1
|
Javorek M, Hendrych M, Ondráková K, Preisler J, Bednařík A. Staining Tissues with Basic Blue 7: A New Dual-Polarity Matrix for MALDI Mass Spectrometry Imaging. Anal Chem 2025. [PMID: 39883587 DOI: 10.1021/acs.analchem.4c05244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Obtaining high-quality matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) images and the reproducibility of the technique depend strongly on the sample preparation protocol. The most crucial part is the application of the MALDI matrix, which often relies on expensive spraying or sublimation coaters. In this work, we present a new dual-polarity matrix for MALDI mass spectrometry imaging (MSI): Basic Blue 7 (BB7), which belongs to the group of triarylmethane dyes. Thanks to its good solubility in water, this matrix allows a quick and simple sample preparation protocol without the need for sophisticated spraying or sublimation instrumentation: dipping the glass with tissue into the dye solution. This technique closely resembles the staining methods employed in classical histopathology. The technique is demonstrated on MSI of lipids in mouse brain sections in positive and negative ion modes using a subatmospheric pressure MALDI source coupled with an orbital trap mass spectrometer. The results are compared with traditional matrices, such as 2,5-dihydroxybenzoic acid (DHB) and 1,5-diaminonaphthalene (DAN). BB7 excels, especially in negative ion mode, offering low background signals and high signal intensities of many lipid classes. Furthermore, the stained tissue can simply be inspected visually and allows basic histopathology annotation prior to MSI. Here, we demonstrate that staining offers excellent image quality, reproducible sample preparation, and the potential for automation and utilization for high spatial resolution MSI.
Collapse
Affiliation(s)
- Michal Javorek
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Michal Hendrych
- First Department of Pathology, St. Anne's University Hospital, Brno 602 00, Czech Republic
- First Department of Pathology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Kateřina Ondráková
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Antonín Bednařík
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
2
|
Chen L, Zhang Y, Bu Y, Zhou J, Man Y, Wu X, Yang H, Lin J, Wang X, Jing Y. Imaging the spatial distribution of structurally diverse plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6980-6997. [PMID: 39269320 DOI: 10.1093/jxb/erae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Plant hormones are essential and structurally diverse molecules that regulate various aspects of plant growth, development, and stress responses. However, the precise analysis of plant hormones in complex biological samples poses a challenge due to their low concentrations, dynamic levels, and intricate spatial distribution. Moreover, the complexity and interconnectedness of hormone signaling networks make it difficult to simultaneously trace multiple hormone spatial distributions. In this review, we provide an overview of currently recognized small-molecule plant hormones, signal peptide hormones, and plant growth regulators, along with the analytical methods employed for their analysis. We delve into the latest advancements in mass spectrometry imaging and in situ fluorescence techniques, which enable the examination of the spatial distribution of plant hormones. The advantages and disadvantages of these imaging techniques are further discussed. Finally, we propose potential avenues in imaging techniques to further enhance our understanding of plant hormone biology.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Junhui Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yi Man
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
3
|
Chen L, Zhang Y, Hao Q, Fu J, Bao Z, Bu Y, Sun N, Wu X, Lu L, Kong Z, Qin L, Zhou Y, Jing Y, Wang X. Enhancement of in situ detection and imaging of phytohormones in plant tissues by MALDI-MSI using 2,4-dihydroxy-5-nitrobenzoic acid as a novel matrix. THE NEW PHYTOLOGIST 2024; 243:2021-2036. [PMID: 39014531 DOI: 10.1111/nph.19964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
Phytohormones possess unique chemical structures, and their physiological effects are regulated through intricate interactions or crosstalk among multiple phytohormones. MALDI-MSI enables the simultaneous detection and imaging of multiple hormones. However, its application for tracing phytohormones is currently restricted by low abundance of hormone in plant and suboptimal matrix selection. 2,4-Dihydroxy-5-nitrobenzoic acid (DHNBA) was reported as a new MALDI matrix for the enhanced detection and imaging of multiple phytohormones in plant tissues. DHNBA demonstrates remarkable sensitivity improvement when compared to the commonly used matrix, 2,5-dihydroxybenzoic acid (DHB), in the detection of isoprenoid cytokinins (trans-zeatin (tZ), dihy-drozeatin (DHZ), meta-topolin (mT), and N6-(Δ2-isopentenyl) adenine (iP)), jasmonic acid (JA), abscisic acid (ABA), and 1-aminocyclo-propane-1-carboxylic acid (ACC) standards. The distinctive properties of DHNBA (i.e. robust UV absorption, uniform matrix deposition, negligible background interference, and high ionization efficiency of phytohormones) make it as an ideal matrix for enhanced detection and imaging of phytohormones, including tZ, DHZ, ABA, indole-3-acetic acid (IAA), and ACC, by MALDI-MSI in various plant tissues, for example germinating seeds, primary/lateral roots, and nodules. Employing DHNBA significantly enhances our capability to concurrently track complex phytohormone biosynthesis pathways while providing precise differentiation of the specific roles played by individual phytohormones within the same category. This will propel forward the comprehensive exploration of phytohormonal functions in plant science.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Qichen Hao
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Jinxiang Fu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Zhibin Bao
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Na Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Liang Lu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Qin
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing, 100081, China
| |
Collapse
|
4
|
Priyadarshani P, Van Grouw A, Liversage AR, Rui K, Nikitina A, Tehrani KF, Aggarwal B, Stice SL, Sinha S, Kemp ML, Fernández FM, Mortensen LJ. Investigation of MSC potency metrics via integration of imaging modalities with lipidomic characterization. Cell Rep 2024; 43:114579. [PMID: 39153198 DOI: 10.1016/j.celrep.2024.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024] Open
Abstract
Mesenchymal stem/stromal cell (MSC) therapies have had limited success so far in clinical trials due in part to heterogeneity in immune-responsive phenotypes. Therefore, techniques to characterize these properties of MSCs are needed during biomanufacturing. Imaging cell shape, or morphology, has been found to be associated with MSC immune responsivity-but a direct relationship between single-cell morphology and function has not been established. We used label-free differential phase contrast imaging and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to evaluate single-cell morphology and explore relationships with lipid metabolic immune response. In interferon gamma (IFN-γ)-stimulated MSCs, we found higher lipid abundances from the ceramide-1-phosphate (C1P), phosphatidylcholine (PC), LysoPC, and triglyceride (TAG) families that are involved in cell immune function. Furthermore, we identified differences in lipid signatures in morphologically defined MSC subpopulations. The use of single-cell optical imaging coupled with single-cell spatial lipidomics could assist in optimizing the MSC production process and improve mechanistic understanding of manufacturing process effects on MSC immune activity and heterogeneity.
Collapse
Affiliation(s)
- Priyanka Priyadarshani
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Alexandria Van Grouw
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adrian Ross Liversage
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Kejie Rui
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Arina Nikitina
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kayvan Forouhesh Tehrani
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Bhavay Aggarwal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Steven L Stice
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Saurabh Sinha
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Luke J Mortensen
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Hu H, Qiu K, Hao Q, He X, Qin L, Chen L, Yang C, Dai X, Liu H, Xu H, Guo H, Li J, Wu R, Feng J, Zhou Y, Han J, Xiao C, Wang X. Electromagnetic Field-Assisted Frozen Tissue Planarization Enhances MALDI-MSI in Plant Spatial Omics. Anal Chem 2024; 96:11809-11822. [PMID: 38975729 DOI: 10.1021/acs.analchem.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Plant samples with irregular morphology are challenging for longitudinal tissue sectioning. This has restricted the ability to gain insight into some plants using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, we develop a novel technique termed electromagnetic field-assisted frozen tissue planarization (EMFAFTP). This technique involves using a pair of adjustable electromagnets on both sides of a plant tissue. Under an optimized electromagnetic field strength, nondestructive planarization and regularization of the frozen tissue is induced, allowing the longitudinal tissue sectioning that favors subsequent molecular profiling by MALDI-MSI. As a proof of concept, flowers, leaves and roots with irregular morphology from six plant species are chosen to evaluate the performance of EMFAFTP for MALDI-MSI of secondary metabolites, amino acids, lipids, and proteins among others in the plant samples. The significantly enhanced MALDI-MSI capabilities of these endogenous molecules demonstrate the robustness of EMFAFTP and suggest it has the potential to become a standard technique for advancing MALDI-MSI into a new era of plant spatial omics.
Collapse
Affiliation(s)
- Hao Hu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Kaidi Qiu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Qichen Hao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing 100038, China
| | - Liang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Chenyu Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaoyan Dai
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Haiqiang Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hualei Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hua Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinrong Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Ran Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jun Han
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
6
|
Cumin C, Gee L, Litfin T, Muchabaiwa R, Martin G, Cooper O, Heinzelmann-Schwarz V, Lange T, von Itzstein M, Jacob F, Everest-Dass A. Highly Sensitive Spatial Glycomics at Near-Cellular Resolution by On-Slide Derivatization and Mass Spectrometry Imaging. Anal Chem 2024; 96:11163-11171. [PMID: 38953530 PMCID: PMC11256013 DOI: 10.1021/acs.analchem.3c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Glycans on proteins and lipids play important roles in maturation and cellular interactions, contributing to a variety of biological processes. Aberrant glycosylation has been associated with various human diseases including cancer; however, elucidating the distribution and heterogeneity of glycans in complex tissue samples remains a major challenge. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is routinely used to analyze the spatial distribution of a variety of molecules including N-glycans directly from tissue surfaces. Sialic acids are nine carbon acidic sugars that often exist as the terminal sugars of glycans and are inherently difficult to analyze using MALDI-MSI due to their instability prone to in- and postsource decay. Here, we report on a rapid and robust method for stabilizing sialic acid on N-glycans in FFPE tissue sections. The established method derivatizes and identifies the spatial distribution of α2,3- and α2,6-linked sialic acids through complete methylamidation using methylamine and PyAOP ((7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate). Our in situ approach increases the glycans detected and enhances the coverage of sialylated species. Using this streamlined, sensitive, and robust workflow, we rapidly characterize and spatially localize N-glycans in human tumor tissue sections. Additionally, we demonstrate this method's applicability in imaging mammalian cell suspensions directly on slides, achieving cellular resolution with minimal sample processing and cell numbers. This workflow reveals the cellular locations of distinct N-glycan species, shedding light on the biological and clinical significance of these biomolecules in human diseases.
Collapse
Affiliation(s)
- Cécile Cumin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
| | - Lindsay Gee
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Thomas Litfin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Ropafadzo Muchabaiwa
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Gael Martin
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Oren Cooper
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Viola Heinzelmann-Schwarz
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
- Hospital
for Women, Department of Gynaecology and Gynaecological Oncology, University Hospital Basel and University of Basel, Basel 4001, Switzerland
| | - Tobias Lange
- Institute
of Anatomy and Experimental Morphology, University Cancer Center Hamburg
(UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Institute
of Anatomy I, Comprehensive Cancer Center Central Germany (CCCG), Jena University Hospital, Jena 07740, Germany
| | - Mark von Itzstein
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Francis Jacob
- Ovarian
Cancer Research, University Hospital Basel,
University of Basel, Basel 4001, Switzerland
| | - Arun Everest-Dass
- Institute
for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
7
|
Ma D, Zhao M, Guo H, Wang L, Li Y, Yuan S, Yan Y, Zheng Y, Gu X, Song Y, Han X, Sun H. Spatial distribution of metabolites in processing Ziziphi Spinosae Semen as revealed by matrix-assisted laser desorption/ionization mass spectrometry imaging. Sci Rep 2024; 14:15263. [PMID: 38961089 PMCID: PMC11222422 DOI: 10.1038/s41598-024-61500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Ziziphi Spinosae Semen (ZSS) is the first choice for the treatment of insomnia. This research aimed to reveal the spatial distribution of identifying quality markers of ZSS and to illustrate the metabolite quality characteristics of this herbal medicine. Here, we performed a matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) in situ to detect and image 33 metabolites in ZSS, including three saponins, six flavonoids, four alkaloids, eight fatty acids, and 12 amino acids. The MALDI images of the metabolites clearly showed the heterogeneous spatial distribution in different regions of ZSS tissues, such as the cotyledon, endosperm, and radicle. The distribution area of two saponins, six flavonoids, and three alkaloids increased significantly after the fried processing of ZSS. Based on the ion images, samples with different processing technologies were distinguished unambiguously by the pattern recognition method of orthogonal partial least squares discrimination analysis (OPLS-DA). Simultaneously, 23 major influencing components exerting higher ion intensities were identified as the potential quality markers of ZSS. Results obtained in the current research demonstrate that the processing of ZSS changes its content and distribution of the medicinal components. The analysis of MALDI-MSI provides a novel MS-based molecular imaging approach to investigate and monitor traditional medicinal plants.
Collapse
Affiliation(s)
- Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
- International Joint Research Center On Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050091, China
| | - Mengwei Zhao
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Haochuan Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Lili Wang
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, China.
| | - Yage Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Shinong Yuan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yuping Yan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
| | - Yuguang Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xian Gu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yongxing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xiaowei Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Huigai Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China.
| |
Collapse
|
8
|
Wang J, Zhu Y, Ye B, Dun J, Yu X, Sui Q. Absorption and translocation of selected pharmaceuticals in Pistia stratiotes: Spatial distribution analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134028. [PMID: 38493630 DOI: 10.1016/j.jhazmat.2024.134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Phytoremediation can eliminate pharmaceuticals from aquatic environments through absorption; however, understanding of absorption and transport processes in plants remains limited. In this study, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) method was developed to explore the absorption and translocation mechanisms of seven common pharmaceuticals in Pistia stratiotes. Results showed that 2,3-dicyanohydroquinone, an infrequently used matrix, exhibited outstanding performance in MALDI-MSI analysis, producing the highest signal intensity for four of the seven pharmaceuticals. Region of Interest (ROI) analysis revealed that charge speciation of pharmaceuticals significantly influenced their ability to enter vascular bundle. Neutral and positively charged pharmaceuticals easily entered vascular bundle, while negatively charged pharmaceuticals faced difficulty. ROI results for neutral and negatively charged pharmaceuticals exhibited positive correlation with their transfer factor values, indicating that their translocation ability from root to shoot was related to their capacity to enter vascular bundle. However, no correlation was observed for positively charged pharmaceuticals, suggesting that these compounds, upon entering vascular bundle, encountered difficulties in upward translocation through the xylem. This study introduces an innovative approach and offers novel insights into the retention and migration of pharmaceuticals in plant tissues, aiming to enhance the understanding of pharmaceutical accumulation in plants. ENVIRONMENTAL IMPLICATION: Pharmaceuticals in aquatic environment can inflict detrimental effects on both human health and ecosystem. Phytoremediation can remove pharmaceuticals from aquatic environments through absorption. However, our understanding of absorption and transportation of pharmaceuticals in plants remains limited. This study developed a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) method for pharmaceuticals in plant roots, and to explore the absorption and translocation mechanisms of pharmaceuticals. The study offers direct evidence of differences in accumulation behavior of pharmaceuticals in plants, providing valuable insights for targeted and effective strategies in using plants for remediating the aquatic ecosystem from pharmaceuticals.
Collapse
Affiliation(s)
- Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiwen Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Beibei Ye
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junling Dun
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Bao Z, Yu D, Fu J, Gu J, Xu J, Qin L, Hu H, Yang C, Liu W, Chen L, Wu R, Liu H, Xu H, Guo H, Wang L, Zhou Y, Li Q, Wang X. 2-Hydroxy-5-nitro-3-(trifluoromethyl)pyridine as a Novel Matrix for Enhanced MALDI Imaging of Tissue Metabolites. Anal Chem 2024; 96:5160-5169. [PMID: 38470972 DOI: 10.1021/acs.analchem.3c05235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which is a label-free imaging technique, determines the spatial distribution and relative abundance of versatile endogenous metabolites in tissues. Meanwhile, matrix selection is generally regarded as a pivotal step in MALDI tissue imaging. This study presents the first report of a novel MALDI matrix, 2-hydroxy-5-nitro-3-(trifluoromethyl)pyridine (HNTP), for the in situ detection and imaging of endogenous metabolites in rat liver and brain tissues by MALDI-MS in positive-ion mode. The HNTP matrix exhibits excellent characteristics, including strong ultraviolet absorption, μm-scale matrix crystals, high chemical stability, low background ion interference, and high metabolite ionization efficiency. Notably, the HNTP matrix also shows superior detection capabilities, successfully showing 185 detectable metabolites in rat liver tissue sections. This outperforms the commonly used matrices of 2,5-dihydroxybenzoic acid and 2-mercaptobenzothiazole, which detect 145 and 120 metabolites from the rat liver, respectively. Furthermore, a total of 152 metabolites are effectively detected and imaged in rat brain tissue using the HNTP matrix, and the spatial distribution of these compounds clearly shows the heterogeneity of the rat brain. The results demonstrate that HNTP is a new and powerful positive-ion mode matrix to enhance the analysis of metabolites in biological tissues by MALDI-MSI.
Collapse
Affiliation(s)
- Zhibin Bao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Dian Yu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jinxiang Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jianchi Gu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Jia Xu
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Chenyu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Wenjuan Liu
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Lulu Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lei Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yijun Zhou
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, #1 Xiyuangcaochang, Beijing 100091, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| |
Collapse
|
10
|
Zhang YX, Zhang YD, Shi YP. Novel Small Molecule Matrix Screening for Simultaneous MALDI Mass Spectrometry Imaging of Multiple Lipids and Phytohormones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6762-6771. [PMID: 38478706 DOI: 10.1021/acs.jafc.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Most of the traditional matrices cannot simultaneously image multiple lipids and phytohormones, so screening and discovery of novel matrices stand as essential approaches for broadening the application scope of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). In this work, 12 organic small molecule compounds were comprehensively screened and investigated as potential MALDI matrices for simultaneous imaging analysis of various lipids and phytohormones. In the positive ionization mode, p-nitroaniline, m-nitroaniline, and 2-aminoterephthalic acid displayed good performance for the highly sensitive detection of lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), and triacylglycerols (TGs). Furthermore, p-nitroaniline possessed excellent characteristics of strong ultraviolet absorption and homogeneous cocrystallization, making it a desirable matrix for MALDI-MSI analysis of eight plant hormones. Compared with conventional matrices (2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and 9-aminoacridine (9-AA), the use of p-nitroaniline resulted in higher ionization efficiency, superior sensitivity, and clearer imaging images in dual polarity mode. Our research offers valuable guidance and new ideas for future endeavors in matrix screening.
Collapse
Affiliation(s)
- Yan-Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
11
|
Moreno-Rodriguez M, Perez SE, Martinez-Gardeazabal J, Manuel I, Malek-Ahmadi M, Rodriguez-Puertas R, Mufson EJ. Frontal Cortex Lipid Alterations During the Onset of Alzheimer's Disease. J Alzheimers Dis 2024; 98:1515-1532. [PMID: 38578893 DOI: 10.3233/jad-231485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Although sporadic Alzheimer's disease (AD) is a neurodegenerative disorder of unknown etiology, familial AD is associated with specific gene mutations. A commonality between these forms of AD is that both display multiple pathogenic events including cholinergic and lipid dysregulation. Objective We aimed to identify the relevant lipids and the activity of their related receptors in the frontal cortex and correlating them with cognition during the progression of AD. Methods MALDI-mass spectrometry imaging (MSI) and functional autoradiography was used to evaluate the distribution of phospholipids/sphingolipids and the activity of cannabinoid 1 (CB1), sphingosine 1-phosphate 1 (S1P1), and muscarinic M2/M4 receptors in the frontal cortex (FC) of people that come to autopsy with premortem clinical diagnosis of AD, mild cognitive impairment (MCI), and no cognitive impairment (NCI). Results MALDI-MSI revealed an increase in myelin-related lipids, such as diacylglycerol (DG) 36:1, DG 38:5, and phosphatidic acid (PA) 40:6 in the white matter (WM) in MCI compared to NCI, and a downregulation of WM phosphatidylinositol (PI) 38:4 and PI 38:5 levels in AD compared to NCI. Elevated levels of phosphatidylcholine (PC) 32:1, PC 34:0, and sphingomyelin 38:1 were observed in discrete lipid accumulations in the FC supragranular layers during disease progression. Muscarinic M2/M4 receptor activation in layers V-VI decreased in AD compared to MCI. CB1 receptor activity was upregulated in layers V-VI, while S1P1 was downregulated within WM in AD relative to NCI. Conclusions FC WM lipidomic alterations are associated with myelin dyshomeostasis in prodromal AD, suggesting WM lipid maintenance as a potential therapeutic target for dementia.
Collapse
Affiliation(s)
- Marta Moreno-Rodriguez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Ivan Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | | | - Rafael Rodriguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
12
|
Fu J, Gu J, Bao Z, Zhou Y, Hu H, Yang C, Wu R, Liu H, Qin L, Xu H, Li J, Guo H, Wang L, Zhou Y, Wang X, Li G. 2,5-Dihydroxyterephthalic Acid: A Matrix for Improved Detection and Imaging of Amino Acids. Anal Chem 2023; 95:18709-18718. [PMID: 38018128 DOI: 10.1021/acs.analchem.3c01731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Amino acids (AAs), which are low-molecular-weight (low-MW) metabolites, serve as essential building blocks not only for protein synthesis but also for maintaining the nitrogen balance in living systems. In situ detection and imaging of AAs are crucial for understanding more complex biological processes. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a label-free mass spectrometric imaging technique that enables the simultaneous detection and imaging of the spatial distribution and relative abundance of different endogenous/exogenous compounds in biological samples. The excellent efficiency of MALDI-MSI is attributed to the choice of the MALDI matrix. However, to the best of our knowledge, no matrix has been specifically developed for AAs. Herein, we report a MALDI matrix, 2,5-dihydroxyterephthalic acid (DHT), which can improve the detection and imaging of AAs in biological samples by MALDI-MS. Our results indicated that DHT exhibited strong ultraviolet-visible (UV-vis) absorption, uniform matrix deposition, and high vacuum stability. Moreover, the matrix-related ion signals produced from DHT were reduced by 50 and 71.8% at m/z < 500 compared to the commonly used matrices of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA), respectively, in their respective organic solvents. In terms of quantitative performance, arginine, glutamic acid, glutamine, and proline can be detected with limits of detection of 6, 4, 6, and 4 ng/mL, respectively, using the DHT as the matrix. Using DHT as the matrix, all 20 protein AAs were successfully detected in human serum by MALDI-MS, whereas only 7 and 10 AAs were detected when DHB and CHCA matrices were used, respectively. Furthermore, 20 protein AAs and taurine were successfully detected and imaged in a section of edible Crassostrea gigas (oyster) tissue for the first time. Our study demonstrates that using DHT as a matrix can improve the detection and imaging of AAs in biological samples by MALDI-MS.
Collapse
Affiliation(s)
- Jinxiang Fu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jianchi Gu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Zhibin Bao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yunpeng Zhou
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan 030032, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chenyu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jinrong Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Lei Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Gaopeng Li
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan 030032, China
| |
Collapse
|
13
|
Huang H, Liu H, Ma W, Qin L, Chen L, Guo H, Xu H, Li J, Yang C, Hu H, Wu R, Chen D, Feng J, Zhou Y, Wang J, Wang X. High-throughput MALDI-MSI metabolite analysis of plant tissue microarrays. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2574-2584. [PMID: 37561662 PMCID: PMC10651148 DOI: 10.1111/pbi.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
A novel metabolomics analysis technique, termed matrix-assisted laser desorption/ionization mass spectrometry imaging-based plant tissue microarray (MALDI-MSI-PTMA), was successfully developed for high-throughput metabolite detection and imaging from plant tissues. This technique completely overcomes the disadvantage that metabolites cannot be accessible on an intact plant tissue due to the limitations of the special structures of plant cells (e.g. epicuticular wax, cuticle and cell wall) through homogenization of plant tissues, preparation of PTMA moulds and matrix spraying of PTMA sections. Our study shows several properties of MALDI-MSI-PTMA, including no need of sample separation and enrichment, high-throughput metabolite detection and imaging (>1000 samples per day), high-stability mass spectrometry data acquisition and imaging reconstruction and high reproducibility of data. This novel technique was successfully used to quickly evaluate the effects of two plant growth regulator treatments (i.e. 6-benzylaminopurine and N-phenyl-N'-1,2,3-thiadiazol-5-ylurea) on endogenous metabolite expression in plant tissue culture specimens of Dracocephalum rupestre Hance (D. rupestre). Intra-day and inter-day evaluations indicated that the metabolite data detected on PTMA sections had good reproducibility and stability. A total of 312 metabolite ion signals in leaves tissues of D. rupestre were detected, of which 228 metabolite ion signals were identified, they were composed of 122 primary metabolites, 90 secondary metabolites and 16 identified metabolites of unknown classification. The results demonstrated the advantages of MALDI-MSI-PTMA technique for enhancing the overall detection ability of metabolites in plant tissues, indicating that MALDI-MSI-PTMA has the potential to become a powerful routine practice for high-throughput metabolite study in plant science.
Collapse
Affiliation(s)
- Hangjun Huang
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
| | - Haiqiang Liu
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Weiwei Ma
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
| | - Liang Qin
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Lulu Chen
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Hua Guo
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Hualei Xu
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Jinrong Li
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Chenyu Yang
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Hao Hu
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Ran Wu
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Difan Chen
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Jinchao Feng
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Yijun Zhou
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| | - Junli Wang
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
| | - Xiaodong Wang
- College of Life and Environmental SciencesMinzu University of ChinaBeijingChina
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems BiologyMinzu University of ChinaBeijingChina
| |
Collapse
|
14
|
Ren Z, Qin L, Chen L, Xu H, Liu H, Guo H, Li J, Yang C, Hu H, Wu R, Zhou Y, Xue K, Liu B, Wang X. Spatial Lipidomics of EPSPS and PAT Transgenic and Non-Transgenic Soybean Seeds Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37318082 DOI: 10.1021/acs.jafc.3c01377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herbicide-resistant soybeans are among the most widely planted transgenic crops. The in situ evaluation of spatial lipidomics in transgenic and non-transgenic soybeans is important for directly assessing the unintended effects of exogenous gene introduction. In this study, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI)-based non-targeted analytical strategies were used for the first time for in situ detection and imaging of endogenous lipid distributions in transgenic (EPSPS and PAT genes) herbicide-resistant soybean (Glycine max Merrill) (S4003.14) and non-transgenic soybean (JACK) seeds. Statistical analysis revealed significant differences in lipids between S4003.14 and JACK seeds. The variable importance of projection analysis further revealed that 18 identified lipids, including six phosphatidylcholines (PCs), four phosphatidylethanolamines (PEs), five triacylglycerols (TAGs), and three cytidine diphosphate-diacylglycerols (CDP-DAGs), had the strongest differential expression between S4003.14 and JACK seeds. Among those, the upregulated expressions of PC(P-36:1), PC(36:2), PC(P-36:0), PC(37:5), PE(40:2), TAG(52:1), TAG(55:5), and CDP-DAG(37:2) and the downregulated expressions of PC (36:1), TAG(43:0), and three PEs (i.e., PE(P-38:1), PE(P-38:0), and PE(P-40:3)) were successfully found in the S4003.14 seeds, compared to these lipids detected in the JACK seeds. Meanwhile, the lipids of PC (44:8), CDP-DAG(38:0), and CDP-DAG(42:0) were uniquely detected in the S4003.14 soybean seeds, and TAG(45:2) and TAG(57:10) were detected as the unique lipids in the JACK seeds. The heterogeneous distribution of these lipids in the soybean seeds was also clearly visualized using MALDI-MSI. MSI results showed that lipid expression was significantly up/downregulated in S4003.14 seeds, compared to that in JACK seeds. This study improves our understanding of the unintended effects of herbicide-resistant EPSPS and PAT gene transfers on spatial lipidomes in soybean seeds and enables the continued progression of MALDI-MSI as an emerging, reliable, and rapid molecular imaging tool for evaluating unintended effects in transgenic plants.
Collapse
Affiliation(s)
- Zhentao Ren
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Liang Qin
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hualei Xu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Haiqiang Liu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hua Guo
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Jinrong Li
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Chenyu Yang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Hao Hu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Ran Wu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Kun Xue
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
15
|
Yang C, Wu R, Liu H, Qin L, Chen L, Xu H, Hu H, Li J, Guo H, Shi Y, Jiang D, Hao Q, Feng J, Zhou Y, Liu X, Li G, Wang X. Polyacrylamide gel as a new embedding medium for the enhancement of metabolite MALDI imaging. Chem Commun (Camb) 2023; 59:3842-3845. [PMID: 36883606 DOI: 10.1039/d2cc07075h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In this study, polyacrylamide gel (PAAG) was successfully used as a new embedding medium to provide the more effective maintenance of biological tissues during the sectioning process, enhancing the tissue imaging of metabolites via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Herein, PAAG, agarose, gelatin, optimal cutting temperature compound (OCT), and ice media were used to embed rat liver and Atlantic salmon (Salmo salar) eyeball samples. These embedded tissues were then sectioned into thin slices and thaw-mounted on conductive microscope glass slides for MALDI-MSI detection to evaluate the embedding effects. The results showed that PAAG embedding has characteristics superior to those of commonly-used embedding media (e.g., agarose, gelatin, OCT, and ice) with the advantages of one-step operation without heating, a better performance of morphology maintenance, the absence of PAAG polymer-ion-related interference below m/z 2000, and the more efficient in situ ionization of metabolites, providing a significant enhancement of both the numbers and intensities of the metabolite ion signals. Our study demonstrates the potential of PAAG embedding as a standard practice for metabolite MALDI tissue imaging, which will lead to an expanded application scope of MALDI-MSI.
Collapse
Affiliation(s)
- Chenyu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lulu Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jinrong Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yiyang Shi
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Dongxu Jiang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qichen Hao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jinchao Feng
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiangyi Liu
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Gaopeng Li
- General Surgery Department, Shanxi Bethune Hospital, Taiyun, 030032, China.
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, State Ethnic Affairs Commission, Beijing, 100081, China. .,Centre for Imaging & Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
16
|
Liu B, Chen Q, Tang L, Zhu L, Zou X, Li B, Fan W, Fu Y, Lu Y. Screening of potential chemical marker with interspecific differences in Pterocarpus wood and a spatially-resolved approach to visualize the distribution of the characteristic markers. FRONTIERS IN PLANT SCIENCE 2023; 14:1133848. [PMID: 36866375 PMCID: PMC9971912 DOI: 10.3389/fpls.2023.1133848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Profiling the spatial distributions and tissue changes of characteristic compounds with interspecific differences is critical to elucidate the complex species identification during tree species traceability, wood anti-counterfeiting verification and timber trade control. In this research, in order to visualize the spatial position of characteristic compounds in two species with similar morphology (Pterocarpus santalinus and Pterocarpus tinctorius), a high coverage MALDI-TOF-MS imaging method was used to found the mass spectra fingerprints of different wood species. 2-Mercaptobenzothiazole matrix was used to spray wood tissue section to enhance the detection effect of metabolic molecules, and the mass spectrometry imaging data were obtained. Based on this technology, the spatial location of fifteen potential chemical markers with remarkable interspecific differences in 2 Pterocarpus timber species were successfully obtained. Distinct chemical signatures obtained from this method can promote rapid identification at the wood species level. Thus, matrix-assisted laser desorption/time-of-flight/ionization mass spectrometry imaging (MALDI-TOF-MSI) provides a spatial-resolved way for traditional wood morphological classification and breaking through the limitations of traditional wood identification technology.
Collapse
Affiliation(s)
- Bo Liu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Qian Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Lina Tang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Liming Zhu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Xianwu Zou
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Botao Li
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Yuejin Fu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Yun Lu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
17
|
Xu H, Hao Q, Liu H, Chen L, Wu R, Qin L, Guo H, Li J, Yang C, Hu H, Xue K, Feng J, Zhou Y, Liu B, Li G, Wang X. A concentration-descending washing strategy with methanol for the enhancement of protein imaging in biological tissues by MALDI-MS. Analyst 2023; 148:823-831. [PMID: 36637134 DOI: 10.1039/d2an01678h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a powerful approach that has been widely used for in situ detection of various endogenous compounds in tissues. However, there are still challenges with in situ analysis of proteins using MALDI-MSI due to the ion suppression effects of small molecules in tissue sections. Therefore, tissue-washing steps are crucial for protein MALDI tissue imaging to remove these interfering molecules. Here, we successfully developed a new method named the concentration-descending washing strategy (CDWS) with methanol (MeOH), i.e., washing of biological tissue with 100%, 95%, and 70% MeOH solutions, for the enhancement of endogenous in situ protein detection and imaging in tissues using MALDI-MS. The method of MeOH-based CDWS (MeOH-CDWS) led to the successful in situ detection of 272 ± 3, 185 ± 4, and 134 ± 2 protein ion signals from rat liver, rat brain, and germinating Chinese-yew seed tissue sections, respectively. By comparison, 161 ± 2, 121 ± 1, and 114 ± 2 protein ions were detected by three commonly used methods, i.e., Carnoy's wash, ethanol (EtOH)-based CAWS (i.e., concentration-ascending washing strategy, 70% EtOH followed by 90% EtOH/9% AcOH), and isopropanol (iPrOH)-based CAWS (70% iPrOH followed by 95% iPrOH), respectively, in rat liver tissue sections, indicating that 68.9 ± 3.1%, 124.8 ± 3.3%, and 138.6 ± 4.4% more protein ion signals could be detected by the use of MeOH-CDWS than the three abovementioned washing strategies. Our results show that the use of MeOH-CDWS improves the performance of MALDI-MSI for in situ protein detection such as the number and intensity of proteins. The use of MeOH-CDWS improves the fixation of proteins and thus reduces the loss of proteins, which significantly reduces protein delocalization in tissue and enhances the performance of MALDI tissue imaging of protein. Thus, the use of MeOH-CDWS improves the quality of protein images in tissue sections through MALDI-MSI and has the potential to be used as standard practice for MALDI tissue imaging of proteins.
Collapse
Affiliation(s)
- Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Qichen Hao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Lulu Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Jinrong Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Chenyu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Kun Xue
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China.
| | - Gaopeng Li
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan 030032, China.
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
18
|
Liu H, Pan Y, Xiong C, Han J, Wang X, Chen J, Nie Z. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for in situ analysis of endogenous small molecules in biological samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Ma Z, Yuan J, Xu J, Li L, Tang C, Chang L, Quinn RJ, Qin L, Liu J, Ye Y. Quaternized Acridine Maleimide MALDI Probe Enables Mass Spectrometry Imaging of Thiols. Anal Chem 2022; 94:14917-14924. [PMID: 36269144 DOI: 10.1021/acs.analchem.2c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiols are essential metabolites associated with redox imbalances and metabolic disorders in diseases. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) facilitates imaging of metabolites in tissue, but imaging of thiols remains challenging. Here we developed a method to visualize thiols using a stable isotope-labeled (SIL) MALDI probe, a mixture of unlabeled and deuterium-labeled reagents that provided adduct signals at [M]+ and [M + 3]+, to identify endogenous thiols in tissue. A series of MALDI probe candidates were rationally designed, and the structure-effect relationships were determined. First, the reactivity of different warheads toward the thiol group was evaluated, and maleimide was the best for in situ derivatization. Second, an acridine fragment showed the best improvement in MS responses. Third, a permanent charge was introduced for detection improvement in the positive mode. Finally, the hydrogens of methyl group were replaced by deuterium atoms, obtaining the novel SIL MALDI probe and thus facilitating significantly the annotation of thiols. The finally obtained D0/D3-9-((2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)carbamoyl)-10-methylacridin-10-ium iodide (D0/D3-MaI-MADA) enabled direct MSI of thiols in the fine structures of human liver tumors without a reduction procedure. Our work built a SIL MALDI probe for the first time and provided a strategy for the rational design of MALDI probes.
Collapse
Affiliation(s)
- Zhenghua Ma
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jie Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianfeng Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai 201206, China
| | - Lizhi Li
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chunping Tang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lu Chang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.,Cancer Metastasis Institute, Fudan University, Shanghai 201206, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310058, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
20
|
Chen Y, Xie Y, Li L, Wang Z, Yang L. Advances in mass spectrometry imaging for toxicological analysis and safety evaluation of pharmaceuticals. MASS SPECTROMETRY REVIEWS 2022:e21807. [PMID: 36146929 DOI: 10.1002/mas.21807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Safety issues caused by pharmaceuticals have frequently occurred worldwide, posing a tremendous threat to human health. As an essential part of drug development, the toxicological analysis and safety evaluation is of great significance. In addition, the risk of pharmaceuticals accumulation in the environment and the monitoring of the toxicity from natural medicines have also received ongoing concerns. Due to a lack of spatial distribution information provided by common analytical methods, analyses that provide spatial dimensions could serve as complementary safety evaluation methods for better prediction and evaluation of drug toxicity. With advances in technical solutions and software algorithms, mass spectrometry imaging (MSI) has received increasing attention as a popular analytical tool that enables the simultaneous implementation of qualitative, quantitative, and localization without complex sample pretreatment and labeling steps. In recent years, MSI has become more attractive, powerful, and sensitive and has been applied in several scientific fields that can meet the safety assessment requirements. This review aims to cover a detailed summary of the various MSI technologies utilized in the biomedical and pharmaceutical area, including technical principles, advantages, current status, and future trends. Representative applications and developments in the safety-related issues of different pharmaceuticals and natural medicines are also described to provide a reference for pharmaceutical research, improve rational clinical medicine use, and ensure public safety.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
21
|
Luo Y, Song C, Mao J, Peng Z, Sun S, Zhang Y, Yu A, Zhang W, Zhao W, Ouyang G. Developing a Noncontact Heating Matrix Spraying Apparatus with Controllable Matrix Film Formation for MALDI Mass Spectrometry Imaging. Anal Chem 2022; 94:12136-12143. [PMID: 35993787 DOI: 10.1021/acs.analchem.2c02192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Matrix deposition plays an important role in obtaining high-quality and reliable molecular spatial location information for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To control the matrix film formation, an automatic matrix spraying apparatus was developed with the introduction of a noncontact heating lamp. Compared with the unheated condition, the noncontact heating lamp suppressed the coffee-ring effect and the diffusion phenomenon of the analyte effectively by controllable matrix film formation. Meanwhile, the signal intensity was increased by 2-5 fold. To prove the ability of the matrix deposition apparatus, the apparatus combined with metabolomics analysis was used to show the spatial distribution of the substance in sprouted potato tubers. The potential biomarkers at m/z 868.5049 and m/z 852.5101 were identified as α-solanine and α-chaconine, and the synthesis pathways were further searched. To further demonstrate the quality of MALDI images including localization and spatial resolution, lipid distribution in rat brain tissue was investigated by the developed noncontact heating matrix spraying apparatus. An excellent match with distinguishable compartments of lipids in the rat brain was obtained between the H&E-stained sections and MALDI-MSI images. These results indicate that the developed noncontact heating matrix spraying apparatus is reliable and provides a low-cost, high-quality, rapid approach for MALDI-MSI.
Collapse
Affiliation(s)
- Yake Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenchen Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Mao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zifang Peng
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shihao Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanhao Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Shi Y, Hu H, Hao Q, Wu R, Wang L, Qin L, Gu W, Liu H, Jiang D, Hong L, Zhou Y, Liu X, Feng J, Xue K, Wang X. Michler's ethylketone as a novel negative-ion matrix for the enhancement of lipid MALDI tissue imaging. Chem Commun (Camb) 2022; 58:633-636. [PMID: 34897326 DOI: 10.1039/d1cc05718a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Michler's ethylketone (MEK, 4,4'-bis(diethylamino)benzophenone), commonly-known as an intermediate in the synthesis of dyes and pigments, was successfully screened and optimized as a novel matrix for the enhancement of lipid in situ detection and imaging in tissues by MALDI-MSI. The results show several properties of MEK as a powerful MALDI matrix, including strong UV absorption, µm-sized crystals and uniform matrix-coating, super high vacuum chemical stability, low matrix-related ion interference, super soft ionization, and high lipid ionization efficiency.
Collapse
Affiliation(s)
- Yiyang Shi
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Qichen Hao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Lei Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Wei Gu
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Dongxu Jiang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Liya Hong
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Xiangyi Liu
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Kun Xue
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China.
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
23
|
Wu R, Qin L, Chen L, Ma R, Chen D, Liu H, Xu H, Guo H, Zhou Y, Wang X. Copper adhesive tape attached to the reverse side of a non-conductive glass slide to achieve protein MALDI-imaging in FFPE-tissue sections. Chem Commun (Camb) 2021; 57:10707-10710. [PMID: 34542115 DOI: 10.1039/d1cc03629g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, copper adhesive tape attached to the reverse side of a glass slide was developed as a new method to achieve protein in situ detection and imaging in a formalin fixed paraffin-embedded (FFPE) tissue section on a non-conductive glass slide by MALDI-MSI. The use of this new method led to 223 protein ions being imaged from a rat brain FFPE-tissue section on a non-conductive glass slide by MALDI-MS, compared to only 145 and 163 protein ions detected on an ITO glass slide and an AnchorChip target plate, respectively. This new method has great potential to become standard practice for protein MALDI-imaging in FFPE-tissue sections on non-conductive glass slides.
Collapse
Affiliation(s)
- Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Rui Ma
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Difan Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
24
|
Liu H, Han M, Li J, Qin L, Chen L, Hao Q, Jiang D, Chen D, Ji Y, Han H, Long C, Zhou Y, Feng J, Wang X. A Caffeic Acid Matrix Improves In Situ Detection and Imaging of Proteins with High Molecular Weight Close to 200,000 Da in Tissues by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem 2021; 93:11920-11928. [PMID: 34405989 DOI: 10.1021/acs.analchem.0c05480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To our knowledge, this was the first study in which caffeic acid (CA) was successfully evaluated as a matrix to enhance the in situ detection and imaging of endogenous proteins in three biological tissue sections (i.e., a rat brain and Capparis masaikai and germinating soybean seeds) by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Our results show several properties of CA, including strong ultraviolet absorption, a super-wide MS detection mass range close to 200,000 Da, micrometer-sized matrix crystals, uniform matrix deposition, and high ionization efficiency. More high-molecular-weight (HMW) protein ion signals (m/z > 30,000) could be clearly detected in biological tissues with the use of CA, compared to two commonly used MALDI matrices, i.e., sinapinic acid (SA) and ferulic acid (FA). Notably, CA shows excellent performance for HMW protein in situ detection from biological tissues in the mass range m/z > 80,000, compared to the use of SA and FA. Furthermore, the use of a CA matrix also significantly enhanced the imaging of proteins on the surface of selected biological tissue sections. Three HMW protein ion signals (m/z 50,419, m/z 65,874, and m/z 191,872) from a rat brain, two sweet proteins (mabinlin-2 and mabinlin-4) from a Capparis masaikai seed, and three HMW protein ion signals (m/z 94,838, m/z 134,204, and m/z 198,738) from a germinating soybean seed were successfully imaged for the first time. Our study proves that CA has the potential to become a standard organic acid matrix for enhanced tissue imaging of HMW proteins by MALDI-MSI in both animal and plant tissues.
Collapse
Affiliation(s)
- Haiqiang Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jinming Li
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Lulu Chen
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qichen Hao
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Dongxu Jiang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Difan Chen
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuanyuan Ji
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hang Han
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
25
|
Lan C, Li H, Wang L, Zhang J, Wang X, Zhang R, Yuan X, Wu T, Wu J, Lu M, Ma X. Absolute quantification of 2-hydroxyglutarate on tissue by matrix-assisted laser desorption/ionization mass spectrometry imaging for rapid and precise identification of isocitrate dehydrogenase mutations in human glioma. Int J Cancer 2021; 149:2091-2098. [PMID: 34224582 DOI: 10.1002/ijc.33729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022]
Abstract
Isocitrate dehydrogenase (IDH) gene mutations are important predictive molecular markers to guide surgical strategy in brain cancer therapy. Herein, we presented a method using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for absolute quantification of 2-hydroxyglutarate (2-HG) on tissues to identify IDH mutations and evaluate tumor residue. This analytical method was tested among 34 glioma patients and validated with gold standard clinical technologies. The cut-off value of 2-HG was set as 0.81 pmol/μg to identify IDH mutant (IDHmt) gliomas with 100% specificity and sensitivity. In addition, 2-HG levels and tumor cell density (TCD) showed positive correlation in IDHmt gliomas by this spatial method. This MALDI MSI-based absolute quantification method has great potentiality for incorporating into surgical workflow in the future.
Collapse
Affiliation(s)
- Chunyan Lan
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China.,Peking Union Medical College Graduate School, Beijing, China
| | - Hainan Li
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lei Wang
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China
| | - Jing Zhang
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing, China
| | - Rumeng Zhang
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China
| | - Xiaoai Yuan
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China
| | - Taihua Wu
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Jie Wu
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Ming Lu
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Xu Ma
- National Centre for Human Genetic Resources, National Research Institute for Health and Family Planning, Beijing, China.,Peking Union Medical College Graduate School, Beijing, China
| |
Collapse
|
26
|
Zhang Y, Qin L, Sun J, Chen L, Jia L, Zhao J, Yang H, Xue K, Wang X, Sang W. Metabolite changes associated with earthworms (Eisenia fetida) graphene exposure revealed by matrix-assisted laser desorption/ionization mass spectrometry imaging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111102. [PMID: 32836152 DOI: 10.1016/j.ecoenv.2020.111102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The increased production and environmental release of graphene nanoparticles has raised concerns about its environmental impact, but the effects of graphene on living organisms at the metabolic level remain unknown. In this study, we used matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI)-based untargeted metabolomics to investigate the metabolic response of juvenile earthworms (Eisenia fetida) to graphene exposure in soil tests for the first time. Our results reveal that graphene-exposure significantly disturbs earthworm metabolome, and graphene toxicity on earthworm shows non-concentration-dependent effect. Alanine, phenylalanine, proline, glutamate, arginine, histidine, maltose, glucose, malate, succinate, myo-inositol, and spermidine were successfully screened as significantly change compounds in earthworms for the exposure of graphene. The heterogeneous distributions of these metabolites in earthworm were also clearly imaged by MALDI-MSI. Our MSI results fully showed that the metabolite expression levels in juvenile earthworms significantly changed (up-/down-regulation) after exposure to graphene nanoparticles. This work improves our understanding of graphene nanoparticle toxicity to juvenile earthworms and also enables the continued progression of MALDI-MSI-based metabolomics as an emerging, reliable, and rapid ecotoxicological tool for assessing contaminant toxicity.
Collapse
Affiliation(s)
- Yanliang Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Liang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jingkuan Sun
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong Province, 256600, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lizhi Jia
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jinqi Zhao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hongjun Yang
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong Province, 256600, China
| | - Kun Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China.
| | - Weiguo Sang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
27
|
Zhou Q, Fülöp A, Hopf C. Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Anal Bioanal Chem 2020; 413:2599-2617. [PMID: 33215311 PMCID: PMC8007514 DOI: 10.1007/s00216-020-03023-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a fast-growing technique for visualization of the spatial distribution of the small molecular and macromolecular biomolecules in tissue sections. Challenges in MALDI-MSI, such as poor sensitivity for some classes of molecules or limited specificity, for instance resulting from the presence of isobaric molecules or limited resolving power of the instrument, have encouraged the MSI scientific community to improve MALDI-MSI sample preparation workflows with innovations in chemistry. Recent developments of novel small organic MALDI matrices play a part in the improvement of image quality and the expansion of the application areas of MALDI-MSI. This includes rationally designed/synthesized as well as commercially available small organic molecules whose superior matrix properties in comparison with common matrices have only recently been discovered. Furthermore, on-tissue chemical derivatization (OTCD) processes get more focused attention, because of their advantages for localization of poorly ionizable metabolites and their‚ in several cases‚ more specific imaging of metabolites in tissue sections. This review will provide an overview about the latest developments of novel small organic matrices and on-tissue chemical derivatization reagents for MALDI-MSI. Graphical abstract ![]()
Collapse
Affiliation(s)
- Qiuqin Zhou
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Annabelle Fülöp
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163, Mannheim, Germany.
| |
Collapse
|
28
|
Lin M, Xu J, Liu Z, Qin L, Wang X, Pu X. Complement Factor H Displays Opposite Expression Patterns Under Two Situations of Methamphetamine Administration: Acute Exposure and Chronic Dependence. Neurosci Bull 2020; 36:1558-1562. [PMID: 32894502 DOI: 10.1007/s12264-020-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ming Lin
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiamin Xu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhimin Liu
- National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | - Liang Qin
- Centre for Imaging and Systems Biology, Minzu University of China, Beijing, 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiaodong Wang
- Centre for Imaging and Systems Biology, Minzu University of China, Beijing, 100081, China. .,College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Xiaoping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China. .,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|