Way, Life Sciences Laboratory, Amherst, MA 01003, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Lockwood TE, Westerhausen MT, Doble PA. Pew 2: Open-Source Imaging Software for Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Anal Chem 2021; 93:10418-10423. [PMID: 34283564 DOI: 10.1021/acs.analchem.1c02138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Open-sourced software is a key component of the mass spectrometry imaging field, where transparency in data processing is vital. Imaging of trace elements and immunohistochemically labeled biomolecules in tissue sections is typically performed using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). However, efficient and facile processing of images is hampered by a lack of verifiable and user-friendly software that supports multiple LA-ICP-MS platforms. In this technical note, we introduce Pew2, a LA-ICP-MS specific and feature-rich open-source image processing software that is compatible with common ICP-MS vendors. Pew2 is designed to be fast and easy to use and adheres to modern visualization philosophies to maximize productivity and to minimize data interpretation errors and image anomalies.
Collapse
Affiliation(s)
- Thomas E Lockwood
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Mika T Westerhausen
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
13
|
Nordhorn ID, Dietrich D, Verlemann C, Vennemann A, Schmid R, Elinkmann M, Fuchs J, Sperling M, Wiemann M, Karst U. Spatially and size-resolved analysis of gold nanoparticles in rat spleen after intratracheal instillation by laser ablation-inductively coupled plasma-mass spectrometry. Metallomics 2021; 13:6274684. [PMID: 33979446 DOI: 10.1093/mtomcs/mfab028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/17/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
In a dual approach, laser ablation-inductively coupled plasma-mass spectrometry was applied to investigate spleen samples of rats after intratracheal instillation of polyvinylpyrrolidone-coated gold nanoparticles. First, spatially resolved imaging analysis was deployed to investigate gold translocation from the lungs to the spleen and to investigate the distribution pattern of gold in the spleen parenchyma itself. Using the same instrumental setup, laser ablation-inductively coupled plasma-mass spectrometry in single particle mode was applied to determine the species of translocated gold. Single particle analysis allows the determination of particle size distributions and therefore to distinguish between ionic species, intact nanoparticles, and agglomerates. A translocation of instilled gold from the lungs to the spleen was demonstrated for gold nanoparticles of 30 and 50 nm diameter. Furthermore single particle analysis revealed the translocation of intact gold nanoparticles in a non-agglomerated state.
Collapse
Affiliation(s)
- Ilona D Nordhorn
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Dörthe Dietrich
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Christine Verlemann
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Antje Vennemann
- IBE R&D Institute for Lung Health gGmbH, 48149 Münster, Germany
| | - Robin Schmid
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Matthias Elinkmann
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Joshua Fuchs
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany.,European Virtual Institute for Speciation Analysis, 64000 Pau, France
| | - Martin Wiemann
- IBE R&D Institute for Lung Health gGmbH, 48149 Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
14
|
Halbach K, Holbrook T, Reemtsma T, Wagner S. Effective processing and evaluation of chemical imaging data with respect to morphological features of the zebrafish embryo. Anal Bioanal Chem 2021; 413:1675-1687. [PMID: 33523257 PMCID: PMC7921040 DOI: 10.1007/s00216-020-03131-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 01/16/2023]
Abstract
A workflow was developed and implemented in a software tool for the automated combination of spatially resolved laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data and data on the morphology of the biological tissue. Making use of a recently published biological annotation software, FishImager automatically assigns the biological feature as regions of interest (ROIs) and overlays them with the quantitative LA-ICP-MS data. Furthermore, statistical tools including cluster algorithms can be applied to the elemental intensity data and directly compared with the ROIs. This is effectively visualized in heatmaps. This allows gaining statistical significance on distribution and co-localization patterns. Finally, the biological functions of the assigned ROIs can then be easily linked with elemental distributions. We demonstrate the versatility of FishImager with quantitative LA-ICP-MS data of the zebrafish embryo tissue. The distribution of natural elements and xenobiotics is analyzed and discussed. With the help of FishImager, it was possible to identify compartments affected by toxicity effects or biological mechanisms to eliminate the xenobiotic. The presented workflow can be used for clinical and ecotoxicological testing, for example. Ultimately, it is a tool to simplify and reproduce interpretations of imaging LA-ICP-MS data in many applications. ![]()
Collapse
Affiliation(s)
- Katharina Halbach
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Timothy Holbrook
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.,Institute of Analytical Chemistry, University of Leipzig, 04103, Leipzig, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany. .,Institute for Water and Energy Management, University of Applied Sciences Hof, 95028, Hof, Germany.
| |
Collapse
|
15
|
Bishop DP, Westerhausen MT, Barthelemy F, Lockwood T, Cole N, Gibbs EM, Crosbie RH, Nelson SF, Miceli MC, Doble PA, Wanagat J. Quantitative immuno-mass spectrometry imaging of skeletal muscle dystrophin. Sci Rep 2021; 11:1128. [PMID: 33441839 PMCID: PMC7806610 DOI: 10.1038/s41598-020-80495-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging and promising therapeutic interventions for Duchenne muscular dystrophy (DMD) are confounded by the challenges of quantifying dystrophin. Current approaches have poor precision, require large amounts of tissue, and are difficult to standardize. This paper presents an immuno-mass spectrometry imaging method using gadolinium (Gd)-labeled anti-dystrophin antibodies and laser ablation-inductively coupled plasma-mass spectrometry to simultaneously quantify and localize dystrophin in muscle sections. Gd is quantified as a proxy for the relative expression of dystrophin and was validated in murine and human skeletal muscle sections following k-means clustering segmentation, before application to DMD patients with different gene mutations where dystrophin expression was measured up to 100 µg kg-1 Gd. These results demonstrate that immuno-mass spectrometry imaging is a viable approach for pre-clinical to clinical research in DMD. It rapidly quantified relative dystrophin in single tissue sections, efficiently used valuable patient resources, and may provide information on drug efficacy for clinical translation.
Collapse
Affiliation(s)
- David P Bishop
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mika T Westerhausen
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Florian Barthelemy
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas Lockwood
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nerida Cole
- ARC Training Centre in Biodevices, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Elizabeth M Gibbs
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Rachelle H Crosbie
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - M Carrie Miceli
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Philip A Doble
- Atomic Medicine Initiative, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Jonathan Wanagat
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, USA.
- Division of Geriatrics, Department of Medicine, David Geffen School of Medicine at UCLA, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Tuck M, Blanc L, Touti R, Patterson NH, Van Nuffel S, Villette S, Taveau JC, Römpp A, Brunelle A, Lecomte S, Desbenoit N. Multimodal Imaging Based on Vibrational Spectroscopies and Mass Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review. Anal Chem 2020; 93:445-477. [PMID: 33253546 DOI: 10.1021/acs.analchem.0c04595] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Tuck
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Landry Blanc
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Rita Touti
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8575, United States
| | - Sebastiaan Van Nuffel
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sandrine Villette
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Jean-Christophe Taveau
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Alain Brunelle
- Laboratoire d'Archéologie Moléculaire et Structurale, LAMS UMR 8220, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Sophie Lecomte
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nicolas Desbenoit
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| |
Collapse
|