1
|
Liu TT, Hou N. Electronic and Nonlinear Optical Properties of B(III)-Submonoazaporphyrin-π-Diimide Compounds: A Density Functional Theory Study. Chemphyschem 2024; 25:e202400035. [PMID: 38558323 DOI: 10.1002/cphc.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Three hypothetical complexes were designed using diimides (PMDI, NTCDI, and PTCDI) as the acceptor unit and B(III)-submonoazaporphyrin (1) as the donor unit. These complexes have smaller HOMO-LUMO energy gaps (3.39-3.96 eV) than pristine 1 (6.61 eV). Further, the energy gap can be tuned by changing the number of benzene rings of these diimides. Remarkably, these proposed complexes possess considerable first hyperpolarizabilities (β0) (4865-6921 a.u.), and the regularity of the β0 values remained the same in the gas phase and toluene solvent conditions. There is an inverse relationship between the energy gap and the polarizability/first hyperpolarizability. In addition, absorption spectra, frontier molecular orbitals, and hole electron distributions were obtained using time-dependent density functional theory calculations to emphasize the relationship between structure and properties. Ultraviolet-Visible absorption spectra reveals that all complexes show satisfying IR working regions. Further analysis of the first hyperpolarizability density reveals the nature of the excellent NLO properties of the studied systems. This study can provide valuable insights for the development of potential high-performance NLO molecules.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, 030032, China
| | - Na Hou
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, 030032, China
| |
Collapse
|
2
|
Tian X, Xiao Y, Wang S, Liu G, Zhang W, Zhou L, Gong J, Zhang X, Li X, Meng H, Wang J, Dai G, Wang Q. Bowl-Shaped Bispyrrole-Fused Perylene-diimide and Its Anions. Org Lett 2023; 25:1605-1610. [PMID: 36602376 DOI: 10.1021/acs.orglett.2c04220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Incorporating two pyrrole subunits at the bay positions of perylene-diimide has been a long-pursued goal since 2009, but it has not been achieved due to high strain. Herein, via one step Buchwald-Hartwig reaction, PDI-2N was successfully generated with a bowl depth of 1.52 Å. Though with electron-rich pyrrole embedding, PDI-2N's radical anion and dianion were facilely prepared and were investigated both experimentally and theoretically. Moreover, PDI-2N crystallized in different manners under distinct conditions, and it formed tubular crystals with infinite two-directional columnar stacking under DMF conditions. This finding develops a dream bowl-shaped PDI derivative that holds great promise in organoelectronics.
Collapse
Affiliation(s)
- Xinyue Tian
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Yao Xiao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Shuoyingjie Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Guanghua Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Wenhao Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Laiyun Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jianye Gong
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Xuejin Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - He Meng
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Jianguo Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Gaole Dai
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, P. R. China
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|
3
|
Gao L, Li B, Yi H, Cui J, Yang L, Song Y, Yang HR, Zhou L, Fang S. Nonlinear Optical Properties of Pyrene Derivatives Based on a Donor-Acceptor Structure and Its Polyurethane Composites. ACS OMEGA 2022; 7:27959-27968. [PMID: 35990456 PMCID: PMC9386708 DOI: 10.1021/acsomega.2c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Two pyrenyl Schiff base derivatives with π conjugated structures (B2 and B3) were designed and synthesized. Then, B2 and B3 were added into polyurethane to obtain doped and bonded polyurethane nonlinear optical materials (B2/PU and B3/PU), respectively. The synthesized B2, B3, and polyurethane nonlinear optical materials were tested by a nanosecond (ns) and picosecond (ps) pulse Z-scan at a 532 nm wavelength. Due to the two-photon absorption-induced excited state absorption (TPA-ESA), B2, B3, and polyurethane nonlinear optical materials show reverse saturable absorption (RSA). From a quantum chemistry calculation, it can be concluded that the RSA of B2 and B3 comes from the large π conjugated system and intramolecular charge transfer. Furthermore, B2, B3, and the polyurethane nonlinear optical materials show good optical limiting. B2/PU and B3/PU not only have excellent nonlinear optical properties but also have good transmittance, thermal stability, and processability of polyurethane materials. The combination of pyrenyl Schiff base derivatives and polyurethane materials greatly improves the application of nonlinear small molecules in the field of optical limiting and all-optical switching.
Collapse
Affiliation(s)
- Lijun Gao
- Henan
Provincial Key Laboratory of Surface & Interface Science, College
of Material and Chemical Engineering, Zhengzhou
University of Light Industry, Zhengzhou 450000, China
| | - Biyu Li
- Henan
Provincial Key Laboratory of Surface & Interface Science, College
of Material and Chemical Engineering, Zhengzhou
University of Light Industry, Zhengzhou 450000, China
| | - Haoyue Yi
- Henan
Provincial Key Laboratory of Surface & Interface Science, College
of Material and Chemical Engineering, Zhengzhou
University of Light Industry, Zhengzhou 450000, China
| | - Jing Cui
- Henan
Provincial Key Laboratory of Surface & Interface Science, College
of Material and Chemical Engineering, Zhengzhou
University of Light Industry, Zhengzhou 450000, China
| | - Linpo Yang
- Department
of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Yinglin Song
- Department
of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Hao-Ran Yang
- Henan
Provincial Key Laboratory of Surface & Interface Science, College
of Material and Chemical Engineering, Zhengzhou
University of Light Industry, Zhengzhou 450000, China
| | - Liming Zhou
- Henan
Provincial Key Laboratory of Surface & Interface Science, College
of Material and Chemical Engineering, Zhengzhou
University of Light Industry, Zhengzhou 450000, China
| | - Shaoming Fang
- Henan
Provincial Key Laboratory of Surface & Interface Science, College
of Material and Chemical Engineering, Zhengzhou
University of Light Industry, Zhengzhou 450000, China
| |
Collapse
|
4
|
Wang L, Liu YL, Li QJ, Chen SH, He D, Wang MS. Assembling of Perylene, Naphthalene, and Pyromellitic Diimide-Based Materials and Their Third-Order Nonlinear Optical Properties. J Phys Chem A 2022; 126:870-878. [PMID: 35112861 DOI: 10.1021/acs.jpca.1c10236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
π-conjugated aromatic diimides with chemical stability, heat resistance, and redox activity have attracted more attention due to their excellent fluorescence quantum yield in solution. The planar perylene diimide (PDI) derivatives generally have aggregation-induced emission quenching in the solid state, while the cyclic trimers based on pyromellitic diimides (PMDIs), naphthalene diimides (NDIs), and PDIs can increase the fluorescence quantum yield in the solid state and have large two-photon absorption cross section, which can be used as excellent nonlinear optical (NLO) materials. Therefore, this paper will study the effects of multiple assembly modes of the three monomers on the NLO responses of materials. It was found that the assembly modes of 2PMDI-1NDI and 2NDI-1PDI exhibit larger third-order NLO response (γ) values, which was due to the larger conjugate surface of PDI effectively reducing the energy gap between the HOMO and LUMO. Compared with other assembly methods, 2PMDI-1NDI and 2NDI-1PDI were conducive to causing redshifts (150 nm) in the absorption spectrum. Therefore, the larger conjugate surface of PDI and the assembly mode of the isosceles triangle were more favorable for intramolecular charge transfer, thus improving its NLO properties.
Collapse
Affiliation(s)
- Li Wang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China.,School of Integrated Circuits, Ludong University, Yantai 264025, China
| | - Yan-Li Liu
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China.,School of Integrated Circuits, Ludong University, Yantai 264025, China
| | - Quan-Jiang Li
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China.,School of Integrated Circuits, Ludong University, Yantai 264025, China
| | - Sheng-Hui Chen
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China.,School of Integrated Circuits, Ludong University, Yantai 264025, China
| | - Di He
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China.,School of Integrated Circuits, Ludong University, Yantai 264025, China
| | - Mei-Shan Wang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China.,School of Integrated Circuits, Ludong University, Yantai 264025, China
| |
Collapse
|
5
|
Zhao Z, Xu N, Wang Y, Ling G, Zhang P. Perylene diimide-based treatment and diagnosis of diseases. J Mater Chem B 2021; 9:8937-8950. [PMID: 34657950 DOI: 10.1039/d1tb01752g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Integrated treatment using imaging technology to monitor biological processes for the precise treatment and diagnosis of diseases to improve treatment outcomes is becoming a hot topic. Accordingly, perylene diimide (PDI) has excellent photothermal conversion and photostability, which can be used as a good material for disease treatment and diagnosis. Herein, we review the latest research progress on the real-time diagnosis of related diseases based on perylene diimide probes in the aspects of bioimaging, detection of biomarkers and determination of the pH in living cells. Furthermore, perylene diimide-based multifunctional nano-delivery systems are particularly emphasized, showing great therapeutic potential in the field of image-guided combination therapy in tumor therapy. Finally, the great opportunities and challenges still faced by perylene diimide before entering the clinic are comprehensively analyzed.
Collapse
Affiliation(s)
- Zhining Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Yan Wang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|