1
|
Janda BA, Tran JA, Chang DK, Nerhood GC, Maduka Ogba O, Liberman-Martin AL. Carbodiimide and Isocyanate Hydroboration by a Cyclic Carbodiphosphorane Catalyst. Chemistry 2024; 30:e202303095. [PMID: 37847813 DOI: 10.1002/chem.202303095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
We report hydroboration of carbodiimide and isocyanate substrates catalyzed by a cyclic carbodiphosphorane catalyst. The cyclic carbodiphosphorane outperformed the other Lewis basic carbon species tested, including other zerovalent carbon compounds, phosphorus ylides, an N-heterocyclic carbene, and an N-heterocyclic olefin. Hydroborations of seven carbodiimides and nine isocyanates were performed at room temperature to form N-boryl formamidine and N-boryl formamide products. Intermolecular competition experiments demonstrated the selective hydroboration of alkyl isocyanates over carbodiimide and ketone substrates. DFT calculations support a proposed mechanism involving activation of pinacolborane by the carbodiphosphorane catalyst, followed by hydride transfer and B-N bond formation.
Collapse
Affiliation(s)
- Ben A Janda
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| | - Julie A Tran
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| | - Daniel K Chang
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| | - Gabriela C Nerhood
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| | - O Maduka Ogba
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| | - Allegra L Liberman-Martin
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, 450 North Center Street, Orange, CA 92866, USA
| |
Collapse
|
2
|
Teo YC, Loh D, Leong BX, Zhang ZF, Su MD, So CW. NHC-Silyliumylidene Cation-Catalyzed Hydroboration of Isocyanates with Pinacolborane. Inorg Chem 2023; 62:16867-16873. [PMID: 37792481 DOI: 10.1021/acs.inorgchem.3c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The low-oxidation-state silicon-catalyzed hydroboration of isocyanates with pinacolborane (HBpin) using the NHC-silyliumylidene cation catalyst [(IMe)2SiH]I (1, IMe = :C{N(Me)C(Me)}2) is described. In the catalysis, the Si lone pair electrons activate isocyanates, and the latter react with HBpin to form N-boryl formamides at room temperature. Catalyst 1 further activates N-boryl formamides at 70 °C, the intermediates of which react with HBpin to form N-boryl methylamines and (pinB)2O.
Collapse
Affiliation(s)
- Yeow-Chuan Teo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371
| | - Dexter Loh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371
| | - Bi-Xiang Leong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371
| |
Collapse
|
3
|
G M, Sharma D, Dandela R, Dhayalan V. Synthetic Strategies of N-Heterocyclic Olefin (NHOs) and Their Recent Application of Organocatalytic Reactions and Beyond. Chemistry 2023:e202302106. [PMID: 37605950 DOI: 10.1002/chem.202302106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
N-heterocyclic olefin (NHO) derivatives have an electron-rich as well as highly polarized carabon-carbon (C=C) double bond because of the electron-donating nature of nitrogen and sulphur atoms. While NHOs have been developing as novel organocatalysts and ligands for transition-metal complexes in various organic compound syntheses, different research groups are currently interested in preparing imidazole and triazolium-based chiral NHO catalysts. Some of them have been used for enantioselective organic transformations, but were still elusive. N-heterocyclic olefins, the alkylidene derivatives of N-heterocyclic carbenes (NHC), have shown promising results as effective promoters for numerous organic syntheses such as asymmetric catalysis, hydroborylation, hydrosilylation, reduction, CO2 sequestration, alkylation, cycloaddition, polymerization and the ring-opening reaction of aziridine and epoxides, esterification, C-F bond functionalization, amine coupling, trifluoromethyl thiolation, amination etc. NHOs catalysts with suitable structures can serve as a novel class of Lewis/Bronsted bases with strong basicity and high nucleophilicity properties.These facts strongly suggest their enormous chemical potential as sustainable catalysts for a wide variety of reactions in synthetic chemistry. The synthesis of NHOs and their properties are briefly reviewed in this article, along with a summary of the imidazole and triazole core of NHOs' most recent catalytic uses.
Collapse
Affiliation(s)
- Mahantesh G
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, Union Territory Puducherry, India
| | - Deepika Sharma
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, IIT, Kharagpur extension Centre Mouza Samantpuri, Bhubaneswar, 751013, Odisha, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, IIT, Kharagpur extension Centre Mouza Samantpuri, Bhubaneswar, 751013, Odisha, India
| | - Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, Union Territory Puducherry, India
| |
Collapse
|
4
|
Szynkiewicz N, Chojnacki J, Grubba R. Exploring the Reactivity of Unsymmetrical Diphosphanes toward Heterocumulenes: Access to Phosphanyl and Phosphoryl Derivatives of Amides, Imines, and Iminoamides. Inorg Chem 2022; 61:9523-9532. [PMID: 35700273 PMCID: PMC9490836 DOI: 10.1021/acs.inorgchem.2c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We present a comprehensive
study on the diphosphanation of iso(thio)cyanates
by unsymmetrical diphosphanes. The reactions involving unsymmetrical
diphosphanes and phenyl isocyanate or phenyl thioisocyanate gave rise
to phosphanyl, phosphoryl, and thiophosphoryl derivatives of amides,
imines, and iminoamides. The structures of the diphosphanation products
were confirmed through NMR spectroscopy, IR spectroscopy, and single-crystal
X-ray diffraction. We showed that unsymmetrical diphosphanes could
be used as building blocks to synthesize phosphorus analogues of important
classes of organic molecules. The described transformations provided
a new methodology for the synthesis of organophosphorus compounds
bearing phosphanyl, phosphoryl, or thiophosphoryl functional groups.
Moreover, theoretical studies on diphosphanation reactions explained
the influence of the steric and electronic properties of the parent
diphosphanes on the structures of the diphosphanation products. We provided synthetic access to phosphanyl,
phosphoryl,
or thiophosphoryl derivatives of amides, imines, and iminoamides starting
from simple building blocks such as unsymmetrical diphosphanes and
heterocumulenes.
Collapse
Affiliation(s)
- Natalia Szynkiewicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Str., 80-233 Gdańsk, Poland
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Str., 80-233 Gdańsk, Poland
| | - Rafał Grubba
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Str., 80-233 Gdańsk, Poland
| |
Collapse
|
5
|
Current State and Perspectives of Simulation and Modeling of Aliphatic Isocyanates and Polyisocyanates. Polymers (Basel) 2022; 14:polym14091642. [PMID: 35566811 PMCID: PMC9099476 DOI: 10.3390/polym14091642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Aliphatic isocyanates and polyisocyanates are central molecules in the fabrication of polyurethanes, coatings, and adhesives and, due to their excellent mechanical and stability properties, are continuously investigated in advanced applications; however, despite the growing interest in isocyanate-based systems, atomistic simulations on them have been limited by the lack of accurate parametrizations for these molecular species. In this review, we will first provide an overview of current research on isocyanate systems to highlight their most promising applications, especially in fields far from their typical usage, and to justify the need for further modeling works. Next, we will discuss the state of their modeling, from first-principle studies to atomistic molecular dynamics simulations and coarse-grained approaches, highlighting the recent advances in atomistic modeling. Finally, the most promising lines of research in the modeling of isocyanates are discussed in light of the possibilities opened by novel approaches, such as machine learning.
Collapse
|
6
|
Kumar R, Sharma V, Jain S, Sharma H, Vanka K, Sen SS. A Well‐Defined Calcium Compound Catalyzes Trimerization of Arylisocyanates into 1,3,5‐Triarylisocyanurates. ChemCatChem 2022. [DOI: 10.1002/cctc.202101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rohit Kumar
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Vishal Sharma
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Inorganic chemistry and Catalysis INDIA
| | - Shailja Jain
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Physical and materials chemistry INDIA
| | - Himanshu Sharma
- CSIR-NCL: National Chemical Laboratory CSIR Physical and Materials Chemistry INDIA
| | - Kumar Vanka
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Physical and Material Chemistry INDIA
| | - Sakya S. Sen
- National Chemical Laboraotry Catalysis Division Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
7
|
Guthardt R, Mellin J, Bruhn C, Siemeling U. 1,1′‐Ferrocenylene‐Bridged Bis(N‐Heterocyclic Olefin) Derivatives. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Robin Guthardt
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Johanna Mellin
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Clemens Bruhn
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Ulrich Siemeling
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| |
Collapse
|
8
|
Neururer F, Liu S, Leitner D, Baltrun M, Fisher KR, Kopacka H, Wurst K, Daumann LJ, Munz D, Hohloch S. Mesoionic Carbenes in Low- to High-Valent Vanadium Chemistry. Inorg Chem 2021; 60:15421-15434. [PMID: 34590834 PMCID: PMC8527456 DOI: 10.1021/acs.inorgchem.1c02087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/12/2022]
Abstract
We report the synthesis of vanadium(V) oxo complex 1 with a pincer-type dianionic mesoionic carbene (MIC) ligand L1 and the general formula [VOCl(L1)]. A comparison of the structural (SC-XRD), electronic (UV-vis), and electrochemical (cyclic voltammetry) properties of 1 with the benzimidazolinylidene congener 2 (general formula [VOCl(L2)]) shows that the MIC is a stronger donor also for early transition metals with low d-electron population. Since electrochemical studies revealed both complexes to be reversibly reduced, the stronger donor character of MICs was not only demonstrated for the vanadium(V) but also for the vanadium(IV) oxidation state by isolating the reduced vanadium(IV) complexes [Co(Cp*)2][1] and [Co(Cp*)2][2] ([Co(Cp*)2] = decamethylcobaltocenium). The electronic structures of the compounds were investigated by computational methods. Complex 1 was found to be a moderate precursor for salt metathesis reactions, showing selective reactivity toward phenolates or secondary amides, but not toward primary amides and phosphides, thiophenols, or aryls/alkyls donors. Deoxygenation with electron-rich phosphines failed to give the desired vanadium(III) complex. However, treatment of the deprotonated ligand precursor with vanadium(III) trichloride resulted in the clean formation of the corresponding MIC vanadium(III) complex 6, which undergoes a clean two-electron oxidation with organic azides yielding the corresponding imido complexes. The reaction with TMS-N3 did not afford a nitrido complex, but instead the imido complex 10. This study reveals that, contrary to popular belief, MICs are capable of supporting early transition-metal complexes in a variety of oxidation states, thus making them promising candidates for the activation of small molecules and redox catalysis.
Collapse
Affiliation(s)
- Florian
R. Neururer
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Shenyu Liu
- Faculty
of Science, Department of Chemistry, University
of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Daniel Leitner
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Marc Baltrun
- Faculty
of Science, Department of Chemistry, University
of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Katherine R. Fisher
- Department
Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany
| | - Holger Kopacka
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lena J. Daumann
- Department
Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany
| | - Dominik Munz
- Fakultät
NT, Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Stephan Hohloch
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Chan YC, Bai Y, Chen WC, Chen HY, Li CY, Wu YY, Tseng MC, Yap GPA, Zhao L, Chen HY, Ong TG. Synergistic Catalysis by Brønsted Acid/Carbodicarbene Mimicking Frustrated Lewis Pair-Like Reactivity. Angew Chem Int Ed Engl 2021; 60:19949-19956. [PMID: 34128303 DOI: 10.1002/anie.202107127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 01/06/2023]
Abstract
Carbodicarbene (CDC), unique carbenic entities bearing two lone pairs of electrons are well-known for their strong Lewis basicity. We demonstrate herein, upon introducing a weak Brønsted acid benzyl alcohol (BnOH) as a co-modulator, CDC is remolded into a Frustrated Lewis Pair (FLP)-like reactivity. DFT calculation and experimental evidence show BnOH loosely interacting with the binding pocket of CDC via H-bonding and π-π stacking. Four distinct reactions in nature were deployed to demonstrate the viability of proof-of-concept as synergistic FLP/Modulator (CDC/BnOH), demonstrating enhanced catalytic reactivity in cyclotrimerization of isocyanate, polymerization process for L-lactide (LA), methyl methacrylate (MMA) and dehydrosilylation of alcohols. Importantly, the catalytic reactivity of carbodicarbene is uniquely distinct from conventional NHC which relies on only single chemical feature of nucleophilicity. This finding also provides a new spin in diversifying FLP reactivity with co-modulator or co-catalyst.
Collapse
Affiliation(s)
- Yi-Chen Chan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, R.O.C.,Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei, Taiwan, R.O.C
| | - Yuna Bai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Wen-Ching Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, R.O.C
| | - Chen-Yu Li
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, R.O.C
| | - Ying-Yann Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Glenn P A Yap
- The Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, R.O.C.,Department of Medicinal Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan, R.O.C
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C.,Department of Chemistry, National (Taiwan) University, Taipei, Taiwan, R.O.C
| |
Collapse
|
10
|
Chan Y, Bai Y, Chen W, Chen H, Li C, Wu Y, Tseng M, Yap GPA, Zhao L, Chen H, Ong T. Synergistic Catalysis by Brønsted Acid/Carbodicarbene Mimicking Frustrated Lewis Pair‐Like Reactivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yi‐Chen Chan
- Institute of Chemistry Academia Sinica Taipei Taiwan, R.O.C
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan, R.O.C
- Taiwan International Graduate Program (TIGP) Sustainable Chemical Science and Technology (SCST) Academia Sinica Taipei Taiwan, R.O.C
| | - Yuna Bai
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Wen‐Ching Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan, R.O.C
| | - Hsing‐Yin Chen
- Department of Medicinal and Applied Chemistry Drug Development and Value Creation Research Center Kaohsiung Medical University Kaohsiung 80708 Taiwan, R.O.C
| | - Chen‐Yu Li
- Department of Medicinal and Applied Chemistry Drug Development and Value Creation Research Center Kaohsiung Medical University Kaohsiung 80708 Taiwan, R.O.C
| | - Ying‐Yann Wu
- Institute of Chemistry Academia Sinica Taipei Taiwan, R.O.C
| | - Mei‐Chun Tseng
- Institute of Chemistry Academia Sinica Taipei Taiwan, R.O.C
| | - Glenn P. A. Yap
- The Department of Chemistry and Biochemistry University of Delaware Newark DE USA
| | - Lili Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Hsuan‐Ying Chen
- Department of Medicinal and Applied Chemistry Drug Development and Value Creation Research Center Kaohsiung Medical University Kaohsiung 80708 Taiwan, R.O.C
- Department of Medicinal Research Kaohsiung Medical University Hospital Kaohsiung, 80708 Taiwan, R.O.C
| | - Tiow‐Gan Ong
- Institute of Chemistry Academia Sinica Taipei Taiwan, R.O.C
- Department of Chemistry National (Taiwan) University Taipei Taiwan, R.O.C
| |
Collapse
|
11
|
Liang Q, Hayashi K, Zeng Y, Jimenez-Santiago JL, Song D. Constructing fused N-heterocycles from unprotected mesoionic N-heterocyclic olefins and organic azides via diazo transfer. Chem Commun (Camb) 2021; 57:6137-6140. [PMID: 34042131 DOI: 10.1039/d1cc02245h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesoionic N-heterocyclic olefins (mNHOs) were first reported last year and their reactivity remains largely unexplored. Herein we report the reaction of unprotected mNHOs and organic azides as a novel synthetic route to a variety of pyrazolo[3,4-d][1,2,3]triazoles, an important structural motif in drug candidates and energetic materials. The only byproduct aniline can be easily recycled and converted back to the starting organic azide, in compliance with the green chemistry principle. The reaction mechanism has been explored through experimental and computational studies.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Kasumi Hayashi
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Yimin Zeng
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Jose L Jimenez-Santiago
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
12
|
Guo Y, Muuronen M, Deglmann P, Lucas F, Sijbesma RP, Tomović Ž. Role of Acetate Anions in the Catalytic Formation of Isocyanurates from Aromatic Isocyanates. J Org Chem 2021; 86:5651-5659. [PMID: 33793239 PMCID: PMC8154571 DOI: 10.1021/acs.joc.1c00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of isocyanurates via cyclotrimerization of aromatic isocyanates is widely used to enhance the physical properties of a variety of polyurethanes. The most commonly used catalysts in industries are carboxylates for which the exact catalytically active species have remained controversial. We investigated how acetate and other carboxylates react with aromatic isocyanates in a stepwise manner and identified that the carboxylates are only precatalysts in the reaction. The reaction of carboxylates with an excess of aromatic isocyanates leads to irreversible formation of corresponding deprotonated amide species that are strongly nucleophilic and basic. As a result, they are active catalysts during the nucleophilic anionic trimerization, but can also deprotonate urethane and urea species present, which in turn catalyze the isocyanurate formation. The current study also shows how quantum chemical calculations can be used to direct spectroscopic identification of reactive intermediates formed during the active catalytic cycle with predictive accuracy.
Collapse
Affiliation(s)
- Yunfei Guo
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mikko Muuronen
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Peter Deglmann
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Frederic Lucas
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Rint P Sijbesma
- Supramolecular Polymer Chemistry Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Željko Tomović
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
13
|
Sam M, Dekamin MG, Alirezvani Z. Dendrons containing boric acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to silica-coated magnetite for the expeditious synthesis of Hantzsch esters. Sci Rep 2021; 11:2399. [PMID: 33504833 PMCID: PMC7840758 DOI: 10.1038/s41598-020-80884-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
A new multifunctional dendritic nanocatalyst containing boric acid and 1,3,5-tris(2-hydroxyethyl)isocyanurate covalently attached to core-shell silica-coated magnetite (Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2) was designed and properly characterized by different spectroscopic or microscopic methods as well as analytical techniques used for mesoporous materials. It was found that the combination of both aromatic π-π stacking and boron-oxygen ligand interactions affords supramolecular arrays of dendrons. Furthermore, the use of boric acid makes this dendritic catalyst a good choice, from corrosion, recyclability and cost points of view. The catalytic activity of Fe3O4@SiO2@PTS-THEIC-(CH2)3OB(OH)2, as an efficient magnetically recoverable catalyst, was investigated for the synthesis of polyhydroacridines (PHAs) as well as polyhydroquinolines (PHQs) via one-pot multicomponent reactions of dimedone and/or ethyl acetoacetate, different aldehydes and ammonium acetate in EtOH under reflux conditions. Very low loading of the catalyst, high to quantitative yields of the desired PHAs or PHQs products, short reaction times, wide scope of the substrates, eliminating any toxic heavy metals or corrosive reagents for the modification of the catalyst, and simple work-up procedure are remarkable advantages of this green protocol. An additional advantage of this magnetic nanoparticles catalyst is its ability to be separated and recycled easily from the reaction mixture with minimal efforts in six subsequent runs without significant loss of its catalytic activity. This magnetic and dendritic catalyst can be extended to new two- and three-dimensional covalent organic frameworks with different applications.
Collapse
Affiliation(s)
- Mahsa Sam
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114, Tehran, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114, Tehran, Iran.
| | - Zahra Alirezvani
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 1684613114, Tehran, Iran
| |
Collapse
|
14
|
Xu X, Tan W, Ji M, Yang Y, Rao X, Luo X, Zhang Y, Chen H. Synthesis of Piperazine Quaternary Ammonium Alkali Catalyst and Its Application in Isocyanate Polymerization. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Guthardt R, Bruhn C, Siemeling U. N-heterocyclic olefins as dative carbon donor ligands for diaminoplumbylenes: Syntheses and crystal structures of adducts with 1,3,4,5-tetramethyl-2-methyleneimidazoline. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Kasumi Hayashi
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
17
|
Fast cyclotrimerization of a wide range of isocyanates to isocyanurates over acid/base conjugates under bulk conditions. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Siebert M, Sure R, Deglmann P, Closs AC, Lucas F, Trapp O. Mechanistic Investigation into the Acetate-Initiated Catalytic Trimerization of Aliphatic Isocyanates: A Bicyclic Ride. J Org Chem 2020; 85:8553-8562. [PMID: 32508101 DOI: 10.1021/acs.joc.0c00944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The acetate-initiated aliphatic isocyanate trimerization to isocyanurate was investigated by state-of-the-art analytical and computational methods. Although the common cyclotrimerization mechanism assumes the consecutive addition of three equivalents of isocyanate to acetate prior to product formation, we found that the underlying mechanism is more complex. In this work, we demonstrate that the product, in fact, is formed via the connection of two unexpected catalytic cycles, with acetate being only the precatalyst. The initial discovery of a precatalyst activation by quantum chemical computations and the resulting first catalysis cycle were corroborated by mass spectrometric and NMR experiments, thereby additionally revealing a catalyst migration to the second catalytic cycle. These results were further confirmed by computations, completing the full mechanistic understanding of this catalytic system. Identification of a side product with undesired properties for final coating applications allows for process optimization in the chemical industry.
Collapse
Affiliation(s)
- Max Siebert
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Rebecca Sure
- Advanced Materials & Systems Research, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Peter Deglmann
- Advanced Materials & Systems Research, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Anna C Closs
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Frederic Lucas
- Advanced Materials & Systems Research, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Oliver Trapp
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
19
|
Uchimaru T, Yamane S, Mizukado J, Tsuzuki S. Thermal stabilities and conformational behaviors of isocyanurates and cyclotrimerization energies of isocyanates: a computational study. RSC Adv 2020; 10:15955-15965. [PMID: 35493671 PMCID: PMC9052385 DOI: 10.1039/d0ra02463e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/06/2020] [Indexed: 11/21/2022] Open
Abstract
Isocyanurates are cyclic trimers of isocyanate molecules. They are generally known as highly thermostable compounds. However, it is interesting how the thermal stabilities of the isocyanurate molecules will be altered depending on the substituents of their three nitrogen atoms. We performed computational investigations on the thermochemical behaviors of isocyanurate molecules with various alkyl and phenyl substituents. The cyclotrimerization processes of isocyanates are highly exothermic. Our best estimate of the enthalpy change for the cyclotrimerization of methyl isocyanate into trimethyl isocyanurate was -66.4 kcal mol-1. Additional negative cyclotrimerization enthalpy changes were observed for n-alkyl-substituted isocyanates. This trend was enhanced with an extension of n-alkyl chains. Conversely, low negative cyclotrimerization enthalpy changes were shown for secondary and tertiary alkyl-substituted isocyanates. The n-alkyl-substituted isocyanurates were shown to be stabilized due to attractive dispersion interactions between the substituents. Meanwhile, the branched alkyl-substituted isocyanurates were destabilized due to the deformation of their isocyanurate rings. For various alkyl-substituted isocyanates, the sum of the deformation energy of the isocyanurate ring and the intramolecular inter-substituent nonbonding interaction energies was found to be linearly correlated with their cyclotrimerization energies. The cyclotrimerization energy for phenyl isocyanate was shown to have significantly deviated from the linear relationship observed for the alkyl-substituted isocyanurates. This is probably attributable to a remarkable change in the orbital resonance interactions during the cyclotrimerization of phenyl isocyanate to triphenyl isocyanurate.
Collapse
Affiliation(s)
- Tadafumi Uchimaru
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology Higashi, 1-1-1 Tsukuba Ibaraki 305-8565 Japan +81 29 861 4800 +81 29 861 2927
| | - Shogo Yamane
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology Higashi, 1-1-1 Tsukuba Ibaraki 305-8565 Japan +81 29 861 4800 +81 29 861 2927
| | - Junji Mizukado
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology Higashi, 1-1-1 Tsukuba Ibaraki 305-8565 Japan +81 29 861 4800 +81 29 861 2927
| | - Seiji Tsuzuki
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology Umezono, 1-1-1 Tsukuba Ibaraki 305-8568 Japan
| |
Collapse
|