1
|
Liu X, Mu X, Wang Y, Liu Z, Li Y, Lan J, Feng S, Wang S, Zhao Q. Metal-based mesoporous polydopamine with dual enzyme-like activity as biomimetic nanodrug for alleviating liver fibrosis. J Colloid Interface Sci 2025; 684:586-599. [PMID: 39809020 DOI: 10.1016/j.jcis.2025.01.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Liver fibrosis is a common pathological stage in the development of several chronic liver diseases, and early intervention can effectively reverse the developing process. Excessive reactive oxygen species (ROS) can promote the activation of hepatic stellate cells (HSCs), but existing treatments have not addressed this problem. In this study, different metal-based mesoporous polydopamine (MPDA) was prepared by the soft template method, and their free radical scavenging abilities, as well as the efficacy and safety of the carriers were investigated, so as to select Cu2+-coordinated MPDA (CMP) as the optimal nanocarrier. CMP exhibited superior SOD- and CAT-like activities compared to MPDA. Subsequently, a novel liver-targeted nanodrug delivery system (Cur/CMPH) with biosafety was constructed. Moreover, Cur/CMPH consisted of CMP loaded with the antifibrotic drug curcumin (Cur/CMP) and coated hyaluronic acid (HA) with liver-targeting properties on the surface of Cur/CMP, thus effectively intervening in the progression of liver fibrosis. Cur/CMPH possessed uniform particle size, negative Zeta potential, excellent antioxidant capacity, and pH-responsive drug release. Furthermore, Cur/CMPH in vitro studies demonstrated efficient cellular uptake, inhibition of the proliferation of HSCs, and excellent intracellular ROS scavenging without cytotoxicity. Besides, Cur/CMPH had specific targeting effect on fibrotic liver as well as good accumulation ability. In vivo studies, Cur/CMPH showcased the combined therapeutic effect of Cur and CMP, which significantly decreased the deposition of collagen fibers and alleviated the degree of liver fibrosis with good biosafety. In summary, the construction of Cur/CMPH opens up a novel idea in the field of nanodrug delivery systems for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xinlin Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xiaoyang Mu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ying Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Jiaru Lan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shuaipeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
2
|
Chen H, Wang M, Yang Q, Liu J, Liu F, Zhu X, Huang S, Yin P, Wang X, Li H, Zhang Y, Liu M, Wei M, Yao S, Liu Y. Multifunctional porphyrinic metal-organic framework-based nanoplatform regulating reactive oxygen species achieves efficient imaging-guided cascaded nanocatalytic therapy. J Colloid Interface Sci 2025; 684:423-438. [PMID: 39799625 DOI: 10.1016/j.jcis.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO2@HA, PAMH) was proposed. It was developed through a layer-by-layer in-situ growth method. This method avoids the need for high-temperature calcination and complex modification processes while improving the stability of PCN-224 in a phosphate-rich environment. GSH depletion leads to oxidation-reduction imbalance in TME. With the inactivation of GSH peroxidase 4 (GPX4), the content of hydrogen peroxide (H2O2) increases, ultimately triggering lipid peroxidation (LPO) and promoting ferroptosis. The catalase-like activity of Au nanozymes facilitates the generation of oxygen (O2), thereby mitigating tumor hypoxia and downregulating hypoxia-inducing factors (HIF-1α). Due to the presence of porphyrin ligands in PCN-224, the generated O2 can be further converted to toxic singlet oxygen (1O2) under laser irradiation. Additionally, the platform allows near-infrared (NIR) fluorescence imaging, providing real-time information on intracellular GSH changes during PDT and ferroptosis. The PAMH nanoplatform has shown effective inhibition of tumor growth in subcutaneous models via both intravenous and intratumoral injection, indicating its potential in modulating reactive oxygen/sulfur species and reshaping TME, thereby facilitating imaging-guided cascaded nanocatalytic therapy.
Collapse
Affiliation(s)
- Haoyu Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China
| | - Minjuan Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qiquan Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jing Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Feng Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shu Huang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Peng Yin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xingfeng Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Haitao Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Mingjie Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yang Liu
- Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China.
| |
Collapse
|
3
|
Ding Q, Shang J, Yang L, Deng L, Wu S, Chen J, Yang J, Wang K, Li C, Chen J, Zhou M. Enhanced anti-tumor efficacy of berberine-loaded mesoporous polydopamine nanoparticles for synergistic chemotherapy and photothermal therapy. Int J Pharm 2024:125151. [PMID: 39743162 DOI: 10.1016/j.ijpharm.2024.125151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The development of innovative therapeutic strategies that combine multiple treatment modalities is essential for effective cancer therapy. In this study, we engineered berberine (BER)-loaded mesoporous polydopamine (MPDA) nanoparticles (BER-MPDA) to enhance anti-tumor efficacy through synergistic chemotherapy and photothermal therapy (PTT). The mesoporous structure of MPDA allowed for a high loading capacity of BER, a natural isoquinoline alkaloid with known anticancer properties. Upon near-infrared laser irradiation, BER-MPDA exhibited marked photothermal conversion efficiency, leading to effective tumor cell ablation. Both in vitro and in vivo experiments indicated that the combined treatment of BER-MPDA with near-infrared laser irradiation resulted in superior tumor inhibition compared to monotherapy. The synergistic effect was attributed to the enhanced cellular uptake and the simultaneous induction of chemo- and photothermal cytotoxicity. Our findings suggest that BER-MPDA represents a promising platform for multimodal cancer therapy, offering a potent approach to overcoming the limitations of conventional chemotherapy and PTT.
Collapse
Affiliation(s)
- Qian Ding
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, China; Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinlu Shang
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Deng
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Siqiong Wu
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Chen
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, China
| | - Jing Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ke Wang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Junyan Chen
- Department of Cardiothoracic Surgery, Luzhou People's Hospital, Luzhou 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
4
|
Huang LH, Hsieh YY, Yang FA, Liao WC. DNA-modified Prussian blue nanozymes for enhanced electrochemical biosensing. NANOSCALE 2024; 16:9770-9780. [PMID: 38597919 DOI: 10.1039/d4nr00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Prussian blue nanoparticles exhibit the potential to be employed in bioanalytical applications due to their robust stability, peroxidase-like catalytic functionality, straightforward synthesis, and biocompatibility. An efficient approach is presented for the synthesis of nucleic acid-modified Prussian blue nanoparticles (DNA-PBNPs), utilizing nanoparticle porosity to adsorb nucleic acids (polyT). This strategic adsorption leads to the exposure of nucleic acid sequences on the particle surface while retaining catalytic activity. DNA-PBNPs further couple with functional nucleic acid sequences and aptamers through complementary base pairing to act as transducers in biosensors and amplify signal acquisition. Subsequently, we integrated a copper ion-dependent DNAzyme (Cu2+-DNAzyme) and a vascular endothelial growth factor aptamer (VEGF aptamer) onto screen-printed electrodes to serve as recognition elements for analytes. Significantly, our approach leverages DNA-PBNPs as a superior alternative to traditional enzyme-linked antibodies in electrochemical biosensors, thereby enhancing both the efficiency and adaptability of these devices. Our study conclusively demonstrates the application of DNA-PBNPs in two different biosensing paradigms: the sensitive detection of copper ions and vascular endothelial growth factor (VEGF). These results indicate the promising potential of DNA-modified Prussian blue nanoparticles in advancing bioanalytical sensing technologies.
Collapse
Affiliation(s)
- Lin-Hui Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Yu-Yu Hsieh
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Fu-An Yang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Wei-Ching Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
5
|
Moloudi K, Abrahamse H, George BP. Nanotechnology-mediated photodynamic therapy: Focus on overcoming tumor hypoxia. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1937. [PMID: 38072393 DOI: 10.1002/wnan.1937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 03/09/2024]
Abstract
The oxygen level in the tumor is a critical marker that determines response to different treatments. Cancerous cells can adapt to hypoxia and low pH conditions within the tumor microenvironment (TME) to regulate tumor metabolism, proliferation, and promote tumor metastasis as well as angiogenesis, consequently leading to treatment failure and recurrence. In recent years, widespread attempts have been made to overcome tumor hypoxia through different methods, such as hyperbaric oxygen therapy (HBOT), hyperthermia, O2 carriers, artificial hemoglobin, oxygen generator hydrogels, and peroxide materials. While oxygen is found to be an essential agent to improve the treatment response of photodynamic therapy (PDT) and other cancer treatment modalities, the development of hypoxia within the tumor is highly associated with PDT failure. Recently, the use of nanoparticles has been a hot topic for researchers and exploited to overcome hypoxia through Oxygen-generating hydrogels, O2 nanocarriers, and O2 -generating nanoparticles. This review aimed to discuss the role of nanotechnology in tumor oxygenation and highlight the challenges, prospective, and recent advances in this area to improve PDT outcomes. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre (LRC), Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre (LRC), Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Blassan P George
- Laser Research Centre (LRC), Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
6
|
Hu X, Zhao W, Li R, Chai K, Shang F, Shi S, Dong C. A cascade nanoplatform for the regulation of the tumor microenvironment and combined cancer therapy. NANOSCALE 2023; 15:16314-16322. [PMID: 37786260 DOI: 10.1039/d3nr03199c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Recently, disulfiram (DSF), an anti-alcoholism drug, has attracted increasing biomedical interest due to its anticancer effects. However, the anticancer activity of DSF is Cu(II)-dependent and it is extremely unstable, which severely hinders its clinical translation. Herein, we report the fabrication of a multifunctional nanoplatform (MCDGF) that can improve the stability of diethyldithiocarbamate (DTC), a main metabolite of DSF, by modifying the aryl boronic ester group to form a prodrug (DQ), and also realize the in situ generation of Cu(DTC)2, which relies on a cascade reaction. The delivered Cu/DQ induces immunogenic cell death (ICD) and powerfully enhances immune responses of cytotoxic T lymphocytes (CTLs) and the infiltration of dendritic cells as well as T cells. Furthermore, the grafted glucose oxidase (GOx) decomposes glucose, thus "starving" the cancer cells and providing H2O2 for the production of Cu(DTC)2. More importantly, H2O2 significantly promotes the polarization of macrophages to the anti-tumor subtype. The nano-carrier "mesoporous polydopamine (MPDA)" also displays a good photothermal therapeutic effect. The nanoplatform-integrated chemotherapy, starvation therapy, photothermal therapy, and immunotherapy synergistically stimulated CTL activation and M1 macrophage polarization. Taken together, the as-prepared nanoplatform could regulate the tumor immune microenvironment and eliminate cancer with combined cancer therapy, which will offer a promising strategy for cancer treatment and promote the clinical application of DSF in breast cancer.
Collapse
Affiliation(s)
- Xiaochun Hu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wenrong Zhao
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Ruihao Li
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Keke Chai
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Fangjian Shang
- College of Aeronautical Engineering, Binzhou University, Binzhou 256603, China
| | - Shuo Shi
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Chunyan Dong
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Liu K, Yao Y, Xue S, Zhang M, Li D, Xu T, Zhi F, Liu Y, Ding D. Recent Advances of Tumor Microenvironment-Responsive Nanomedicines-Energized Combined Phototherapy of Cancers. Pharmaceutics 2023; 15:2480. [PMID: 37896240 PMCID: PMC10610502 DOI: 10.3390/pharmaceutics15102480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as a powerful tumor treatment tool due to its advantages including minimal invasiveness, high selectivity and thus dampened side effects. On the other side, the efficacy of PDT is severely frustrated by the limited oxygen level in tumors, thus promoting its combination with other therapies, particularly photothermal therapy (PTT) for bolstered tumor treatment outcomes. Meanwhile, nanomedicines that could respond to various stimuli in the tumor microenvironment (TME) provide tremendous benefits for combined phototherapy with efficient hypoxia relief, tailorable drug release and activation, improved cellular uptake and intratumoral penetration of nanocarriers, etc. In this review, we will introduce the merits of combining PTT with PDT, summarize the recent important progress of combined phototherapies and their combinations with the dominant tumor treatment regimen, chemotherapy based on smart nanomedicines sensitive to various TME stimuli with a focus on their sophisticated designs, and discuss the challenges and future developments of nanomedicine-mediated combined phototherapies.
Collapse
Affiliation(s)
- Kehan Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Yao Yao
- Department of Gerontology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China;
| | - Shujuan Xue
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Mengyao Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Dazhao Li
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou 213003, China; (D.L.); (F.Z.)
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Tao Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), D02 NY74 Dublin, Ireland
| | - Feng Zhi
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou 213003, China; (D.L.); (F.Z.)
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yang Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| |
Collapse
|
8
|
Shi P, Sun X, Yuan H, Chen K, Bi S, Zhang S. Nanoscale Metal-Organic Frameworks Combined with Metal Nanoparticles and Metal Oxide/Peroxide to Relieve Tumor Hypoxia for Enhanced Photodynamic Therapy. ACS Biomater Sci Eng 2023; 9:5441-5456. [PMID: 37729521 DOI: 10.1021/acsbiomaterials.3c00509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved noninvasive tumor therapy that can selectively kill malignant tumor cells, with promising use in the treatment of various cancers. PDT is typically composed of three important parts: the specific wavelength of light, photosensitizer (PS), and oxygen. With the progressing investigation on PDT treatment, the most recent attention has focused on improving photodynamic efficiency. Tumor hypoxia has always been a critical factor hindering the efficacy of PDT. Nanoscale metal-organic frameworks (nMOF), the fourth generation of PS, present great potential in photodynamic therapy. In particular, nMOF combined with metal nanoparticles and metal oxide/peroxide has demonstrated unique properties for enhanced PDT. The metal and metal oxide nanoparticles can catalyze H2O2 to generate oxygen or automatically produces oxygen, alleviating the hypoxia and improving the photodynamic efficiency. Metal peroxide nanoparticles can spontaneously produce oxygen in water or under acidic conditions. Therefore, this Review summarizes the recent development of nMOF combined with metal nanoparticles (platinum nanoparticles and gold nanoparticles) and metal oxide/peroxide (manganese dioxide, ferric oxide, cerium oxide, calcium peroxide, and magnesium peroxide) for enhanced photodynamic therapy by alleviating tumor hypoxia. Finally, future perspectives of nMOF combined nanomaterials in PDT are put forward.
Collapse
Affiliation(s)
- Pengfei Shi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Xinran Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Haoming Yuan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Kaixiu Chen
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Shusheng Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| |
Collapse
|
9
|
Zhang Q, Wu M, Fang Y, Deng C, Shen HH, Tang Y, Wang Y. One-Pot Synthesis of Ultra-Small Pt Nanoparticles-Loaded Nitrogen-Doped Mesoporous Carbon Nanotube for Efficient Catalytic Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2633. [PMID: 37836274 PMCID: PMC10574567 DOI: 10.3390/nano13192633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this study, Pt nanoparticles-loaded nitrogen-doped mesoporous carbon nanotube (Pt/NMCT) was successfully synthesized through a polydopamine-mediated "one-pot" co-deposition strategy. The Pt source was introduced during the co-deposition of polydopamine and silica on the surface of SiO2 nanowire (SiO2 NW), and Pt atoms were fixed in the skeleton by the chelation of polydopamine. Thus, in the subsequent calcination process in nitrogen atmosphere, the growth and agglomeration of Pt nanoparticles were effectively restricted, achieving the in situ loading of uniformly dispersed, ultra-small (~2 nm) Pt nanoparticles. The method is mild, convenient, and does not require additional surfactants, reducing agents, or stabilizers. At the same time, the use of the dual silica templates (SiO2 NW and the co-deposited silica nanoclusters) brought about a hierarchical pore structure with a high specific surface area (620 m2 g-1) and a large pore volume (1.46 cm3 g-1). The loading process of Pt was studied by analyzing the electron microscope and X-ray photoelectron spectroscopy of the intermediate products. The catalytic performance of Pt/NMCT was investigated in the reduction of 4-nitrophenol. The Pt/NMCT with a hierarchical pore structure had an apparent reaction rate constant of 0.184 min-1, significantly higher than that of the sample, without the removal of the silica templates to generate the hierarchical porosity (0.017 min-1). This work provides an outstanding contribution to the design of supported noble metal catalysts and also highlights the importance of the hierarchical pore structure for catalytic activity.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Minying Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Yuanyuan Fang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Chao Deng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| |
Collapse
|
10
|
Hu H, Yang J, Zhong Y, Wang J, Cai J, Luo C, Jin Z, Gao M, He M, Zheng L. Polydopamine-Pd nanozymes as potent ROS scavengers in combination with near-infrared irradiation for osteoarthritis treatment. iScience 2023; 26:106605. [PMID: 37182095 PMCID: PMC10172781 DOI: 10.1016/j.isci.2023.106605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Excessive reactive oxygen species (ROS) in joints could lead to gradual degeneration of the extracellular matrix (ECM) and apoptosis of chondrocytes, contributing to the occurrence and development of osteoarthritis (OA). Mimicking natural enzymes, polydopamine (PDA)-based nanozymes showed great potential in treating various inflammatory diseases. In this work, PDA loaded with ultra-small palladium (PDA-Pd) nanoparticles (NPs) was employed to scavenge ROS for OA therapy. As a result, PDA-Pd effectively declined the intracellular ROS levels and exhibited efficient antioxidative and anti-inflammatory capacity with good biocompatibility in IL-1β stimulated chondrocytes. Significantly, assisted with near-infrared (NIR) irradiation, its therapeutic effect was further enhanced. Further, NIR-stimulated PDA-Pd suppressed the progression of OA after intra-articular injection in the OA rat model. With favorable biocompatibility, PDA-Pd exhibits efficient antioxidative and anti-inflammatory capacity, leading to the alleviation of OA in rats. Our findings may provide new insights into the treatment of various ROS-induced inflammatory diseases.
Collapse
Affiliation(s)
- Hao Hu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Junxu Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yanping Zhong
- Life Sciences Institute of Guangxi Medical University, Nanning 530021, China
| | - Jiawei Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinhong Cai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Cuijuan Luo
- Life Sciences Institute of Guangxi Medical University, Nanning 530021, China
| | - Zhiqiang Jin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Corresponding author
| | - Maolin He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Corresponding author
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Corresponding author
| |
Collapse
|
11
|
Hu X, Li H, Li R, Qiang S, Chen M, Shi S, Dong C. A Phase-Change Mediated Intelligent Nanoplatform for Chemo/Photothermal/Photodynamic Therapy of Cancer. Adv Healthc Mater 2023; 12:e2202245. [PMID: 36373209 DOI: 10.1002/adhm.202202245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/23/2022] [Indexed: 11/16/2022]
Abstract
Up to now, chemotherapy is still the main strategy for cancer treatment. However, the emergence of chemo-resistance and systemic side effects often seriously affects the treatment and prognosis. Herein, an intelligent nanoplatform based on dendritic mesoporous organosilica nanoparticles (DMON) is constructed. The encapsulated phase-change material, 1-tetradecanol (TD) can serve as a "doorkeeper" and enable the responsive release of drugs based on the temperature changes. Meanwhile, polyethylene glycol (PEG) is used to improve the dispersibility and biocompatibility. Cisplatin is chosen as the model of chemotherapy drug, which is co-loaded with indocyanine green (ICG) in DMON to produce DMON-PEG-cisplatin/ICG-TD (DPCIT). Exciting, the hyperthermia and reactive oxygen species induced by ICG under the NIR-laser irradiation will initiate a phase transition of TD to release cisplatin, thus leading a combined therapy (chemo/photothermal/photodynamic therapy). The results indicated that under laser irradiation, DPCIT can kill cancer cells and inhibit tumor growth efficiently. In addition, the designed nanoplatform reveals minimal systemic toxicity in vivo, in contrast, the distinct liver damage can be observed by the direct treatment of cisplatin. Overall, this research may provide a general approach for the targeted delivery and controlled release of chemotherapy drugs to realize a cooperatively enhanced multimodal tumor therapy.
Collapse
Affiliation(s)
- Xiaochun Hu
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Hui Li
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Ruihao Li
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Sufeng Qiang
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Mengyao Chen
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Shuo Shi
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| | - Chunyan Dong
- Breast Cancer Center, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200120, P. R. China
| |
Collapse
|
12
|
Regorafenib and Ruthenium Complex Combination Inhibit Cancer Cell Growth by Targeting PI3K/AKT/ERK Signalling in Colorectal Cancer Cells. Int J Mol Sci 2022; 24:ijms24010686. [PMID: 36614133 PMCID: PMC9820863 DOI: 10.3390/ijms24010686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Cancer is one of the leading cause of lethality worldwide, CRC being the third most common cancer reported worldwide, with 1.85 million cases and 850,000 deaths annually. As in all other cancers, kinases are one of the major enzymes that play an essential role in the incidence and progression of CRC. Thus, using multi-kinase inhibitors is one of the therapeutic strategies used to counter advanced-stage CRC. Regorafenib is an FDA-approved drug in the third-line therapy of refractory metastatic colorectal cancer. Acquired resistance to cancers and higher toxicity of these drugs are disadvantages to the patients. To counter this, combination therapy is used as a strategy where a minimal dose of drugs can be used to get a higher efficacy and reduce drug resistance development. Ruthenium-based compounds are observed to be a potential alternative to platinum-based drugs due to their significant safety and effectiveness. Formerly, our lab reported Ru-1, a ruthenium-based compound, for its anticancer activity against multiple cancer cells, such as HepG2, HCT116, and MCF7. This study evaluates Ru-1's activity against regorafenib-resistant HCT116 cells and as a combination therapeutic with regorafenib. Meanwhile, the mechanism of the effect of Ru-1 alone and with regorafenib as a combination is still unknown. In this study, we tested a drug combination (Ru-1 and regorafenib) against a panel of HT29, HCT116, and regorafenib-resistant HCT116 cells. The combination showed a synergistic inhibitory activity. Several mechanisms underlying these numerous synergistic activities, such as anti-proliferative efficacy, indicated that the combination exhibited potent cytotoxicity and enhanced apoptosis induction. Disruption of mitochondrial membrane potential increased intracellular ROS levels and decreased migratory cell properties were observed. The combination exhibited its activity by regulating PI3K/Akt and p38 MAP kinase signalling. This indicates that the combination of REG/Ru-1 targets cancer cells by modulating the PI3K/Akt and ERK signalling.
Collapse
|
13
|
Wang X, He X, Liu C, Zhao W, Yuan X, Li R. Progress and perspectives of platinum nanozyme in cancer therapy. Front Chem 2022; 10:1092747. [DOI: 10.3389/fchem.2022.1092747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Malignant tumors, one of the worst-case scenarios within human health problems, are now posing an increasing threat to the well-being of the global population. At present, the treatment of malignant tumors mainly includes surgery, radiotherapy, chemotherapy, immunotherapy, etc. Radiotherapy and chemotherapy are often applied to inoperable tumors, and some other tumors after surgery as important adjuvant therapies. Nonetheless, both radiotherapy and chemotherapy have a series of side effects, such as radiation-induced lung injury, and chemotherapy-induced bone marrow suppression. In addition, the positioning accuracy of radiotherapy and chemotherapy is not assured and satisfactory, and the possibility of tumor cells not being sensitive to radiation and chemotherapy drugs is also problematic. Nanozymes are nanomaterials that display natural enzyme activities, and their applications to tumor therapy have made great progress recently. The most studied one, platinum nanozyme, has been shown to possess a significant correlation with radiotherapy sensitization of tumors as well as photodynamic therapy. However, there are still several issues that limited the usage of platinum-based nanozymes in vivo. In this review, we briefly summarize the representative studies regarding platinum nanozymes, and especially emphasize on the current challenges and the directions of future development for platinum nanozymes therapy.
Collapse
|
14
|
Gao M, Han Z, Wang Z, Zou X, Peng L, Zhao Y, Sun L. Fabrication of a smart drug delivery system based on hollow Ag 2S@mSiO 2 nanoparticles for fluorescence-guided synergistic photothermal chemotherapy. Mikrochim Acta 2022; 189:376. [PMID: 36074274 DOI: 10.1007/s00604-022-05468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
A novel near-infrared (NIR) light-triggered smart nanoplatform has been developed for cancer targeting and imaging-guided combined photothermal-chemo treatment. Notably, Ag2S has a dual function of photothermal therapy and fluorescence imaging, which greatly simplifies the structure of the system. It can emit fluorescence at 820 nm under an excitation wavelength of 560 nm. The phase-change molecule of 1-tetradecanol (TD) is introduced as a temperature-sensitive gatekeeper to provide the nanocarrier with controlled release capability of doxorubicin (DOX). The nanocarrier (HAg2S@mSiO2-TD/DOX) shows a high drug loading capacity of 26.3% and exhibits an apparent NIR-responsive DOX release property. Under NIR irradiation, the photothermal effect of HAg2S nanocores facilitated the release of DOX through the melting of TD. The cytotoxicity test shows that the nanocarriers have good biocompatibility. As the same time, the synergistic combination leads to a better cancer inhibition effect than individual therapy alone in vitro. Cell uptake tests indicate that the carriers have excellent fluorescence imaging ability and high cellular uptake for HepG2 cells. This work provides a new strategy for the fabrication of smart nanocarriers with simple structures for fluorescence-mediated combination cancer therapy. Fabrication of a smart drug delivery system based on hollow Ag2S@mSiO2 nanoparticles for fluorescence-guided synergistic photothermal chemotherapy.
Collapse
Affiliation(s)
- Minjie Gao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Zehua Han
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Zhihua Wang
- Henan Engineering Research Center of Industrial Circulating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Xueyan Zou
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Lichao Peng
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yanbao Zhao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
15
|
Xu Z, Chen H, Chu H, Shen X, Deng C, Sun N, Wu H. Diagnosis and subtype classification on serum peptide fingerprints by mesoporous polydopamine with built-in metal-organic framework. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Gutiérrez de la Rosa SY, Muñiz Diaz R, Villalobos Gutiérrez PT, Patakfalvi R, Gutiérrez Coronado Ó. Functionalized Platinum Nanoparticles with Biomedical Applications. Int J Mol Sci 2022; 23:9404. [PMID: 36012670 PMCID: PMC9409011 DOI: 10.3390/ijms23169404] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/21/2022] Open
Abstract
Functionalized platinum nanoparticles have been of considerable interest in recent research due to their properties and applications, among which they stand out as therapeutic agents. The functionalization of the surfaces of nanoparticles can overcome the limits of medicine by increasing selectivity and thereby reducing the side effects of conventional drugs. With the constant development of nanotechnology in the biomedical field, functionalized platinum nanoparticles have been used to diagnose and treat diseases such as cancer and infections caused by pathogens. This review reports on physical, chemical, and biological methods of obtaining platinum nanoparticles and the advantages and disadvantages of their synthesis. Additionally, applications in the biomedical field that can be utilized once the surfaces of nanoparticles have been functionalized with different bioactive molecules are discussed, among which antibodies, biodegradable polymers, and biomolecules stand out.
Collapse
Affiliation(s)
| | | | | | | | - Óscar Gutiérrez Coronado
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Jalisco, Mexico
| |
Collapse
|
17
|
Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int J Nanomedicine 2022; 17:3751-3775. [PMID: 36065287 PMCID: PMC9440714 DOI: 10.2147/ijn.s378217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 01/03/2023] Open
Abstract
Glioma is characterized by high mortality and low postoperative survival. Despite the availability of various therapeutic approaches and molecular typing, the treatment failure rate and the recurrence rate of glioma remain high. Given the limitations of existing therapeutic tools, nanotechnology has emerged as an alternative treatment option. Nanoparticles, such as polydopamine (PDA)-based nanoparticles, are embodied with reliable biodegradability, efficient drug loading rate, relatively low toxicity, considerable biocompatibility, excellent adhesion properties, precisely targeted delivery, and strong photothermal conversion properties. Therefore, they can further enhance the therapeutic effects in patients with glioma. Moreover, polydopamine contains pyrocatechol, amino and carboxyl groups, active double bonds, catechol, and other reactive groups that can react with biofunctional molecules containing amino, aldehyde, or sulfhydryl groups (main including, self-polymerization, non-covalent self-assembly, π-π stacking, electrostatic attraction interaction, chelation, coating and covalent co-assembly), which form a reversible dynamic covalent Schiff base bond that is extremely sensitive to pH values. Meanwhile, PDA has excellent adhesion capability that can be further functionally modified. Consequently, the aim of this review is to summarize the application of PDA-based NPs in glioma and to acquire insight into the therapeutic effect of the drug-loaded PDA-based nanocarriers (PDA NPs). A wealthy understanding and argument of these sides is anticipated to afford a better approach to develop more reasonable and valid PDA-based cancer nano-drug delivery systems. Finally, we discuss the expectation for the prospective application of PDA in this sphere and some individual viewpoints.
Collapse
Affiliation(s)
- Hao Wu
- Neurosurgery, Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Min Wei
- Neurosurgery, Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Yu Xu
- Nanotechnology, Jinling Institute of Technology, Nanjing, People’s Republic of China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xue Zhai
- Department of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, People’s Republic of China
| | - Peng Su
- Department of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, People’s Republic of China
| | - Qiang Ma
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Correspondence: Hengzhu Zhang, 98 Nantong Xi Lu, Yangzhou, Jiangsu Province, People’s Republic of China, Tel +86 18051061558, Fax +86-0514-87373562, Email
| |
Collapse
|
18
|
Wu H, Wei M, Xu Y, Li Y, Zhai X, Su P, Ma Q, Zhang H. PDA-Based Drug Delivery Nanosystems: A Potential Approach for Glioma Treatment. Int J Nanomedicine 2022; Volume 17:3751-3775. [DOI: https:/doi.org/10.2147/ijn.s378217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
|
19
|
Li R, Hu X, Shang F, Wu W, Zhang H, Wang Y, Pan J, Shi S, Dong C. Treatment of triple negative breast cancer by near infrared light triggered mild temperature photothermal therapy combined with oxygen-independent cytotoxic free radicals. Acta Biomater 2022; 148:218-229. [DOI: 10.1016/j.actbio.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/01/2022]
|
20
|
Huang Z, Xie L, Zhang J, Li Q, Liu Y, Fu X, Yuan M, Li Q. RNA-Seq Based Toxicity Analysis of Mesoporous Polydopamine Nanoparticles in Mice Following Different Exposure Routes. Front Bioeng Biotechnol 2022; 10:893608. [PMID: 35573233 PMCID: PMC9096556 DOI: 10.3389/fbioe.2022.893608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mesoporous polydopamine nanoparticles (MPDA NPs) are promising nanomaterials that have the prospect of clinical application for multi-strategy antitumor therapy, while the biosecurity of MPDA NPs remains indistinct. Here, transcriptome sequencing (RNA-Seq) was performed to systematically reveal the toxicity of MPDA NPs to five categories of organs after three different exposure routes, including intravenous injection, intramuscular injection, and intragastric administration. Our results uncovered that MPDA NPs could be deposited in various organs in small amounts after intravenous administration, not for the other two exposure routes. The number of differentially expressed genes (DEGs) identified in the heart, liver, spleen, lung, and kidney from the intragastric administration group was from 22 to 519. Similarly, the corresponding number was from 23 to 64 for the intramuscular injection group and was from 11 to 153 for the intravenous injection group. Functional enrichment analyses showed 6, 39, and 4 GO terms enriched for DEGs in intragastric administration, intramuscular injection, and intravenous injection groups, respectively. One enriched pathway was revealed in intragastric administration group, while no enriched pathway was found in other groups. Our results indicated that MPDA NPs produced only slight changes at the transcriptome level in mice, which provided new insights for further clinical application of MPDA NPs.
Collapse
Affiliation(s)
- Zihua Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Luoyijun Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jifan Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiyan Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yulin Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
21
|
Combination of ruthenium (II) polypyridyl complex Δ-Ru1 and Taxol enhances the anti-cancer effect on Taxol-resistant cancer cells through Caspase-1/GSDMD-mediated pyroptosis. J Inorg Biochem 2022; 230:111749. [DOI: 10.1016/j.jinorgbio.2022.111749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
|
22
|
Zeng WN, Wang D, Yu QP, Yu ZP, Wang HY, Wu CY, Du SW, Chen XY, Li JF, Zhou ZK, Zeng Y, Zhang Y. Near-Infrared Light-Controllable Multifunction Mesoporous Polydopamine Nanocomposites for Promoting Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2534-2550. [PMID: 34985258 DOI: 10.1021/acsami.1c19209] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The successful treatment of infected wounds requires strategies with effective antimicrobial, anti-inflammatory, and healing-promoting properties. Accordingly, the use of Cu2+ and tetracycline (TC), which can promote angiogenesis, re-epithelialization, and collagen deposition, also antibacterial activity, at the wound site, has shown application prospects in promoting infected wound repair. However, realizing controllable release to prolong action time and avoid potential toxicities is critical. Moreover, near-infrared light (NIR)-activated mesoporous polydopamine nanoparticles (MPDA NPs) reportedly exert anti-inflammatory effects by eliminating the reactive oxygen species generated during inflammatory responses. In this study, we assess whether Cu2+ and TC loaded in MPDA NPs can accelerate infected wound healing in mice. In particular, Cu2+ is chelated and immobilized on the surface of MPDA NPs, while a thermosensitive phase-change material (PCM; melting point: 39-40 °C), combined with antibiotics, was loaded into the MPDA NPs as a gatekeeper (PPMD@Cu/TC). Results show that PPMD@Cu/TC exhibits significant great photothermal properties with NIR irradiation, which induces the release of Cu2+, while inducing PCM melting and, subsequent, TC release. In combination with anti-inflammatory therapy, NIR-triggered Cu2+ and TC release enables the nanocomposite to eradicate bacterial wound infections and accelerate healing. Importantly, negligible damage to primary organs and satisfactory biocompatibility were observed in the murine model. Collectively, these findings highlight the therapeutic potential of this MPDA-based platform for controlling bacterial infection and accelerating wound healing.
Collapse
Affiliation(s)
- Wei-Nan Zeng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Duan Wang
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiu-Ping Yu
- Health Management Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ze-Ping Yu
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao-Yang Wang
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng-Yu Wu
- West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Si-Wei Du
- West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xing-Yu Chen
- West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jia-Fei Li
- West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Zong-Ke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zeng
- Department of Hyperbaric Oxygen, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yun Zhang
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
23
|
Feng L, Chen M, Li R, Zhou L, Wang C, Ye P, Hu X, Yang J, Sun Y, Zhu Z, Fang K, Chai K, Shi S, Dong C. Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic therapy. Acta Biomater 2022; 138:463-477. [PMID: 34718179 DOI: 10.1016/j.actbio.2021.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is an effective noninvasive therapeutic strategy that can convert oxygen to highly cytotoxic singlet oxygen (1O2) through the co-localization of excitation light and photosensitizers. However, compromised by the hypoxic tumor microenvironment, the therapeutic efficacy of PDT is reduced seriously. Herein, to overcome tumor-associated hypoxia, and further achieve tumor-targeted synergistic chemotherapy/PDT/photothermal therapy (PTT), we have constructed a biodegradable oxygen-producing nanoplatform (named Ini@PM-HP), which was composed of the porous metal-organic framework (PCN-224(Mn)), the poly (ADP-ribose) polymerase (PARP) inhibitor (Iniparib), and the polydopamine-modified hyaluronic acid (HA-PDA). Since HA can specifically bind to the overexpressed HA receptors (cluster determinant 44, CD44) on tumor cell, Ini@PM-HP prefers to accumulate at the tumor site once injected intravenously. Then iniparib can be released in tumor environment (TME), thereby dysfunctioning DNA damage repair and promoting cell apoptosis. At the same time, the chelating of Mn and tetrakis(4-carboxyphenyl) porphyrin (Mn-TCPP) can generate O2 in situ by reacting with endogenous H2O2, relieving the hypoxic TME and achieving enhanced PDT. Moreover, owing to the high photothermal conversion efficiency of PDA, PTT can be driven by the 808 nm laser irradiation. As systematically demonstrated in vitro and in vivo, this nanotherapeutic approach enables the combined therapy with great inhibition on tumor. Overall, the as-prepared nanoplatform provide a promising strategy to overcome tumor-associated hypoxia, and shows great potential for combination tumor therapy. STATEMENT OF SIGNIFICANCE: A delicately designed biodegradable oxygen-producing nanoplatform Ini@PM-HP is constructed to achieve combination therapy of solid tumors. Taking advantage of the active-targeting, PTT, enhanced PDT and PARPi, this nanotherapeutic approach successfully enables the combined chemo/photothermal/photodynamic therapy with great inhibition of solid tumors.
Collapse
|
24
|
Ni X, Li C, Lei Y, Shao Y, Zhu Y, You B. Design of a Smart Self-Healing Coating with Multiple-Responsive Superhydrophobicity and Its Application in Antibiofouling and Antibacterial Abilities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57864-57879. [PMID: 34807561 DOI: 10.1021/acsami.1c15239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by the restoration of the superhydrophobic surfaces after the damage in nature such as lotus leaf and clover, smart self-healing coating with controllable release of loaded healing agents is both of scientific and technological interest. Herein, a smart self-healing coating with superhydrophobicity was gained through blending UV/NIR/acid/base multiple-responsive ZnO-encapsulated mesoporous polydopamine (MPDA) microspheres (zinc oxide-encapsulated mesoporous polydopamine microspheres) with silicone latex and hydrophobic nanoparticles. The hydrophobic and micro/nanostructured ZnO-encapsulated MPDA microspheres provided UV/NIR/acid/base multiple response sources for the smart self-healing coating, combining the photocatalytic activity and acid/base solubility of ZnO nanoparticles, zwitterionic characteristic of amino-modified silicone oil (ASO), as well as the photothermal conversion abilities and charge characteristics of PDA. The ZnO nanoparticles simultaneously acted as the protective layer for the stimuli-responsive microspheres and functional filler in the coating, contributing to realize the controllable and long-period release of loaded hydrophobic ASO and the further antibacterial functionalization for the coating. The super/high hydrophobicity and antibiofouling performances of the coating could be self-healed by UV, NIR, acid, or base stimuli, attributing to the release of ASO from the microspheres. Then, large-area, rapid, and controllable healing superiority could be achieved on the coating with the combined multiple responses under different conditions. Robust environmental endurances for superhydrophobic coating were also confirmed under harsh environments by directly exposing to UV-accelerated weathering and immersing into various solutions (including strong acid/base, salt, and artificial seawater solution). This smart coating has high application prospects due to its environmentally friendly nature, excellent self-healing, and multifunctional characteristics, and the multiple-responsive ZnO-encapsulated MPDA microspheres can be used for the functionalization of other materials.
Collapse
Affiliation(s)
- Xingxing Ni
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200433, P. R. China
| | - Chenxi Li
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200433, P. R. China
| | - Yang Lei
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200433, P. R. China
| | - Yiran Shao
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo You
- Department of Materials Science and Advanced Coatings Research Center of Ministry of Education, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
25
|
Zhu M, Shi Y, Shan Y, Guo J, Song X, Wu Y, Wu M, Lu Y, Chen W, Xu X, Tang L. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J Nanobiotechnology 2021; 19:387. [PMID: 34819084 PMCID: PMC8613963 DOI: 10.1186/s12951-021-01131-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Polydopamine (PDA), which is derived from marine mussels, has excellent potential in early diagnosis of diseases and targeted drug delivery owing to its good biocompatibility, biodegradability, and photothermal conversion. However, when used as a solid nanoparticle, the application of traditional PDA is restricted because of the low drug-loading and encapsulation efficiencies of hydrophobic drugs. Nevertheless, the emergence of mesoporous materials broaden our horizon. Mesoporous polydopamine (MPDA) has the characteristics of a porous structure, simple preparation process, low cost, high specific surface area, high light-to-heat conversion efficiency, and excellent biocompatibility, and therefore has gained considerable interest. This review provides an overview of the preparation methods and the latest applications of MPDA-based nanodrug delivery systems (chemotherapy combined with radiotherapy, photothermal therapy combined with chemotherapy, photothermal therapy combined with immunotherapy, photothermal therapy combined with photodynamic/chemodynamic therapy, and cancer theranostics). This review is expected to shed light on the multi-strategy antitumor therapy applications of MPDA-based nanodrug delivery systems. ![]()
Collapse
Affiliation(s)
- Menglu Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Yifan Shan
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Junyan Guo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Xuelong Song
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yuhua Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Miaolian Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yan Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Wei Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 310004, Hangzhou, Zhejiang, People's Republic of China.
| | - Longguang Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China. .,International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China.
| |
Collapse
|
26
|
Li X, Wu Y, Zhang R, Bai W, Ye T, Wang S. Oxygen-Based Nanocarriers to Modulate Tumor Hypoxia for Ameliorated Anti-Tumor Therapy: Fabrications, Properties, and Future Directions. Front Mol Biosci 2021; 8:683519. [PMID: 34277702 PMCID: PMC8281198 DOI: 10.3389/fmolb.2021.683519] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Over the past five years, oxygen-based nanocarriers (NCs) to boost anti-tumor therapy attracted tremendous attention from basic research and clinical practice. Indeed, tumor hypoxia, caused by elevated proliferative activity and dysfunctional vasculature, is directly responsible for the less effectiveness or ineffective of many conventional therapeutic modalities. Undeniably, oxygen-generating NCs and oxygen-carrying NCs can increase oxygen concentration in the hypoxic area of tumors and have also been shown to have the ability to decrease the expression of drug efflux pumps (e.g., P-gp); to increase uptake by tumor cells; to facilitate the generation of cytotoxic reactive oxide species (ROS); and to evoke systematic anti-tumor immune responses. However, there are still many challenges and limitations that need to be further improved. In this review, we first discussed the mechanisms of tumor hypoxia and how it severely restricts the therapeutic efficacy of clinical treatments. Then an up-to-date account of recent progress in the fabrications of oxygen-generating NCs and oxygen-carrying NCs are systematically introduced. The improved physicochemical and surface properties of hypoxia alleviating NCs for increasing the targeting ability to hypoxic cells are also elaborated with special attention to the latest nano-technologies. Finally, the future directions of these NCs, especially towards clinical translation, are proposed. Therefore, we expect to provide some valued enlightenments and proposals in engineering more effective oxygen-based NCs in this promising field in this comprehensive overview.
Collapse
Affiliation(s)
- Xianqiang Li
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Wu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Bai
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tiantian Ye
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shujun Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
27
|
Huang L, Zhao S, Wu J, Yu L, Singh N, Yang K, Lan M, Wang P, Kim JS. Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213888] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Jin Z, Zhao Q, Yuan S, Jiang W, Hu Y. Strategies of Alleviating Tumor Hypoxia and Enhancing Tumor Therapeutic Effect by Macromolecular Nanomaterials. Macromol Biosci 2021; 21:e2100092. [PMID: 34008312 DOI: 10.1002/mabi.202100092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Indexed: 01/03/2023]
Abstract
Hypoxia as one of the most prominent features in tumors, has presented negative effects on tumor therapies including photodynamic therapy, radiotherapy, and chemotherapies, leading to the tumor regeneration and metastasis. Recently, nanomedicines have been proposed to handle the hypoxia dilemma. Some nanomedicines alleviated hypoxia to enhance the therapeutic effect, others used hypoxia-sensitive substances to treat tumor. Among them, macromolecular nanomaterials-based nanomedicine has attracted increased research interest. However, the complicated tumor microenvironment disturbs the practical application of macromolecular nanomaterials to deal with hypoxia. This review highlights the influence of hypoxia on tumor therapy and some new strategies of using macromolecular nanomaterials to overcome hypoxia for effective tumor therapy.
Collapse
Affiliation(s)
- Zhenyu Jin
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Qingyu Zhao
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Shanmei Yuan
- Nantong Vocational University, Nantong, 226019, China
| | - Wei Jiang
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| |
Collapse
|
29
|
Exploiting a New Approach to Destroy the Barrier of Tumor Microenvironment: Nano-Architecture Delivery Systems. Molecules 2021; 26:molecules26092703. [PMID: 34062992 PMCID: PMC8125456 DOI: 10.3390/molecules26092703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
Recent findings suggest that tumor microenvironment (TME) plays an important regulatory role in the occurrence, proliferation, and metastasis of tumors. Different from normal tissue, the condition around tumor significantly altered, including immune infiltration, compact extracellular matrix, new vasculatures, abundant enzyme, acidic pH value, and hypoxia. Increasingly, researchers focused on targeting TME to prevent tumor development and metastasis. With the development of nanotechnology and the deep research on the tumor environment, stimulation-responsive intelligent nanostructures designed based on TME have attracted much attention in the anti-tumor drug delivery system. TME-targeted nano therapeutics can regulate the distribution of drugs in the body, specifically increase the concentration of drugs in the tumor site, so as to enhance the efficacy and reduce adverse reactions, can utilize particular conditions of TME to improve the effect of tumor therapy. This paper summarizes the major components and characteristics of TME, discusses the principles and strategies of relevant nano-architectures targeting TME for the treatment and diagnosis systematically.
Collapse
|
30
|
Xie X, Tang J, Xing Y, Wang Z, Ding T, Zhang J, Cai K. Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State-of-the-Art Designs and Biomedical Applications. Adv Healthc Mater 2021; 10:e2002138. [PMID: 33690982 DOI: 10.1002/adhm.202002138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The translation of mussel-inspired wet adhesion to biomedical engineering fields have catalyzed the emergence of polydopamine (PDA)-based nanomaterials with privileged features and properties of conducting multiple interfacial interactions. Recent concerns and progress on the understanding of PDA's hierarchical structure and progressive assembly are inspiring approaches toward novel nanostructures with property and function advantages over simple nanoparticle architectures. Major breakthroughs in this field demonstrated the essential role of π-π stacking and π-cation interactions in the rational intervention of PDA self-assembly. In this review, the recently emerging concepts in the preparation and application of PDA nanomaterials, including 3D mesostructures, low-dimensional nanostructures, micelle/nanoemulsion based nanoclusters, as well as other multicomponent nanohybrids by the segregation and organization of PDA building blocks on nanoscale interfaces are outlined. The contribution of π-electron interactions on the interfacial loading/release of π electron-rich molecules (nucleic acids, drugs, photosensitizers) and the exogenous coupling of optical energy, as well as the impact of wet-adhesion interactions on the nano-bio interface interplay, are highlighted by discussing the structure-property relationships in their featured applications including fluorescent biosensing, gene therapy, drug delivery, phototherapy, combined therapy, etc. The limitations of current explorations, and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jia Tang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| |
Collapse
|
31
|
Lin K, Gan Y, Zhu P, Li S, Lin C, Yu S, Zhao S, Shi J, Li R, Yuan J. Hollow mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug delivery. NANOTECHNOLOGY 2021; 32:285602. [PMID: 33799309 DOI: 10.1088/1361-6528/abf4a9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Various polydopamine (PDA) nanospheres were synthesized by utilizing triblock copolymer Pluronic F127 and 1,3,5-trimethylbenzene (TMB) as soft templates. Precise morphology control of polydopamine nanospheres was realized from solid polydopamine nanospheres to hollow polydopamine nanospheres, mesoporous polydopamine nanospheres and hollow mesoporous polydopamine nanospheres (H-MPDANSs) by adjusting the weight ratio of TMB to F127. The inner diameter of the prepared H-MPDANSs can be controlled in the range of 50-100 nm, and the outer diameter is about 180 nm. Furthermore, the thickness of hollow mesoporous spherical shell can be adjusted by changing the amount of dopamine (DA). The H-MPDANSs have good biocompatibility, excellent photothermal properties, high drug loading capacity, and outstanding sustainable drug release properties. In addition, both NIR laser irradiation and acid pH can facilitate the controlled release of doxorubicin (DOX) from H-MPDANSs@DOX.
Collapse
Affiliation(s)
- Kunpeng Lin
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Ying Gan
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Peide Zhu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Shanshan Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Chen Lin
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Shuling Yu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Shuang Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Runming Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jinfang Yuan
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
32
|
Bolitho EM, Coverdale JPC, Bridgewater HE, Clarkson GJ, Quinn PD, Sanchez‐Cano C, Sadler PJ. Tracking Reactions of Asymmetric Organo-Osmium Transfer Hydrogenation Catalysts in Cancer Cells. Angew Chem Int Ed Engl 2021; 60:6462-6472. [PMID: 33590607 PMCID: PMC7985874 DOI: 10.1002/anie.202016456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Most metallodrugs are prodrugs that can undergo ligand exchange and redox reactions in biological media. Here we have investigated the cellular stability of the anticancer complex [OsII [(η6 -p-cymene)(RR/SS-MePh-DPEN)] [1] (MePh-DPEN=tosyl-diphenylethylenediamine) which catalyses the enantioselective reduction of pyruvate to lactate in cells. The introduction of a bromide tag at an unreactive site on a phenyl substituent of Ph-DPEN allowed us to probe the fate of this ligand and Os in human cancer cells by a combination of X-ray fluorescence (XRF) elemental mapping and inductively coupled plasma-mass spectrometry (ICP-MS). The BrPh-DPEN ligand is readily displaced by reaction with endogenous thiols and translocated to the nucleus, whereas the Os fragment is exported from the cells. These data explain why the efficiency of catalysis is low, and suggests that it could be optimised by developing thiol resistant analogues. Moreover, this work also provides a new way for the delivery of ligands which are inactive when administered on their own.
Collapse
Affiliation(s)
- Elizabeth M. Bolitho
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- I14 Imaging BeamlineDiamond Light SourceOxfordOX11 0DEUK
| | | | | | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Paul D. Quinn
- I14 Imaging BeamlineDiamond Light SourceOxfordOX11 0DEUK
| | - Carlos Sanchez‐Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramon 18220014San SebastiánSpain
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
33
|
Bolitho EM, Coverdale JPC, Bridgewater HE, Clarkson GJ, Quinn PD, Sanchez‐Cano C, Sadler PJ. Tracking Reactions of Asymmetric Organo‐Osmium Transfer Hydrogenation Catalysts in Cancer Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elizabeth M. Bolitho
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- I14 Imaging Beamline Diamond Light Source Oxford OX11 0DE UK
| | | | | | - Guy J. Clarkson
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Paul D. Quinn
- I14 Imaging Beamline Diamond Light Source Oxford OX11 0DE UK
| | - Carlos Sanchez‐Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 San Sebastián Spain
| | - Peter J. Sadler
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
34
|
Hak A, Ravasaheb Shinde V, Rengan AK. A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagnosis Photodyn Ther 2021; 33:102205. [PMID: 33561574 DOI: 10.1016/j.pdpdt.2021.102205] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Phototherapy has the potential to play a greater role in oncology. Phototherapy converts light energy into either chemical energy or thermal energy, which eventually destroys cancer cells after a series of biological reactions. With nanotechnology applications in cancer therapeutics, it has become possible to prepare smart drug carriers with multifunctional properties at the nanoscale level. These nanocarriers may be able to deliver the drug molecules to the target site more efficiently in the form of nanoparticles. Several intrinsic and extrinsic properties of these nanocarriers help target the tumor cells exclusively, and by utilizing these features, drug molecules can be delivered to the tumor cells specifically, which results in high tumor uptake and better therapeutic effects ultimately. Nanocarriers can also be designed to carry different drugs together to provide a platform for combination therapy like chemo-photodynamic therapy and chemo-photodynamic-photothermal therapy. In combination therapy, co-delivery of all different drugs is crucial to obtain their synergistic effects, and with the help of nanocarriers, it is possible to co-deliver these drugs by loading them together onto the nanocarriers.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
35
|
Hydrophilic polydopamine-derived mesoporous channels for loading Ti(IV) ions for salivary phosphoproteome research. Anal Chim Acta 2020; 1146:53-60. [PMID: 33461719 DOI: 10.1016/j.aca.2020.12.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/21/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022]
Abstract
Salivary phosphoproteome holds great promise in clinic diagnosis. For profiling of salivary phosphoproteome, it is essential to develop efficient enrichment methods prior to mass spectrum (MS). Among developed enrichment strategies, immobilized metal ions affinity chromatography (IMAC) has exhibited outstanding performance. In this work, we report a coherent approach where polydopamine (PDA) is first utilized to form mesoporous structure through soft templating method, then chelated with Ti4+ to construct hydrophilic polydopamine-derived magnetic mesoporous nanocomposite (denoted Fe3O4@mPDA@Ti4+). In virtue of the merits including ordered mesoporous channels, appropriate superparamagnetism, and abundant Ti4+, the enrichment strategy based on Fe3O4@mPDA@Ti4+ combined with MS is employed for accurate identification of phosphopeptides in β-casein digest and human saliva. As expected, Fe3O4@mPDA@Ti4+ revealed a great selectivity (1:200) and a low detection limit (0.1 fmol μL-1) toward phosphopeptides. More importantly, the further successful capture of phosphopeptides from human saliva indicated the prominent potential of this method for seeking phosphopeptide biomarkers in further analysis.
Collapse
|
36
|
Chen J, Zhou L, Wang C, Sun Y, Lu Y, Li R, Hu X, Chen M, Chen L, Chai K, Yao T, Shi S, Dong C. A multifunctional SN38-conjugated nanosystem for defeating myelosuppression and diarrhea induced by irinotecan in esophageal cancer. NANOSCALE 2020; 12:21234-21247. [PMID: 33063070 DOI: 10.1039/d0nr06266a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A combination of chemotherapy and phototherapy has been proposed as a promising treatment for esophageal cancer (EC). Irinotecan as a first-line treatment option is widely prescribed for metastatic EC, however, its clinical application is extremely restricted by the low conversion rate to SN38, severe myelosuppression and diarrhea. As a more potent active metabolite of irinotecan, SN38 is a better substitution for irinotecan, but the poor water solubility and the difficulty of encapsulation hindered its medical application. Herein, a multifunctional SN38-conjugated nanosystem (FA-PDA@PZM/SN38@BSA-MnO2, denoted as FA-PPSM) is designed for overcoming the above-mentioned drawbacks and achieving collaborative chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT). The tumor acidic microenvironment induces decomposition of BSA-MnO2 nanoparticles into O2 and Mn2+, thus enhancing oxygen-dependent PDT efficacy; meanwhile, Mn2+ can be employed as a magnetic resonance imaging (MRI) contrast agent. Under 650 and 808 nm laser irradiation, the FA-PPSM nanocomposites exhibit superior antitumor efficacy in Eca-109-tumor bearing mice. Notably, there is low gastrointestinal toxicity and myelosuppression in the FA-PPSM treated mice compared with those treated with irinotecan (alone). Taken together, this work highlights the great potential of the FA-PPSM nanocomposites for MRI-guided chemotherapy in combination with endoscopic light therapy for esophageal cancer.
Collapse
Affiliation(s)
- Jinjin Chen
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Lulu Zhou
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Chunhui Wang
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Yunhao Sun
- Department of Thoracic surgery, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu, P. R. China
| | - Yonglin Lu
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Ruihao Li
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Xiaochun Hu
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Mengyao Chen
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Lv Chen
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Keke Chai
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Tianming Yao
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Shuo Shi
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| |
Collapse
|
37
|
Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003000. [PMID: 32803846 DOI: 10.1002/smll.202003000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Anti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane. However, such an oversimplified perspective would neglect that real tumors have many biological, physiological, physical, and chemical defenses preventing the current state-of-the-art AHCNs from even reaching the targeted tumor cells. Fortunately, in recent years, some studies are beginning to intentionally focus on overcoming physiological barriers to alleviate hypoxia. In this Review, the limitations behind the traditional AHCN delivery mindset are addressed and the key barriers that need to be surmounted before delivery to cancer cells and some good ways to improve cell membrane attachment, internalization, and intracellular retention are summarized. It is aimed to contribute to Review literature on this emerging topic through refreshing perspectives based on this work and what is also learnt from others. This Review would therefore assist AHCNs researchers to have a quick overview of the essential information and glean thought-provoking ideas to advance this sub-field in cancer nanomedicine.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
38
|
Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020; 492:116-135. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Agata Barzowska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | |
Collapse
|
39
|
Lin K, Rong Y, Chen D, Zhao Z, Bo H, Qiao A, Hao X, Wang J. Combination of Ruthenium Complex and Doxorubicin Synergistically Inhibits Cancer Cell Growth by Down-Regulating PI3K/AKT Signaling Pathway. Front Oncol 2020; 10:141. [PMID: 32133289 PMCID: PMC7041628 DOI: 10.3389/fonc.2020.00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 01/21/2023] Open
Abstract
Combinational use of drugs has been a common strategy in cancer treatment because of synergistic advantages in reducing dose and toxicity, minimizing or delaying drug resistance. To improve the efficacy of chemotherapy, various potential combinations have been investigated. Ruthenium complex is considered a potential alternative of the platinum-based drugs due to its significant efficacy and safety. Previously, we reported that ruthenium(II) complex (Δ-Ru1) has great anticancer potential and minor toxicity toward normal tissues. However, the therapeutic efficacy and mechanism of action of ruthenium(II) complex combined with other anticancer drugs is still unknown. Here, we investigated the combinational effect of Δ-Ru1 and doxorubicin in different cancer cells. The data assessed by Chou-Talalay method showed significant synergism in MCF-7 cells. Furthermore, the results in antiproliferation efficacy indicated that the combination showed strong cytotoxicity and increasing apoptosis of MCF-7 cells in 2D and 3D multicellular tumor spheroids (MCTSs). Significant inhibition of MCF-7 cells accompanied with increased ROS generation was observed. Furthermore, the expression of PI3K/AKT was significantly down-regulated, while the expression of PTEN was strongly up-regulated in cells treated with combination of Δ-Ru1 and doxorubicin. The expression of NF-κB and XIAP decreased while the expression of P53 increased and associated with apoptosis. These findings suggest that the combination of ruthenium complex and doxorubicin has a significant synergistic effect by down-regulating the PI3K/AKT signaling pathway in MCF-7 cells. This study may trigger more research in ruthenium complex and combination therapy that will be able to provide opportunities for developing better therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Ke Lin
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Rong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zizhuo Zhao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaben Bo
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Qiao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaojuan Hao
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
| | - Jinquan Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
40
|
Wang X, Li Y, Cui Y, Deng X, Lu J, Jia F, Pan Z, Cui X, Hu F, Hu W, Zhang X, Wu Y. Hierarchical assembly of dual-responsive biomineralized polydopamine–calcium phosphate nanocomposites for enhancing chemo-photothermal therapy by autophagy inhibition. Biomater Sci 2020; 8:5172-5182. [DOI: 10.1039/d0bm00142b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hierarchically assembled biomineralized nanocomposites would be used to sensitize chemo-photothermal therapy by complementary autophagy inhibition.
Collapse
|
41
|
Kong W, Wang Q, Deng G, Zhao H, Zhao L, Lu J, Liu X. Se@SiO2@Au-PEG/DOX NCs as a multifunctional theranostic agent efficiently protect normal cells from oxidative damage during photothermal therapy. Dalton Trans 2020; 49:2209-2217. [PMID: 32003374 DOI: 10.1039/c9dt04867g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multifunctional theranostic agent was exploited, which can efficiently prevent healthy cells from oxidative damage during photothermal therapy, thus solving the problem of hyperthermia therapy by introducing selenium.
Collapse
Affiliation(s)
- Wenyan Kong
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Qi Wang
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Guoying Deng
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Hang Zhao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Linjing Zhao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Jie Lu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| |
Collapse
|