1
|
Liu X, Yuan W, Xiao H. Recent progress on DNAzyme-based biosensors for pathogen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4917-4937. [PMID: 38984495 DOI: 10.1039/d4ay00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.
Collapse
Affiliation(s)
- Xingxing Liu
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wenxu Yuan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Heng Xiao
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
2
|
Zhang F, Shi W, Guo L, Liu S, He J. The Programmable Catalytic Core of 8-17 DNAzymes. Molecules 2024; 29:2420. [PMID: 38893308 PMCID: PMC11173380 DOI: 10.3390/molecules29112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
8-17 DNAzymes (8-17, 17E, Mg5, and 17EV1) are in vitro-selected catalytic DNA molecules that are capable of cleaving complementary RNAs. The conserved residues in their similar catalytic cores, together with the metal ions, were suggested to contribute to the catalytic reaction. Based on the contribution of the less conserved residues in the bulge loop residues (W12, A15, A15.0) and the internal stem, new catalytic cores of 8-17 DNAzymes were programmed. The internal stem CTC-GAG seems to be more favorable for the DNAzymes than CCG-GGC, while an extra W12.0 led to a significant loss of activity of DNAzymes, which is contrary to the positive effect of A15.0, by which a new active DNAzyme 17EM was derived. It conducts a faster reaction than 17E. It is most active in the presence of Pb2+, with the metal ion preference of Pb2+ >> Zn2+ > Mn2+ > Ca2+ ≈ Mg2+. In the Pb2+ and Zn2+-mediated reactions of 17EM and 17E, the same Na+- and pH dependence were also observed as what was observed for 17E and other 8-17 DNAzymes. Therefore, 17EM is another member of the 8-17 DNAzymes, and it could be applied as a potential biosensor for RNA and metal ions.
Collapse
Affiliation(s)
- Fumei Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China;
- Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China; (W.S.); (L.G.)
| | - Weiguo Shi
- Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China; (W.S.); (L.G.)
| | - Lei Guo
- Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China; (W.S.); (L.G.)
| | - Shihui Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China;
| | - Junlin He
- Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China; (W.S.); (L.G.)
| |
Collapse
|
3
|
Qiu Y, Liu B, Zhou W, Tao X, Liu Y, Mao L, Wang H, Yuan H, Yang Y, Li B, Wang W, Qiu Y. Repair-driven DNA tetrahedral nanomachine combined with DNAzyme for 8-oxo guanine DNA glycosylase activity assay, drug screening and intracellular imaging. Analyst 2024; 149:537-545. [PMID: 38088097 DOI: 10.1039/d3an01521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
8-oxo guanine DNA glycosylase (8-oxoG DNA glycosylase), a crucial DNA repair enzyme, is essential for maintaining genome integrity and preventing diseases caused by DNA oxidative damage. Imaging 8-oxoG DNA glycosylase in living cells requires a dependable technique. In this study, we designed a DNAzyme-modified DNA tetrahedral nanomachine (DTDN) powered by 8-oxoG restoration. Incorporating a molecular beacon probe (MB), the constructed platform was used for amplified in situ monitoring of 8-oxoG DNA glycosylase. Under normal conditions, duplexing with a complementary strand modified with two 8-oxoG sites inhibited the activity of DNAzyme. The restoration of DNAzyme activity by the repair of intracellular 8-oxoG DNA glycosylase on 8-oxoG bases can initiate a signal amplification reaction. This detection system can detect 8-oxoG DNA glycosylase activity linearly between 0 and 20 U mL-1, with a detection limit as low as 0.52 U mL-1. Using this method, we were able to screen 14 natural compounds and identify 6 of them as 8-oxoG DNA glycosylase inhibitors. In addition, a novel approach was utilized to assess the activity of 8-oxoG DNA glycosylase in living cells. In conclusion, this method provides a universal tool for monitoring the activity of 8-oxoG DNA glycosylase in vitro and in living cells, which holds great promise for elucidating the enzyme's functionality and facilitating drug screening endeavors.
Collapse
Affiliation(s)
- Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenchao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Xueqing Tao
- College of Biology, Hunan University, Changsha 410082, China
| | - Yang Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Linxi Mao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
4
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Ma Q, Yang Y, Yang W, Yun W, Zhang M. AuNPs-DNAzyme motor triggered two colors DNA tweezer for fluorescent amplified detection of bisphenol A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122261. [PMID: 36571865 DOI: 10.1016/j.saa.2022.122261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
An AuNPs-DNAzyme motor triggered ultrasensitive, two colors DNA tweezer was developed for fluorescent detection of bisphenol A (BPA). BPA can bind with its aptamer on the gold nanoparticles (AuNPs) and reactivate the Pb2+ enzyme strands. Thus, Pb2+ enzyme strands can cleave the substrate strand on AuNPs and release a DNA fragment from AuNPs. The released DNA fragment can bind with the loop of the Y shaped DNA tweezer to form Mg2+-specific DNAzyme, the following cleavage causing the leaving of another two DNA fragments. Then, these two DNA fragments can open the two ends of the Y shaped DNA tweezer, causing the recovery of fluorescent signals. This strategy shows a good linear relationship for BPA detection from 0.44 to 2.2 × 103 pM. The sensitivity has been significantly improved by the two levels of amplification strategy DNAzyme motor and cyclic cleavage of the loop. Importantly, it also can significantly reduce the false positive result by two colors signals. Moreover, it also exhibits satisfactory performance in practical sample detection.
Collapse
Affiliation(s)
- Qin Ma
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Yang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenming Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Mingming Zhang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Wang JY, Li HD, Ma PQ, Zhou Y, Yin BC, Ye BC. An miRISC-initiated DNA nanomachine for monitoring MicroRNA activity in living cells. Biosens Bioelectron 2023; 220:114828. [DOI: 10.1016/j.bios.2022.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/26/2022]
|
7
|
DNA walker for signal amplification in living cells. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Liu L, Chen X, Sun B. Construction of a Recyclable DNAzyme Motor for MUC1-Specific Glycoform In Situ Quantification. Anal Chem 2022; 94:13745-13752. [PMID: 36161871 DOI: 10.1021/acs.analchem.2c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Changes in the glycosylation content, especially in specific proteins, are of great importance for interpreting the mechanisms and development of certain diseases. However, current detection techniques are limited by the weak ionization efficiency of glycosyls and poor anti-interference of fluorescence signals. Herein, we present a general in situ quantification strategy for protein-specific glycoforms by constructing a recyclable DNAzyme motor for mass spectrometric detection using MUC1-specific sialic acid (Sia) as a model. This approach relies on a DNAzyme-based recycling strategy and two well-designed probes: a protein and a glycan probe. The protein probe consists of an aptamer and a DNAzyme. The glycan probe contains three functional domains: a DNAzyme complementary sequence, a substrate peptide segment, and a dibenzocyclooctyne tag. First, these two probes bind to their corresponding targets and trigger hybridization between adjacent probes on the same protein. With the help of the metal cofactor, the DNAzyme of the protein probe hydrolyzes the double-stranded glycan probe. The protein probe then reverts to a single-stranded state and remains intact for the next round of hybridization and cleavage. In this way, the recyclable DNAzyme motor can hydrolyze all glycan probes bound to the target protein. Finally, the reporter peptide released from the hydrolyzed glycan probes can be quantified by mass spectrometry, thereby converting the signal of the protein-specific glycoform to that of mass spectrometry. This strategy has been successfully used for in situ quantification of MUC1-specific Sia in different breast cancer cell lines. It provides a promising platform for protein-specific glycoform quantification.
Collapse
Affiliation(s)
- Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiuyu Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bo Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| |
Collapse
|
9
|
Xing C, Lin Q, Gao X, Cao T, Chen J, Liu J, Lin Y, Wang J, Lu C. Intracellular miRNA Imaging Based on a Self-Powered and Self-Feedback Entropy-Driven Catalyst-DNAzyme Circuit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39866-39872. [PMID: 36018586 DOI: 10.1021/acsami.2c11923] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNAzyme-based signal amplification circuits promote the advances in low-abundant miRNA imaging in living cells. However, due to the insufficient cofactor in living cells and unsustainable target utilization, self-powered and self-feedback DNAzyme amplification circuits have rarely been achieved. Here, a MnO2 nanosheet-mediated self-powered and self-feedback entropy-driven catalyst (EDC)-DNAzyme nanoprobe (MnPFEDz) was demonstrated for sensitive imaging of intracellular microRNA (miRNA). In this strategy, MnPFEDz was formed by adsorbing EDC modules and substrate probes on MnO2 nanosheets. The MnO2 nanosheets acted not only as glutathione (GSH)-responsive nanocarriers for efficient delivery of DNA probes but also as a DNAzyme cofactor supplier to power the DNAzyme biocatalysis and promote signal transduction in a feedback way. When entering the cells, GSH could decompose MnO2 nanosheets to generate numerous Mn2+ ion cofactors, leading to the release of DNA probes. Subsequently, the target miRNA initiated EDC cycles to generate amplified fluorescence signals and exposed the complete DNAzyme. Meanwhile, each of the exposed DNAzyme then cleaved the substrate probes with the help of Mn2+ ion cofactors and released a new trigger analogue for the next round of EDC cycles, initiating additional fluorescence signals in a feedback way. As a multiple signal amplification strategy, the MnPFEDz nanoprobe facilitated the effective detection of intracellular molecules with enhanced sensitivity and provided a versatile strategy for the construction of self-powered and self-feedback DNA circuits in living cells.
Collapse
Affiliation(s)
- Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Qitian Lin
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xue Gao
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Ting Cao
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Jing Chen
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Jialing Liu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Yuhong Lin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jun Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Chunhua Lu
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
10
|
Liu C, Deng J, Yi J, Zhang R, Chen L, Fu X, Liao S, Yi W, Zou G, Yang H. A novel binding-induced DNAzyme motor triggered by survivin mRNA. Anal Bioanal Chem 2022; 414:6167-6175. [PMID: 35767031 DOI: 10.1007/s00216-022-04183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
The accurate and sensitive detection of survivin mRNA is of great significance for cancer diagnosis and treatment. However, limited by the low-abundance mRNA in live cells, most strategies of survivin mRNA detection that were one-to-one signal-triggered model (one target triggered one signal) were inapplicable in practice. Here, we reported a binding-induced DNAzyme motor triggered by the survivin mRNA, which was a one-to-more signal-triggered model (one target triggered more signals), amplifying the detection signal and enhancing the sensitivity. The nanomotor is constructed by assembling several DNAzyme motor strands silenced by the blocker strands, and dozens of FAM-labeled substrate strands on a single gold nanoparticle (AuNP), forming three-dimensional DNA tracks. Through building the survivin mRNA bridge between the blocker and the DNAzyme motor strand, the binding-induced DNA nanomotor could be triggered by survivin mRNA. The operation of the DNAzyme motor was self-powered. And each walking step of the DNAzyme motor was fueled by DNAzyme-catalyzed substrate cleavage, along with the cleavage of the fluorescent molecule, resulting in autonomous and progressive walking along the AuNP-based tracks, and the fluorescence increase. The DNAzyme motor exhibited excellent sensitivity and remarkable specificity for survivin mRNA, providing the potential for cell image.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China.
| | - Jiyu Deng
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Juan Yi
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Ru Zhang
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Lixin Chen
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Xin Fu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Shuzhen Liao
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Wenjun Yi
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, Hunan, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Hai Yang
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China.
| |
Collapse
|
11
|
Zhong X, Li Y, Chang Y, Yuan R, Chai Y. A highly-efficient 3D DNAzyme motor for sensitive biosensing analysis. Talanta 2022; 250:123683. [PMID: 35777344 DOI: 10.1016/j.talanta.2022.123683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Herein, driven by the need of highly-efficient DNAzyme-amplified detection strategy, a novel 3D DNAzyme motor was designed as a biosensor platform for realizing sensitive detection of target DNA. The 3D DNAzyme motor was composed of target-activated DNAzyme nanowires and substrates H1-Fc that co-immobilized on Au@Fe3O4 nanoparticles (Au@Fe3O4NPS) surface, possessing high local concentration of DNA reactants and shortened distance between DNAzyme and substrates for enhancing electrochemical signal. Compared with traditional DNAzyme-powered machines, the target-activated DNAzyme nanowires of 3D DNAzyme motor had greater flexibility and more powerful cleavage capability without troublesome sequence optimization, which overcame the space limitation and simultaneously interacted with adjacent and distant substrates H1-Fc to output a large amount of cleavage products with high signal response. Therefore, on account of the above-mentioned merits of nanoparticles localization DNA design and DNAzyme nanowires, the reported 3D DNAzyme motor ingeniously overcame many defects existing in traditional DNAzyme-amplified detection strategies such as low reactants concentration, limited flexibility of DNAzyme and small DNAzyme swing range, realizing the sensitive detection of target DNA with a detection limit of 1.7 fM ranging from 5 fM to 50 nM. Impressively, the 3D DNAzyme motor here presented a new strategy to achieve effective DNAzyme signal amplification and provided a reference for the assembly of various and functional 3D DNA machines in the future.
Collapse
Affiliation(s)
- Xia Zhong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yunrui Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanyuan Chang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
12
|
Yang P, Chen H, Zhu Q, Chen Z, Yang Z, Yuan R, Li Y, Liang W. A target-initiated autocatalytic 3D DNA nanomachine for high-efficiency amplified detection of MicroRNA. Talanta 2022; 240:123219. [PMID: 35026639 DOI: 10.1016/j.talanta.2022.123219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Considering the challenges of generating simple and efficient DNA (deoxyribonucleic acid) nanomachines for sensitive bioassays and the great potential of target-induced self-cycling catalytic systems, herein, a novel autocatalytic three-dimensional (3D) DNA nanomachine was constructed based on cross-catalytic hairpin assembly on gold nanoparticles (AuNPs) to generate self-powered efficient cyclic amplification. Typically, the DNA hairpins H1, H2, H3 and H4 were immobilized onto AuNPs first. In the presence of target microRNA-203a, the 3D DNA nanomachines were triggered to activate a series of CHA (catalytic hairpin assembly) reactions. Based on the rational design of the system, the products of the CHA 1 reaction were the trigger of the CHA 2 reaction, which could trigger the CHA 1 reaction in turn, generating an efficient self-powered CHA amplification strategy without adding fuel DNA strands or protein enzymes externally and producing high-efficiency fluorescence signal amplification. More importantly, the proposed autocatalytic 3D DNA nanomachines outperformed conventional 3D DNA nanomachines combined with the single-directional cyclic amplification strategy to maximize the amplification efficiency. This strategy not only achieves high-efficiency analysis of microRNAs (microribonucleic acids) in vitro and intracellularly but also provides a new pathway for highly processive DNA nanomachines, offering a new avenue for bioanalysis and early clinical diagnosis.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Haoran Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Quanjing Zhu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Zhaopeng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zezhou Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yan Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China.
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
13
|
Xie Y, Zhang S, Deng T, Zhang K, Ren J, Li J. A Novel DNAzyme Signal Amplification-based Colorimetric Method for RNase H Assays. ANAL SCI 2021; 37:1675-1680. [PMID: 33162413 DOI: 10.2116/analsci.20p337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple visual strategy was developed for the RNase H colorimetric measurement using DNAzyme-mediated signal amplification. When RNase H was presented, the RNA strand of the duplex formed by the G-rich DNA sequence (G-Rich) and its complementary RNA sequence (cp-RNA) was digested, releasing G-Rich to form HRP-mimicking DNAzymes of the G-quadruplex/hemin complexes in the presence of hemin. These DNAzymes catalyze the oxidation reaction of the substrate of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to produce green-color products of ABTS•-, allowing for the detection of RNase H. A horseradish peroxidase (HRP)-mimicking DNAzyme of the G-quadruplex/hemin complex was used to mediate the signal amplification in the sensing strategy, resulting in high selectivity and sensitivity. This proposed colorimetric method shows a low detection limit of 0.04 U/mL, with a detection range of 0.1 to 3 U/mL. Moreover, this colorimetric method has been successfully used for RNase H assays in complicated biosamples, such as cell lysates. These results indicate that our colorimetric method not only detects RNase H in an ideal system, but also in real samples.
Collapse
Affiliation(s)
- Ye Xie
- Institute of Applied Chemistry, School of Science, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology
| | - Sina Zhang
- Institute of Applied Chemistry, School of Science, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology
| | - Ke Zhang
- Institute of Applied Chemistry, School of Science, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology
| | - Jiali Ren
- Institute of Applied Chemistry, School of Science, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| |
Collapse
|
14
|
Song X, Ding Q, Zhang J, Sun R, Yin L, Wei W, Pu Y, Liu S. Smart Catalyzed Hairpin Assembly-Induced DNAzyme Nanosystem for Intracellular UDG Imaging. Anal Chem 2021; 93:13687-13693. [PMID: 34583508 DOI: 10.1021/acs.analchem.1c03332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uracil DNA glycosylase (UDG) is one of the key initiators for the base excision repair pathway. Since abnormal UDG expression is associated with various diseases, sensitive detection of UDG activity is critical for early clinical diagnosis. Here, a smart catalyzed hairpin assembly (CHA)-DNAzyme nanosystem is developed for intracellular UDG imaging by incorporating CHA and DNAzyme onto MnO2 nanosheets. In this strategy, the biodegradable MnO2 nanosheets are employed as nanocarriers for efficiently adsorbing and delivering five DNA probes into cells by endocytosis. Then, the MnO2 nanosheets are degraded by cellular glutathione to release the DNA modules at the same intracellular position. Liberated Mn2+, an indispensable DNAzyme cofactor, was used to promote catalytic cleavage for facilitating the cascade process in cells. Based on the uracil site-recognition and -excision operation of the target UDG, the activated CHA-DNAzyme nanosystem generates lots of DNAzyme-assisted CHA products, turning on the fluorescence resonance energy transfer response. This autocatalytic CHA-DNAzyme nanosystem provides a detectable minimum UDG concentration of 0.23 mU/mL, which is comparable to some reported UDG detection approaches. As a multiple signal amplification strategy, the CHA-DNAzyme nanosystem realizes the UDG imaging in living cells with enhanced sensitivity, indicating great promise in the prediction and diagnosis of early-stage cancer.
Collapse
Affiliation(s)
- Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Wei Wei
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.,Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| |
Collapse
|
15
|
Abstract
Ribonucleases are useful as biomarkers and can be the source of contamination in laboratory samples, making ribonuclease detection assays important in life sciences research. With recent developments in DNA-based biosensing, several new techniques are being developed to detect ribonucleases. This review discusses some of these methods, specifically those that utilize G-quadruplex DNA structures, DNA-nanoparticle conjugates and DNA nanostructures, and the advantages and challenges associated with them.
Collapse
|
16
|
Zhao H, Liu Y, Cui J, Yang C, Gao N, Jing J, Zhang X. Enzyme-triggered DNA nanomimosa: A ratiometric nanoprobe for RNase H activity sensing in living cells. Talanta 2021; 233:122547. [PMID: 34215050 DOI: 10.1016/j.talanta.2021.122547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
Since ribonuclease H (RNase H) exhibits its importance in a variety of cellular processes. It is necessary to establish strategy for RNase H detection. In this work, we are enlightened by mimosa, a natural plant which can fold in response to stimuli, to construct a DNA tetrahedron-based nanoprobe, termed DNA nanomimosa, to sensing RNase H activity based on fluorescent resonance energy transfer (FRET). The DNA nanomimosa was self-assembled from four DNA chains and one RNA chain. One of the four DNA chains contains a FRET-paired fluorophores-labeled hairpin DNA structures which is unfolded by the RNA chain through hybridization. Without RNase H, the RNA chain separate the two FRET-paired fluorophores in hairpin DNA structure, giving a feeble FRET signal. However, the presence of RNase H can selectively digest the RNA strand in RNA/unfolded-hairpin DNA section, resulting in the hairpin DNA configuration changed from "unfolded" state to "folded" state and further turn on the FRET signal. The DNA nanomimosa can be applied to achieve the determination of RNase H activity by recording the emission intensity of donor and acceptor fluorophores. This strategy shows a low detection limit by 0.017 U/mL, good specificity, and distinct advantages like the self-delivery ability, good biocompatibility, and the capacity to minimize the effects of fluctuations. This design provides a potential application in ribonuclease research and could be expanded for other biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Hengzhi Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yazhou Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jie Cui
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Chunlei Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Na Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
17
|
Wang N, Jiang YJ, Zhang X, Lin HR, Cheng F, Li Q, Li CM, Huang CZ. Nanosurface energy transfer indicating Exo III-propelled stochastic 3D DNA walkers for HIV DNA detection. Analyst 2021; 146:1675-1681. [PMID: 33624639 DOI: 10.1039/d0an02289f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA-based nanomachines have aroused tremendous interest because of their potential applications in bioimaging, biocomputing, and diagnostic treatment. Herein, we constructed a novel exonuclease III-propelled and signal-amplified stochastic DNA walker that autonomously walked on a spherical particle-based 3D track through a burnt-bridge mechanism, during which nanosurface energy transfer (NSET) occurred between the fluorescent dye modified on hairpin DNA and the surface of gold nanoparticles (AuNPs). As a proof of concept, this stochastic DNA walker achieves prominent detection performance of HIV DNA in the range of 0.05-1.2 nM with a detection limit of 12.7 pM and satisfactory recovery in blood serum, showing high promise in biosensing applications with complicated media.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Li J, Wang J, Liu S, Xie N, Quan K, Yang Y, Yang X, Huang J, Wang K. Amplified FRET Nanoflares: An Endogenous mRNA‐Powered Nanomachine for Intracellular MicroRNA Imaging. Angew Chem Int Ed Engl 2020; 59:20104-20111. [DOI: 10.1002/anie.202008245] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Li
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jiaoli Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Shiyuan Liu
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Nuli Xie
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Ke Quan
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering Central South University Changsha P. R. China
| | - Xiaohai Yang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jin Huang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Kemin Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| |
Collapse
|
19
|
Li J, Wang J, Liu S, Xie N, Quan K, Yang Y, Yang X, Huang J, Wang K. Amplified FRET Nanoflares: An Endogenous mRNA‐Powered Nanomachine for Intracellular MicroRNA Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jing Li
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jiaoli Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Shiyuan Liu
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Nuli Xie
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Ke Quan
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering Central South University Changsha P. R. China
| | - Xiaohai Yang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jin Huang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Kemin Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| |
Collapse
|
20
|
Chandrasekaran AR, Trivedi R, Halvorsen K. Ribonuclease-Responsive DNA Nanoswitches. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100117. [PMID: 32803173 PMCID: PMC7425801 DOI: 10.1016/j.xcrp.2020.100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
DNA has been used in the construction of dynamic DNA devices that can reconfigure in the presence of external stimuli. These nanodevices have found uses in fields ranging from biomedical to materials science applications. Here, we report a DNA nanoswitch that can be reconfigured using ribonucleases (RNases) and explore two applications: biosensing and molecular computing. For biosensing, we show the detection of RNase H and other RNases in relevant biological fluids and temperatures, as well as inhibition by the known enzyme inhibitor kanamycin. For molecular computing, we show that RNases can be used to enable erasing, write protection, and erase-rewrite functionality for information-encoding DNA nanoswitches. The simplistic mix-and-read nature of the ribonuclease-activated DNA nanoswitches could facilitate their use in assays for identifying RNase contamination in biological samples or for the screening and characterization of RNase inhibitors.
Collapse
Affiliation(s)
- Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Twitter: @arunrichardc
| | - Ruju Trivedi
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Twitter: @HalvorsenLab
- Lead Contact
| |
Collapse
|
21
|
Hu L, Fu X, Kong G, Yin Y, Meng HM, Ke G, Zhang XB. DNAzyme–gold nanoparticle-based probes for biosensing and bioimaging. J Mater Chem B 2020; 8:9449-9465. [DOI: 10.1039/d0tb01750g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design and applications of DNAzyme–gold nanoparticle-based probes in biosensing and bioimaging are summarized here.
Collapse
Affiliation(s)
- Ling Hu
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Xiaoyi Fu
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Gezhi Kong
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Yao Yin
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Hong-Min Meng
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Guoliang Ke
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Xiao-Bing Zhang
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| |
Collapse
|