1
|
Miao L, Yeganeh-Salman A, Yeung J, Stephan DW. Synthesis and N-C bond cleavage reactions for cyclic phosphazenium dications. Dalton Trans 2024; 54:368-375. [PMID: 39545856 DOI: 10.1039/d4dt02990a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Phosphazenium cations were first characterized 60 years ago and yet little is known of their reactivity. The bidentate phosphonium dicationic salts [(C6H4)(PPh2F)2][B(C6F5)4]22 and [(C6H4)(PPh2Cl)2][Cl]23 were prepared. Reaction of 2 with (Me3Si)2NMe gave the phosphazenium dication [(C6H4)(PPh2)2(μ-NMe)][B(C6F5)4]24, while reaction of 3 with two equivalents of Me2N(SiMe3) gave the related dication [(C6H4)(PPh2NMe2)2][Cl]25. Compound 3 also reacted with (Me3Si)2NH affording the monocationic salt [(C6H4)(PPh2)2(μ-N)]Cl 6, with the liberation of HCl. Interestingly 4 reacted with [nBu4N]Cl generating the related salt [(C6H4)(PPh2)2(μ-N)][B(C6F5)4] 6' with concurrent formation of MeCl. This reactivity was extended to [(C2H4)(PPh2F)2][B(C6F5)4]27 which afforded [(C2H4)(PPh2)2(μ-NR)][B(C6F5)4]2 (R = Me 8, CH2CHCH29, CH2Ph 10) upon reaction with (Me3Si)2NR. These dications were shown to react with [nBu4N]Cl affording [(CH2PPh2)2(μ-N)][B(C6F5)4] 11 and the corresponding alkyl-chloride. The mechanism of these N-C bond cleavage reactions is considered.
Collapse
Affiliation(s)
- Linkun Miao
- Department of Chemistry, University of Toronto, 80 St George St, Toronto, ON, Canada, M5S3H6.
| | - Amir Yeganeh-Salman
- Department of Chemistry, University of Toronto, 80 St George St, Toronto, ON, Canada, M5S3H6.
| | - Jason Yeung
- Department of Chemistry, University of Toronto, 80 St George St, Toronto, ON, Canada, M5S3H6.
| | - Douglas W Stephan
- Department of Chemistry, University of Toronto, 80 St George St, Toronto, ON, Canada, M5S3H6.
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, P. R. China
| |
Collapse
|
2
|
Kunert R, Martelino D, Mahato S, Hein NM, Pulfer J, Philouze C, Jarjayes O, Thomas F, Storr T. Investigating the formation of metal nitride complexes employing a tetradentate bis-carbene bis-phenolate ligand. Dalton Trans 2024. [PMID: 39560135 DOI: 10.1039/d4dt01765j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The synthesis of MnV and CrV nitride complexes of a pro-radical tetradentate bis-phenol bis-N-heterocyclic carbene ligand H2LC2O2 was investigated. Employing either azide photolysis of the MnIII precursor complex MnLC2O2(N3) or a nitride exchange reaction between MnLC2O2(Br) and the nitride exchange reagent Mnsalen(N) failed to provide a useful route to the target nitride MnLC2O2(N). Experimental results support initial formation of the target nitride MnLC2O2(N), however, the nitride rapidly inserts into a Mn-CNHC bond. A second insertion reaction results in the isolation of the doubly inserted ligand product [H2LC2O2(N)]+ in good yield. In contrast, the Cr analogue CrLC2O2(N) was readily prepared and characterized by a number of experimental methods, including X-ray crystallography. Theoretical calculations predict a lower transition state energy for nitride insertion into the M-CNHC bond for Mn in comparison to Cr, and in addition the N-inserted product is stabilized for Mn while destabilized for Cr. Natural bond order (NBO) analysis predicts that the major bonding interaction (π MN → σ* M-CNHC) promotes nucleophilic attack of the nitride on the carbene as the major reaction pathway. Finally, one-electron oxidation of CrLC2O2(N) affords a relatively stable cation that is characterized by experimental and theoretical analysis to be a metal-oxidized d0 CrVI species.
Collapse
Affiliation(s)
- Romain Kunert
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Diego Martelino
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Samyadeb Mahato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Nicholas M Hein
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Jason Pulfer
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | | | | | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
3
|
Humphries AL, Tellier GA, Smith MD, Chianese AR, Peryshkov DV. N-H Bond Activation of Ammonia by a Redox-Active Carboranyl Diphosphine. J Am Chem Soc 2024. [PMID: 39561323 DOI: 10.1021/jacs.4c12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this work, we report the room-temperature N-H bond activation of ammonia by the carboranyl diphosphine 1-PtBu2-2-PiPr2-closo-C2B10H10 (1) resulting in the formation of zwitterionic 7-P(NH2)tBu2-10-P(H)iPr2-nido-C2B10H10 (2). Unlike the other phosphorus-based ambiphiles that require geometric constraints to enhance electrophilicity, the new mode of bond activation in this main-group system is based on the cooperation between electron-rich trigonal phosphine centers and the electron-accepting carborane cluster. As an exception among many other metal-based and metal-free systems, the N-H bond activation of gaseous ammonia or aqueous ammonium hydroxide by carboranyl diphosphine 1 proceeds with tolerance of air and water. Mechanistic details of ammonia activation were explored computationally by DFT methods, demonstrating an electrophilic activation of ammonia by the phosphine center. This process is driven by the reduction of the boron cluster followed by an ammonia-assisted deprotonation and proton transfer. A subsequent reaction of 2 and TEMPO results in the cleavage of all N-H and P-H bonds with the formation of a cyclic phosphazenium cation supported by an anionic cluster N(7-PtBu2-8-PiPr2)-nido-C2B9H10 (3). Transformations reported herein represent the first example of ammonia oxidation via triple hydrogen atom abstraction facilitated by a metal-free system.
Collapse
Affiliation(s)
- Amanda L Humphries
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, South Carolina 29208, United States
| | - Gabrielle A Tellier
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, South Carolina 29208, United States
| | - Anthony R Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, South Carolina 29208, United States
| |
Collapse
|
4
|
Doleschal ME, Kostenko A, Liu JY, Inoue S. Silicon-aryl cooperative activation of ammonia. Chem Commun (Camb) 2024; 60:13020-13023. [PMID: 39431367 PMCID: PMC11492217 DOI: 10.1039/d4cc04617j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Herein, we report the reactivity of N-heterocyclic carbene stabilized silylene-phosphinidene IDippPSi(TMS)2SiTol3 (IDipp = 1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene) with ammonia, which results in an intermolecular 1,5-hydroamination and dearomatization of the NHC wingtip. DFT calculations reveal an unprecedented mechanism involving ammonia coordination to the silicon center, Meisenheimer-type complex formation, and a proton abstraction by the dearomatized aryl moiety.
Collapse
Affiliation(s)
- Martin Ernst Doleschal
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker-Institute of Silicon Chemsitry, Technische Universität München (TUM), Lichtenbergstrasse 4, 85748 Garching bei München, Germany.
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker-Institute of Silicon Chemsitry, Technische Universität München (TUM), Lichtenbergstrasse 4, 85748 Garching bei München, Germany.
| | - Jin Yu Liu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker-Institute of Silicon Chemsitry, Technische Universität München (TUM), Lichtenbergstrasse 4, 85748 Garching bei München, Germany.
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker-Institute of Silicon Chemsitry, Technische Universität München (TUM), Lichtenbergstrasse 4, 85748 Garching bei München, Germany.
| |
Collapse
|
5
|
Liu L, Johnson SI, Appel AM, Bullock RM. Oxidation of Ammonia Catalyzed by a Molecular Iron Complex: Translating Chemical Catalysis to Mediated Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202402635. [PMID: 38981858 DOI: 10.1002/anie.202402635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Ammonia is a promising candidate in the quest for sustainable, clean energy. With its capacity to serve as an energy carrier, the oxidation of ammonia opens avenues for carbon-neutral approaches to address worldwide growing energy needs. We report the catalytic chemical oxidation of ammonia by an Earth-abundant transition metal complex, trans-[LFeII(MeCN)2][PF6]2, where L is a macrocyclic ligand bearing four N-heterocyclic carbene (NHC) donors. Using triarylaminium radical cations in MeCN, up to 182 turnovers of N2 per Fe were obtained from chemical catalysis with an extremely low loading of the Fe catalyst (0.043 mM, 0.004 mol % catalyst). This chemical catalysis was successfully transitioned to mediated electrocatalysis for the oxidation of ammonia. Molecular electrocatalysis by the Fe catalyst and the mediator (p-MeOC6H4)3N exhibited a catalytic half-wave potential (Ecat/2) of 0.18 V vs [Cp2Fe]+/0 in MeCN, and achieved 9.3 turnovers of N2 at an applied potential of 0.20 V vs [Cp2Fe]+/0 at -20 °C in controlled-potential electrolysis, with a Faradaic efficiency of 75 %. Based on computational results, the catalyst undergoes sequential oxidation and deprotonation steps to form [LFeIV(NH2)2]2+, and thereafter bimetallic coupling to form an N-N bond.
Collapse
Affiliation(s)
- Liang Liu
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
- Current address: College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Aaron M Appel
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| |
Collapse
|
6
|
Phearman AS, Bullock RM. Synthesis and Reactivity of Fe(II) Complexes Containing Cis Ammonia Ligands. Inorg Chem 2024; 63:2024-2033. [PMID: 38230973 DOI: 10.1021/acs.inorgchem.3c03757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The development of earth-abundant transition-metal complexes for electrocatalytic ammonia oxidation is needed to facilitate a renewable energy economy. Important to this goal is a fundamental understanding of how ammonia binds to complexes as a function of ligand geometry and electronic effects. We report the synthesis and characterization of a series of Fe(II)-NH3 complexes supported by tetradentate, facially binding ligands with a combination of pyridine and N-heterocyclic carbene donors. Electronic modification of the supporting ligand led to significant shifts in the FeIII/II potential and variations in NH bond acidities. Finally, investigations of ammonia oxidation by cyclic voltammetry, controlled potential bulk electrolysis, and through addition of stoichiometric organic radicals, TEMPO and tBu3ArO• are reported. No catalytic oxidation of NH3 to N2 was observed, and 15N2 was detected only in reactions with tBu3ArO•.
Collapse
Affiliation(s)
- Alexander S Phearman
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Stephens DN, Szilagyi RK, Roehling PN, Arulsamy N, Mock MT. Catalytic Ammonia Oxidation to Dinitrogen by a Nickel Complex. Angew Chem Int Ed Engl 2023; 62:e202213462. [PMID: 36279321 DOI: 10.1002/anie.202213462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/07/2022]
Abstract
We report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6-tri-tert-butylphenoxyl (t Bu3 ArO⋅) as a H atom acceptor to cleave the N-H bond of a coordinated NH3 ligand up to 56 equiv of N2 per Ni center can be generated. Employing the N-oxyl radical 2,2,6,6-(tetramethylpiperidin-1-yl)oxyl (TEMPO⋅) as the H-atom acceptor, up to 15 equiv of N2 per Ni center are formed. A bridging Ni-hydrazine product identified by isotopic nitrogen (15 N) studies and supported by computational models indicates the N-N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]-NH2 fragments. Ni-mediated hydrazine disproportionation to N2 and NH3 completes the catalytic cycle.
Collapse
Affiliation(s)
- David N Stephens
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Robert K Szilagyi
- Department of Chemistry, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Paige N Roehling
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Navamoney Arulsamy
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Michael T Mock
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
8
|
Dunn PL, Barona M, Johnson SI, Raugei S, Bullock RM. Hydrogen Atom Abstraction from an Os II(NH 3) 2 Complex Generates an Os IV(NH 2) 2 Complex: Experimental and Computational Analysis of the N-H Bond Dissociation Free Energies and Reactivity. Inorg Chem 2022; 61:15325-15334. [PMID: 36121917 DOI: 10.1021/acs.inorgchem.2c00708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Double hydrogen atom abstraction from (TMP)OsII(NH3)2 (TMP = tetramesitylporphyrin) with phenoxyl or nitroxyl radicals leads to (TMP)OsIV(NH2)2. This unusual bis(amide) complex is diamagnetic and displays an N-H resonance at 12.0 ppm in its 1H NMR spectrum. 1H-15N correlation experiments identified a 15N NMR spectroscopic resonance signal at -267 ppm. Experimental reactivity studies and density functional theory calculations support relatively weak N-H bonds of 73.3 kcal/mol for (TMP)OsII(NH3)2 and 74.2 kcal/mol for (TMP)OsIII(NH3)(NH2). Cyclic voltammetry experiments provide an estimate of the pKa of [(TMP)OsIII(NH3)2]+. In the presence of Barton's base, a current enhancement is observed at the Os(III/II) couple, consistent with an ECE event. Spectroscopic experiments confirmed (TMP)OsIV(NH2)2 as the product of bulk electrolysis. Double hydrogen atom abstraction is influenced by π donation from the amides of (TMP)OsIV(NH2)2 into the d orbitals of the Os center, favoring the formation of (TMP)OsIV(NH2)2 over N-N coupling. This π donation leads to a Jahn-Teller distortion that splits the energy levels of the dxz and dyz orbitals of Os, results in a low-spin electron configuration, and leads to minimal aminyl character on the N atoms, rendering (TMP)OsIV(NH2)2 unreactive toward amide-amide coupling.
Collapse
Affiliation(s)
- Peter L Dunn
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Melissa Barona
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simone Raugei
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Cook BJ, Barona M, Johnson SI, Raugei S, Bullock RM. Weakening the N-H Bonds of NH 3 Ligands: Triple Hydrogen-Atom Abstraction to Form a Chromium(V) Nitride. Inorg Chem 2022; 61:11165-11172. [PMID: 35829761 DOI: 10.1021/acs.inorgchem.2c01115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Weakening and cleaving N-H bonds is crucial for improving molecular ammonia (NH3) oxidation catalysts. We report the synthesis and H-atom-abstraction reaction of bis(ammonia)chromium porphyrin complexes Cr(TPP)(NH3)2 and Cr(TMP)(NH3)2 (TPP = 5,10,15,20-tetraphenyl-meso-porphyrin and TMP = 5,10,15,20-tetramesityl-meso-porphyrin) using bulky aryloxyl radicals. The triple H-atom-abstraction reaction results in the formation of CrV(por)(≡N), with the nitride derived from NH3, as indicated by UV-vis and IR and single-crystal structural determination of Cr(TPP)(≡N). Subsequent oxidation of this chromium(V) nitrido complex results in the formation of CrIII(por), with scission of the Cr≡N bond. Computational analysis illustrates the progression from CrII to CrV and evaluates the energetics of abstracting H atoms from CrII-NH3 to generate CrV≡N. The formation and isolation of CrV(por)(≡N) illustrates the stability of these species and the need to chemically activate the nitride ligand for atom transfer or N-N coupling reactivity.
Collapse
Affiliation(s)
- Brian J Cook
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Melissa Barona
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simone Raugei
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
10
|
Tian J, Cordier M, Bour C, Auffrant A, Gandon V. A cyclic divalent N(I) species isoelectronic to carbodiphosphoranes. Chem Commun (Camb) 2022; 58:5741-5744. [PMID: 35466973 DOI: 10.1039/d2cc01637k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of a rare type of diphosphazenium cation is described. Its synthesis features a unique oxidative dealkylation of an iminophosphorane-phosphole by a silver(I) salt. DFT study of this compound reveals the low valent character of the N(I) center.
Collapse
Affiliation(s)
- Jiaxin Tian
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.
| | - Marie Cordier
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France. .,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| |
Collapse
|
11
|
Connor GP, Delony D, Weber JE, Mercado BQ, Curley JB, Schneider S, Mayer JM, Holland PL. Facile conversion of ammonia to a nitride in a rhenium system that cleaves dinitrogen. Chem Sci 2022; 13:4010-4018. [PMID: 35440977 PMCID: PMC8985503 DOI: 10.1039/d1sc04503b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Rhenium complexes with aliphatic PNP pincer ligands have been shown to be capable of reductive N2 splitting to nitride complexes. However, the conversion of the resulting nitride to ammonia has not been observed. Here, the thermodynamics and mechanism of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, conversion of ammonia to the nitride complex. Depending on the conditions, treatment of a rhenium(iii) precursor with ammonia gives either a bis(amine) complex [(PNP)Re(NH2)2Cl]+, or results in dehydrohalogenation to the rhenium(iii) amido complex, (PNP)Re(NH2)Cl. The N–H hydrogen atoms in this amido complex can be abstracted by PCET reagents which implies that they are quite weak. Calorimetric measurements show that the average bond dissociation enthalpy of the two amido N–H bonds is 57 kcal mol−1, while DFT computations indicate a substantially weaker N–H bond of the putative rhenium(iv)-imide intermediate (BDE = 38 kcal mol−1). Our analysis demonstrates that addition of the first H atom to the nitride complex is a thermochemical bottleneck for NH3 generation. Rhenium–PNP complexes split N2 to nitrides, but the nitrides do not give ammonia. Here, the thermodynamics of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, showing that the first H addition is the bottleneck.![]()
Collapse
Affiliation(s)
- Gannon P Connor
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Daniel Delony
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen Göttingen Germany
| | - Jeremy E Weber
- Department of Chemistry, Yale University New Haven Connecticut USA
| | | | - Julia B Curley
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Sven Schneider
- Institute of Inorganic Chemistry, Georg-August-Universität Göttingen Göttingen Germany
| | - James M Mayer
- Department of Chemistry, Yale University New Haven Connecticut USA
| | | |
Collapse
|
12
|
Li Y, Chen JY, Miao Q, Yu X, Feng L, Liao RZ, Ye S, Tung CH, Wang W. A Parent Iron Amido Complex in Catalysis of Ammonia Oxidation. J Am Chem Soc 2022; 144:4365-4375. [PMID: 35234468 DOI: 10.1021/jacs.1c08609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parent amido complexes are crucial intermediates in ammonia-based transformations. We report a well-defined ferric ammine system [Cp*Fe(1,2-Ph2PC6H4NH)(NH3)]+ ([1-NH3]+), which processes electrocatalytic ammonia oxidation to N2 and H2 at a mild potential. Through establishing elementary e-/H+ conversions with the ferric ammine, a formal Fe(IV)-amido species, [1-NH2]+, together with its conjugated Lewis acid, [1-NH3]2+, was isolated and structurally characterized for the first time. Mechanism studies indicated that further oxidation of [1-NH2]+ induces the reaction of the parent amido unit with NH3. The formation of hydrazine is realized by the non-innocent nature of the phenylamido ligand that facilitates the concerted transfer of one proton and two electrons.
Collapse
Affiliation(s)
- Yongxian Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jia-Yi Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiyi Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Barona M, Johnson SI, Mbea M, Bullock RM, Raugei S. Computational Investigations of the Reactivity of Metalloporphyrins for Ammonia Oxidation. Top Catal 2022. [DOI: 10.1007/s11244-021-01511-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Wang Z, Johnson SI, Wu G, Ménard G. Multiple N-H and C-H Hydrogen Atom Abstractions Through Coordination-Induced Bond Weakening at Fe-Amine Complexes. Inorg Chem 2021; 60:8242-8251. [PMID: 34011142 DOI: 10.1021/acs.inorgchem.1c00923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the use of the reported Fe-phthalocyanine complex, PcFe (1; Pc = 1,4,8,11,15,18,22,25-octaethoxy-phthalocyanine), to generate PcFe-amine complexes 1-(NH3)2, 1-(MeNH2)2, and 1-(Me2NH)2. Treatment of 1 or 1-(NH3)2 to an excess of the stable aryloxide radical, 2,4,6-tritert-butylphenoxyl radical (tBuArO•), under NH3 resulted in catalytic H atom abstraction (HAA) and C-N coupling to generate the product 4-amino-2,4,6-tritert-butylcyclohexa-2,5-dien-1-one (2) and tBuArOH. Exposing 1-(NH3)2 to an excess of the trityl (CPh3) variant, 2,6-di-tert-butyl-4-tritylphenoxyl radical (TrArO•), under NH3 did not lead to catalytic ammonia oxidation as previously reported in a related Ru-porphyrin complex. However, pronounced coordination-induced bond weakening of both α N-H and β C-H in the alkylamine congeners, 1-(MeNH2)2 and 1-(Me2NH)2, led to multiple HAA events yielding the unsaturated cyanide complex, 1-(MeNH2)(CN), and imine complex, 1-(MeN═CH2)2, respectively. Subsequent C-N bond formation was also observed in the latter upon addition of a coordinating ligand. Detailed computational studies support an alternating mechanism involving sequential N-H and C-H HAA to generate these unsaturated products.
Collapse
Affiliation(s)
- Zongheng Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
15
|
Gu NX, Oyala PH, Peters JC. Hydrazine Formation via Coupling of a Nickel(III)-NH 2 Radical. Angew Chem Int Ed Engl 2021; 60:4009-4013. [PMID: 33152166 PMCID: PMC7902478 DOI: 10.1002/anie.202013119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 12/12/2022]
Abstract
M(NHx ) intermediates involved in N-N bond formation are central to ammonia oxidation (AO) catalysis, an enabling technology to ultimately exploit ammonia (NH3 ) as an alternative fuel source. While homocoupling of a terminal amide species (M-NH2 ) to form hydrazine (N2 H4 ) has been proposed, well-defined examples are without precedent. Herein, we discuss the generation and electronic structure of a NiIII -NH2 species that undergoes bimolecular coupling to generate a NiII 2 (N2 H4 ) complex. This hydrazine adduct can be further oxidized to a structurally unusual Ni2 (N2 H2 ) species; this releases N2 in the presence of NH3 , thus establishing a synthetic cycle for Ni-mediated AO. Distribution of the redox load for H2 N-NH2 formation via NH2 coupling between two metal centers presents an attractive strategy for AO catalysis using Earth-abundant, late first-row metals.
Collapse
Affiliation(s)
- Nina X Gu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
16
|
Gu NX, Oyala PH, Peters JC. Hydrazine Formation via Coupling of a Nickel(III)–NH
2
Radical. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nina X. Gu
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
17
|
Nurdin L, Yang Y, Neate PGN, Piers WE, Maron L, Neidig ML, Lin JB, Gelfand BS. Activation of ammonia and hydrazine by electron rich Fe(ii) complexes supported by a dianionic pentadentate ligand platform through a common terminal Fe(iii) amido intermediate. Chem Sci 2020; 12:2231-2241. [PMID: 34163989 PMCID: PMC8179247 DOI: 10.1039/d0sc06466a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report the use of electron rich iron complexes supported by a dianionic diborate pentadentate ligand system, B2Pz4Py, for the coordination and activation of ammonia (NH3) and hydrazine (NH2NH2). For ammonia, coordination to neutral (B2Pz4Py)Fe(ii) or cationic [(B2Pz4Py)Fe(iii)]+ platforms leads to well characterized ammine complexes from which hydrogen atoms or protons can be removed to generate, fleetingly, a proposed (B2Pz4Py)Fe(iii)–NH2 complex (3Ar-NH2). DFT computations suggest a high degree of spin density on the amido ligand, giving it significant aminyl radical character. It rapidly traps the H atom abstracting agent 2,4,6-tri-tert-butylphenoxy radical (ArO˙) to form a C–N bond in a fully characterized product (2Ar), or scavenges hydrogen atoms to return to the ammonia complex (B2Pz4Py)Fe(ii)–NH3 (1Ar-NH3). Interestingly, when (B2Pz4Py)Fe(ii) is reacted with NH2NH2, a hydrazine bridged dimer, (B2Pz4Py)Fe(ii)–NH2NH2–Fe(ii)(B2Pz4Py) ((1Ar)2-NH2NH2), is observed at −78 °C and converts to a fully characterized bridging diazene complex, 4Ar, along with ammonia adduct 1Ar-NH3 as it is allowed to warm to room temperature. Experimental and computational evidence is presented to suggest that (B2Pz4Py)Fe(ii) induces reductive cleavage of the N–N bond in hydrazine to produce the Fe(iii)–NH2 complex 3Ar-NH2, which abstracts H˙ atoms from (1Ar)2-NH2NH2 to generate the observed products. All of these transformations are relevant to proposed steps in the ammonia oxidation reaction, an important process for the use of nitrogen-based fuels enabled by abundant first row transition metals. Synopsis: a highly reactive Fe(iii)–NH2 complex is generated via activation of ammonia or hydrazine in reactions of relevance to fundamental steps in ammonia oxidation processes mediated by an abundant, first row transition metal.![]()
Collapse
Affiliation(s)
- Lucie Nurdin
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Yan Yang
- LPCNO, Université de Toulouse, INSA, UPS Toulouse France
| | - Peter G N Neate
- Department of Chemistry, University of Rochester Rochester New York 14627 USA
| | - Warren E Piers
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA, UPS Toulouse France
| | - Michael L Neidig
- Department of Chemistry, University of Rochester Rochester New York 14627 USA
| | - Jian-Bin Lin
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
18
|
Dunn PL, Cook BJ, Johnson SI, Appel AM, Bullock RM. Oxidation of Ammonia with Molecular Complexes. J Am Chem Soc 2020; 142:17845-17858. [PMID: 32977718 DOI: 10.1021/jacs.0c08269] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidation of ammonia by molecular complexes is a burgeoning area of research, with critical scientific challenges that must be addressed. A fundamental understanding of individual reaction steps is needed, particularly for cleavage of N-H bonds and formation of N-N bonds. This Perspective evaluates the challenges of designing molecular catalysts for oxidation of ammonia and highlights recent key contributions to realizing the goals of viable energy storage and retrieval based on the N-H bonds of ammonia in a carbon-free energy cycle.
Collapse
Affiliation(s)
- Peter L Dunn
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brian J Cook
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron M Appel
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
19
|
Dunn PL, Johnson SI, Kaminsky W, Bullock RM. Diversion of Catalytic C-N Bond Formation to Catalytic Oxidation of NH 3 through Modification of the Hydrogen Atom Abstractor. J Am Chem Soc 2020; 142:3361-3365. [PMID: 32009401 DOI: 10.1021/jacs.9b13706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report that (TMP)Ru(NH3)2 (TMP = tetramesitylporphryin) is a molecular catalyst for oxidation of ammonia to dinitrogen. An aryloxy radical, tri-tert-butylphenoxyl (ArO·), abstracts H atoms from a bound ammonia ligand of (TMP)Ru(NH3)2, leading to the discovery of a new catalytic C-N coupling to the para position of ArO· to form 4-amino-2,4,6-tri-tert-butylcyclohexa-2,5-dien-1-one. Modification of the aryloxy radical to 2,6-di-tert-butyl-4-tritylphenoxyl radical, which contains a trityl group at the para position, prevents C-N coupling and diverts the reaction to catalytic oxidation of NH3 to give N2. We achieved 125 ± 5 turnovers at 22 °C for oxidation of NH3, the highest turnover number (TON) reported to date for a molecular catalyst.
Collapse
Affiliation(s)
- Peter L Dunn
- Center for Molecular Electrocatalysis , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Werner Kaminsky
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195-1700 , United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| |
Collapse
|