1
|
de Villiers Engelbrecht L, Cibotariu N, Ji X, Laaksonen A, Mocci F. Deep Eutectic Solvents Meet Non-Aqueous Cosolvents: A Modeling and Simulation Perspective-A Tutorial Review. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2025; 70:19-43. [PMID: 39823090 PMCID: PMC11734430 DOI: 10.1021/acs.jced.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 01/19/2025]
Abstract
Deep eutectic solvents (DESs) have recently gained attention due to their tailorable properties and versatile applications in several fields, including green chemistry, pharmaceuticals, and energy storage. Their tunable properties can be enhanced by mixing DESs with cosolvents such as ethanol, acetonitrile, and water. DESs are structurally complex, and molecular modeling techniques, including quantum mechanical calculations and molecular dynamics simulations, play a crucial role in understanding their intricate behavior when mixed with cosolvents. While the most studied cosolvent is water, in some applications, even a small content of water is considered a contaminant, for example, when the processes of interest require dry conditions. Only quite recently have modeling studies begun to focus on DES mixed with cosolvents other than water. This tutorial provides the first comprehensive overview of these studies. It highlights how modern molecular modeling increases our understanding of their structural organization, transport properties, phase behavior, and thermodynamic properties. Additionally, case studies and recent developments in the field are discussed along with the challenges and future directions in molecular modeling of DES in cosolvent mixtures. Overall, this review offers valuable insights into the molecular-level understanding of DES-cosolvent systems and their implications for designing novel solvent mixtures with tailored properties for various applications.
Collapse
Affiliation(s)
| | - Narcis Cibotariu
- Centre
of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry, 700487 Iasi, Romania
| | - Xiaoyan Ji
- Division
of Energy Science, Energy Engineering, Luleå
University of Technology, 97187 Luleå, Sweden
| | - Aatto Laaksonen
- Division
of Energy Science, Energy Engineering, Luleå
University of Technology, 97187 Luleå, Sweden
- Centre
of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry, 700487 Iasi, Romania
- Division
of Physical Chemistry, Arrhenius Laboratory, Department of Materials
and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
2
|
Pleiss J. Modeling Enzyme Kinetics: Current Challenges and Future Perspectives for Biocatalysis. Biochemistry 2024; 63:2533-2541. [PMID: 39325558 DOI: 10.1021/acs.biochem.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Biocatalysis is becoming a data science. High-throughput experimentation generates a rapidly increasing stream of biocatalytic data, which is the raw material for mechanistic and novel data-driven modeling approaches for the predictive design of improved biocatalysts and novel bioprocesses. The holistic and molecular understanding of enzymatic reaction systems will enable us to identify and overcome kinetic bottlenecks and shift the thermodynamics of a reaction. The full characterization and modeling of reaction systems is a community effort; therefore, published methods and results should be findable, accessible, interoperable, and reusable (FAIR), which is achieved by developing standardized data exchange formats, by a complete and reproducible documentation of experimentation, by collaborative platforms for developing sustainable software and for analyzing data, and by repositories for publishing results together with raw data. The FAIRification of biocatalysis is a prerequisite to developing highly automated laboratory infrastructures that improve the reproducibility of scientific results and reduce the time and costs required to develop novel synthesis routes.
Collapse
Affiliation(s)
- Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Kim P, Weeraratna C, Nemšák S, Dias N, Lemmens AK, Wilson KR, Ahmed M. Interfacial Nanostructure and Hydrogen Bond Networks of Choline Chloride and Glycerol Mixtures Probed with X-ray and Vibrational Spectroscopies. J Phys Chem Lett 2024; 15:3002-3010. [PMID: 38457923 DOI: 10.1021/acs.jpclett.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The molecular distribution at the liquid-vapor interface and evolution of the hydrogen bond interactions in mixtures of glycerol and choline chloride are investigated using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoscale depth profiles of supersaturated deep eutectic solvent (DES) mixtures up to ∼2 nm measured by ambient-pressure XPS show the enhancement of choline cation (Ch+) concentration by a factor of 2 at the liquid-vapor interface compared to the bulk. In addition, Raman spectral analysis of a wide range of DES mixtures reveals the conversion of gauche-conformer Ch+ into the anti-conformer in relatively lower ChCl concentrations. Finally, the depletion of Ch+ from the interface (probing depth = 0.4 nm) is demonstrated by aerosol-based velocity map imaging XPS measurements of glyceline and water mixtures. The nanostructure of liquid-vapor interfaces and structural rearrangement by hydration can provide critical insight into the molecular origin of the deep eutectic behavior and gas-capturing application of DESs.
Collapse
Affiliation(s)
- Pyeongeun Kim
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chaya Weeraratna
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics and Astronomy, University of California Davis, Davis, California 95616, United States
| | - Nureshan Dias
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander K Lemmens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Ferro V, Leiva H, Cadena E, Valverde JL. Multiscale Conceptual Design of a Scalable and Sustainable Process to Dissolve and Regenerate Keratin from Chicken Feathers. Ind Eng Chem Res 2023; 62:13324-13339. [PMID: 38356643 PMCID: PMC10863073 DOI: 10.1021/acs.iecr.3c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 02/16/2024]
Abstract
A multiscale strategy was used to conceptually design and economically analyze a scalable and sustainable process for dissolving and regenerating keratin from chicken feathers by using a sodium acetate-urea deep eutectic solvent as the reacting media. In this study, the recovery and recycling of the solvent were also considered. Moreover, molecular modeling of the solvent, keratin and its derivatives, property estimation of the corresponding mixtures, and simulation of the different process alternatives proposed, including the equipment sizing, estimation of energy needs, and economic analysis were presented. A quasi-planar cluster governed by H-bond interactions resulted in the most stable configuration of the deep eutectic solvent. Molecular models having molecular weights higher than 1.400 g/mol were created to represent the keratin species, where the most abundant amino acids in the feathers were included and conveniently ordered in the chain. Property estimations performed with the conductor-like screening model-real solvent succeeded in describing the main features of the interactions between the keratin derivatives and the solvents used. The process analysis performed on several alternatives showed that the process is technically and economically viable at the industrial scale, the costs being strongly dependent on the excess of both the solvent used to dissolve keratin and the water added for its regeneration. Several options to improve the process and reduce the costs are discussed.
Collapse
Affiliation(s)
- Víctor
R. Ferro
- Department
of Chemical Engineering, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Héctor Leiva
- Department
of Chemical Engineering, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Erasmo Cadena
- Department
of Green Chemistry and Technology, Ghent
University, 9000 Gent, Belgium
| | - José Luis Valverde
- Department
of Chemical Engineering, Universidad de
Castilla la Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
5
|
Chatterjee S, Chowdhury T, Bagchi S. Does variation in composition affect dynamics when approaching the eutectic composition? J Chem Phys 2023; 158:114203. [PMID: 36948840 DOI: 10.1063/5.0139153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Deep eutectic solvent is a mixture of two or more components, mixed in a certain molar ratio, such that the mixture melts at a temperature lower than individual substances. In this work, we have used a combination of ultrafast vibrational spectroscopy and molecular dynamics simulations to investigate the microscopic structure and dynamics of a deep eutectic solvent (1:2 choline chloride: ethylene glycol) at and around the eutectic composition. In particular, we have compared the spectral diffusion and orientational relaxation dynamics of these systems with varying compositions. Our results show that although the time-averaged solvent structures around a dissolved solute are comparable across compositions, both the solvent fluctuations and solute reorientation dynamics show distinct differences. We show that these subtle changes in solute and solvent dynamics with changing compositions arise from the variations in the fluctuations of the different intercomponent hydrogen bonds.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Tubai Chowdhury
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
6
|
Engelbrecht LDV, Ji X, Carbonaro CM, Laaksonen A, Mocci F. MD simulations explain the excess molar enthalpies in pseudo-binary mixtures of a choline chloride-based deep eutectic solvent with water or methanol. Front Chem 2022; 10:983281. [DOI: 10.3389/fchem.2022.983281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
The addition of molecular liquid cosolvents to choline chloride (ChCl)-based deep eutectic solvents (DESs) is increasingly investigated for reducing the inherently high bulk viscosities of the latter, which represent a major obstacle for potential industrial applications. The molar enthalpy of mixing, often referred to as excess molar enthalpy HE—a property reflecting changes in intermolecular interactions upon mixing—of the well-known ChCl/ethylene glycol (1:2 molar ratio) DES mixed with either water or methanol was recently found to be of opposite sign at 308.15 K: Mixing of the DES with water is strongly exothermic, while methanol mixtures are endothermic over the entire mixture composition range. Knowledge of molecular-level liquid structural changes in the DES following cosolvent addition is expected to be important when selecting such “pseudo-binary” mixtures for specific applications, e.g., solvents. With the aim of understanding the reason for the different behavior of selected DES/water or methanol mixtures, we performed classical MD computer simulations to study the changes in intermolecular interactions thought to be responsible for the observed HE sign difference. Excess molar enthalpies computed from our simulations reproduce, for the first time, the experimental sign difference and composition dependence of the property. We performed a structural analysis of simulation configurations, revealing an intriguing difference in the interaction modes of the two cosolvents with the DES chloride anion: water molecules insert between neighboring chloride anions, forming ionic hydrogen-bonded bridges that draw the anions closer, whereas dilution of the DES with methanol results in increased interionic separation. Moreover, the simulated DES/water mixtures were found to contain extended hydrogen-bonded structures containing water-bridged chloride pair arrangements, the presence of which may have important implications for solvent applications.
Collapse
|
7
|
Gajardo-Parra N, Meneses L, Duarte ARC, Paiva A, Held C. Assessing the Influence of Betaine-Based Natural Deep Eutectic Systems on Horseradish Peroxidase. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:12873-12881. [PMID: 36573121 PMCID: PMC9783073 DOI: 10.1021/acssuschemeng.2c04045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Indexed: 06/02/2023]
Abstract
To validate the use of horseradish peroxidase (HRP) in natural deep eutectic systems (NADES), five different betaine-based NADES were characterized in terms of water content, water activity, density, and viscosity experimentally and by thermodynamic modeling. The results show that the NADES under study have a water activity of about 0.4 at 37 °C for water contents between 14 and 22 wt %. The densities of the studied NADES had values between 1.2 and 1.3 g.cm-3 at 20 °C. The density was modeled with a state-of-the-art equation of state; an excellent agreement with the experimental density data was achieved, allowing reasonable predictions for water activities. The system betaine:glycerol (1:2) was found to be the most viscous with a dynamic viscosity of ∼600 mPa.s at 40 °C, while all the other systems had viscosities <350 mPa.s at 40 °C. The impact of the NADES on the enzymatic activity, as well as on, conformational and thermal stability was assessed. The system betaine/sorbitol:water (1:1:3) showed the highest benefit for enzymatic activity, increasing it by two-folds. Moreover, upon NADES addition, thermal stability was increased followed by an increment in a-helix secondary structure content.
Collapse
Affiliation(s)
- Nicolás
F. Gajardo-Parra
- Laboratory
of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Liane Meneses
- LAQV-REQUIMTE,
Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Ana Rita C. Duarte
- LAQV-REQUIMTE,
Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Alexandre Paiva
- LAQV-REQUIMTE,
Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Christoph Held
- Laboratory
of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| |
Collapse
|
8
|
Lan T, Xu J, Wang C, Wang Y, Liu X, He M. The effect of water on the thermal conductivities of deep eutectic solvents (choline chloride + ethylene glycol) using two-wire structure 3ω method. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Prasad TR, Krishna KR, Sharma KV, Mantravadi N. Viscosity and Thermal Conductivity of Cobalt and Silica Nanofluid in an Optimum Mixture of Glycerol and Water. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Monteiro H, Paiva A, Duarte ARC, Galamba N. Structure and Dynamic Properties of a Glycerol-Betaine Deep Eutectic Solvent: When Does a DES Become an Aqueous Solution? ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:3501-3512. [PMID: 35371624 PMCID: PMC8941986 DOI: 10.1021/acssuschemeng.1c07461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/27/2021] [Indexed: 05/25/2023]
Abstract
Deep eutectic solvents (DESs) are an emerging class of green solvents with a wide spectrum of potential applications whose properties may be further tailored through the addition of water. Here, we study, through molecular dynamics, the influence of water on the properties of a betaine-glycerol-water (B:G:W) DES (1:2:ζ; ζ = 0 to 100), aiming at getting insight into the structural and dynamic crossover between a DES and an aqueous solution. The density, shear viscosity, and diffusion coefficients are found to exhibit a non-linear dependence of ζ, similar to that observed for the solvation layers' composition. Each Gly and Bet are replaced, respectively, by ∼3 and ∼5 water molecules, with the highest rates of depletion being found for Gly around Bet and Gly around Gly. Above ζ = 7 (70 mol %; 29.5 wt %), a major structural transformation occurs, with the complete disruption of the second Bet-Gly solvation layer and the formation of a new second layer at a shorter distance, accompanied by a sudden change in the rate of increase of the components' diffusion. Nonetheless, opposite to other DES, our results indicate a smooth crossover between a DES and an aqueous solution.
Collapse
Affiliation(s)
- Hugo Monteiro
- LAQV,
REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal
| | - Alexandre Paiva
- LAQV,
REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita C. Duarte
- LAQV,
REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal
| | - Nuno Galamba
- Biosystems
and Integrative Sciences Institute, Faculty
of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
11
|
Fraenza CC, Elgammal RA, Garaga MN, Bhattacharyya S, Zawodzinski TA, Greenbaum SG. Dynamics of Glyceline and Interactions of Constituents: A Multitechnique NMR Study. J Phys Chem B 2022; 126:890-905. [DOI: 10.1021/acs.jpcb.1c09227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carla C. Fraenza
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Ramez A. Elgammal
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Mounesha N. Garaga
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Sahana Bhattacharyya
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| | - Thomas A. Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Steven G. Greenbaum
- Department of Physics and Astronomy, Hunter College of CUNY, New York, New York 10065, United States
| |
Collapse
|
12
|
Kivelä H, Salomäki M, Vainikka P, Mäkilä E, Poletti F, Ruggeri S, Terzi F, Lukkari J. Effect of Water on a Hydrophobic Deep Eutectic Solvent. J Phys Chem B 2022; 126:513-527. [PMID: 35001628 PMCID: PMC8785191 DOI: 10.1021/acs.jpcb.1c08170] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.
Collapse
Affiliation(s)
- Henri Kivelä
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
- Turku
University Centre for Surfaces and Materials (MatSurf), FI-20014 Turku, Finland
| | - Mikko Salomäki
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
- Turku
University Centre for Surfaces and Materials (MatSurf), FI-20014 Turku, Finland
| | - Petteri Vainikka
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Ermei Mäkilä
- Department
of Physics and Astronomy, University of
Turku, FI-20014 Turku, Finland
- Doctoral
School for Chemical and Physical Sciences, University of Turku, FI-20014 Turku, Finland
| | - Fabrizio Poletti
- Electrochemical
Sensors Group, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 103, I-41125 Modena, Italy
| | - Stefano Ruggeri
- Electrochemical
Sensors Group, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 103, I-41125 Modena, Italy
| | - Fabio Terzi
- Electrochemical
Sensors Group, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 103, I-41125 Modena, Italy
| | - Jukka Lukkari
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
- Turku
University Centre for Surfaces and Materials (MatSurf), FI-20014 Turku, Finland
| |
Collapse
|
13
|
Velez C, Acevedo O. Simulation of deep eutectic solvents: Progress to promises. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Caroline Velez
- Department of Chemistry University of Miami Coral Gables Florida USA
| | - Orlando Acevedo
- Department of Chemistry University of Miami Coral Gables Florida USA
| |
Collapse
|
14
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
15
|
Cea-Klapp E, Garrido JM, Quinteros-Lama H. Insights into the orientation and hydrogen bond influence on thermophysical and transport properties in choline-based deep eutectic solvents and methanol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Impact of deep eutectic solvents and their constituents on the aqueous solubility of phloroglucinol dihydrate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Salehi HS, Moultos OA, Vlugt TJH. Interfacial Properties of Hydrophobic Deep Eutectic Solvents with Water. J Phys Chem B 2021; 125:12303-12314. [PMID: 34719232 PMCID: PMC8591605 DOI: 10.1021/acs.jpcb.1c07796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Hydrophobic deep
eutectic solvents (DESs) have recently gained
much attention as water-immiscible solvents for a wide range of applications.
However, very few studies exist in which the hydrophobicity of these
DESs is quantified. In this work, the interfacial properties of hydrophobic
DESs with water were computed at various temperatures using molecular
dynamics simulations. The considered DESs were tetrabutylammonium
chloride–decanoic acid (TBAC–dec) with a molar ratio
of 1:2, thymol–decanoic acid (Thy–dec) with a molar
ratio of 1:2, and dl-menthol–decanoic acid (Men–dec)
with a molar ratio of 2:1. The following properties were investigated
in detail: interfacial tensions, water-in-DES solubilities (and salt-in-water
solubilities for TBAC–dec/water), density profiles, and the
number densities of hydrogen bonds. Different ionic charge scaling
factors were used for TBAC–dec. Thy–dec and Men–dec
showed a high level of hydrophobicity with negligible computed water-in-DES
solubilities. For charge scaling factors of 0.7 and 1 for the thymol
and decanoic acid components of Thy–dec, the computed interfacial
tensions of the DESs are in the following order: TBAC–dec (ca.
4 mN m–1) < Thy–dec (20 mN m–1) < Men–dec (26 mN m–1). The two sets
of charge scaling factors for Thy–dec did not lead to different
density profiles but resulted in considerable differences in the DES/water
interfacial tensions due to different numbers of decanoic acid–water
hydrogen bonds at the interfaces. Large peaks were observed for the
density profiles of (the hydroxyl oxygen of) decanoic acid at the
interfaces of all DES/water mixtures, indicating a preferential alignment
of the oxygen atoms of decanoic acid toward the aqueous phase.
Collapse
Affiliation(s)
- Hirad S Salehi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
18
|
Bulk and interfacial nanostructure and properties in deep eutectic solvents: Current perspectives and future directions. J Colloid Interface Sci 2021; 608:2430-2454. [PMID: 34785053 DOI: 10.1016/j.jcis.2021.10.163] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
Deep eutectic solvents (DESs) are a tailorable class of solvents that are rapidly gaining scientific and industrial interest. This is because they are distinct from conventional molecular solvents, inherently tuneable via careful selection of constituents, and possess many attractive properties for applications, including catalysis, chemical extraction, reaction media, novel lubricants, materials chemistry, and electrochemistry. DESs are a class of solvents composed solely of hydrogen bond donors and acceptors with a melting point lower than the individual components and are often fluidic at room temperature. A unique feature of DESs is that they possess distinct bulk liquid and interfacial nanostructure, which results from intra- and inter-molecular interactions, including coulomb forces, hydrogen bonding, van der Waals interactions, electrostatics, dispersion forces, and apolar-polar segregation. This nanostructure manifests as preferential spatial arrangements of the different species, and exists over several length scales, from molecular- to nano- and meso-scales. The physicochemical properties of DESs are dictated by structure-property relationships; however, there is a significant gap in our understanding of the underlying factors which govern their solvent properties. This is a major limitation of DES-based technologies, as nanostructure can significantly influence physical properties and thus potential applications. This perspective provides an overview of the current state of knowledge of DES nanostructure, both in the bulk liquid and at solid interfaces. We provide definitions which clearly distinguish DESs as a unique solvent class, rather than a subset of ILs. An appraisal of recent work provides hints towards trends in structure-property relationships, while also highlighting inconsistencies within the literature suggesting new research directions for the field. It is hoped that this review will provide insight into DES nanostructure, their potential applications, and development of a robust framework for systematic investigation moving forward.
Collapse
|
19
|
Bittner JP, Huang L, Zhang N, Kara S, Jakobtorweihen S. Comparison and Validation of Force Fields for Deep Eutectic Solvents in Combination with Water and Alcohol Dehydrogenase. J Chem Theory Comput 2021; 17:5322-5341. [PMID: 34232662 DOI: 10.1021/acs.jctc.1c00274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deep eutectic solvents (DESs) have become popular as environmental-friendly solvents for biocatalysis. Molecular dynamics (MD) simulations offer an in-depth analysis of enzymes in DESs, but their performance depends on the force field chosen. Here, we present a comprehensive validation of three biomolecular force fields (CHARMM, Amber, and OPLS) for simulations of alcohol dehydrogenase (ADH) in DESs composed of choline chloride and glycerol/ethylene glycol with varying water contents. Different properties (e.g., protein structure and flexibility, solvation layer, and H-bonds) were used for validation. For two properties (viscosity and water activity) also experiments were performed. The viscosity was calculated with the periodic perturbation method, whereby its parameter dependency is disclosed. A modification of Amber was identified as the best-performing model for low water contents, whereas CHARMM outperforms the other models at larger water concentrations. An analysis of ADH's structure and interactions with the DESs revealed similar predictions for Amber and CHARMM.
Collapse
Affiliation(s)
- Jan Philipp Bittner
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Lei Huang
- Department of Biological and Chemical Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Ningning Zhang
- Department of Biological and Chemical Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Selin Kara
- Department of Biological and Chemical Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.,Department for Chemical Reaction Engineering, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| |
Collapse
|
20
|
Celebi AT, Dawass N, Moultos OA, Vlugt TJH. How sensitive are physical properties of choline chloride-urea mixtures to composition changes: Molecular dynamics simulations and Kirkwood-Buff theory. J Chem Phys 2021; 154:184502. [PMID: 34241035 DOI: 10.1063/5.0049064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Deep eutectic solvents (DESs) have emerged as a cheaper and greener alternative to conventional organic solvents. Choline chloride (ChCl) mixed with urea at a molar ratio of 1:2 is one of the most common DESs for a wide range of applications such as electrochemistry, material science, and biochemistry. In this study, molecular dynamics simulations are performed to study the effect of urea content on the thermodynamic and transport properties of ChCl and urea mixtures. With increased mole fraction of urea, the number of hydrogen bonds (HBs) between cation-anion and ion-urea decreases, while the number of HBs between urea-urea increases. Radial distribution functions (RDFs) for ChCl-urea and ChCl-ChCl pairs shows a significant decrease as the mole fraction of urea increases. Using the computed RDFs, Kirkwood-Buff Integrals (KBIs) are computed. KBIs show that interactions of urea-urea become stronger, while interactions of urea-ChCl and ChCl-ChCl pairs become slightly weaker with increasing mole fraction of urea. All thermodynamic factors are found larger than one, indicating a non-ideal mixture. Our results also show that self- and collective diffusivities increase, while viscosities decrease with increasing urea content. This is mainly due to the weaker interactions between ions and urea, resulting in enhanced mobilities. Ionic conductivities exhibit a non-monotonic behavior. Up to a mole fraction of 0.5, the ionic conductivities increase with increasing urea content and then reach a plateau.
Collapse
Affiliation(s)
- Alper T Celebi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Noura Dawass
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
21
|
S Salehi H, Celebi AT, Vlugt TJH, Moultos OA. Thermodynamic, transport, and structural properties of hydrophobic deep eutectic solvents composed of tetraalkylammonium chloride and decanoic acid. J Chem Phys 2021; 154:144502. [PMID: 33858163 DOI: 10.1063/5.0047369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With the emergence of hydrophobic deep eutectic solvents (DESs), the scope of applications of DESs has been expanded to include situations in which miscibility with water is undesirable. Whereas most studies have focused on the applications of hydrophobic DESs from a practical standpoint, few theoretical works exist that investigate the structural and thermodynamic properties at the nanoscale. In this study, Molecular Dynamics (MD) simulations have been performed to model DESs composed of tetraalkylammonium chloride hydrogen bond acceptor and decanoic acid hydrogen bond donor (HBD) at a molar ratio of 1:2, with three different cation chain lengths (4, 7, and 8). After fine-tuning force field parameters, densities, viscosities, self-diffusivities, and ionic conductivities of the DESs were computed over a wide temperature range. The liquid structure was examined using radial distribution functions (RDFs) and hydrogen bond analysis. The MD simulations reproduced the experimental density and viscosity data from the literature reasonably well and were used to predict diffusivities and ionic conductivities, for which experimental data are scarce or unavailable. It was found that although an increase in the cation chain length considerably affected the density and transport properties of the DESs (i.e., yielding smaller densities and slower dynamics), no significant influence was observed on the RDFs and the hydrogen bonds. The self-diffusivities showed the following order for the mobility of the various components: HBD > anion > cation. Strong hydrogen bonds between the hydroxyl and carbonyl groups of decanoic acid and between the hydroxyl group of decanoic acid and chloride were observed to dominate the intermolecular interactions.
Collapse
Affiliation(s)
- Hirad S Salehi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Alper T Celebi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
22
|
Roda A, Santos F, Chua YZ, Kumar A, Do HT, Paiva A, Duarte ARC, Held C. Unravelling the nature of citric acid:L-arginine:water mixtures: the bifunctional role of water. Phys Chem Chem Phys 2021; 23:1706-1717. [PMID: 33427255 DOI: 10.1039/d0cp04992a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of water as a component of deep eutectic systems (DES) has raised some questions regarding its influence on the nature of the mixture. Does it form a DES or an aqueous solution and what is the role of water? In this work, the nature of citric acid:l-arginine:water mixtures was explored through phase equilibria studies and spectroscopic analysis. In a first step, PC-SAFT was validated as a predictive tool to model the water influence on the solid liquid equilibria (SLE) of the DES reline using the individual-component approach. Hence, activity coefficients in the ternary systems citric acid:l-arginine:water and respective binary combinations were studied and compared using ePC-SAFT. It was observed that the water-free mixtures citric acid:l-arginine showed positive deviation from Raoult's law, while upon addition of water strong negative deviation from Raoult's law was found, yielding melting depressions around 100 K. Besides these strong interactions, pH was found to become acidic (pH = 3.5) upon water addition, which yields the formation of charged species ([H2Cit]- and [l-arg]+). Thus, the increased interactions between the molecules upon water addition might be caused by several mechanisms such as hydrogen bonding or ionic forces, both being induced by water. For further investigation, the liquid mixtures citric acid:l-arginine:water were studied by FTIR and NMR spectroscopy. FTIR spectra disproved a possible solubility enhancement caused by salt formation between citric acid and l-arginine, while NMR spectra supported the formation of a hydrogen bonding network different from the binary systems citric acid:water and l-arginine:water. Either being a DES or other type of non-ideal solution, the liquefaction of the studied systems is certainly caused by a water-mediator effect based on the formation of charged species and cross interactions between the mixture constituents.
Collapse
Affiliation(s)
- Ana Roda
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Filipa Santos
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Yeong Zen Chua
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany
| | - Aarti Kumar
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund, 44227 Dortmund, Germany.
| | - Hoang Tam Do
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund, 44227 Dortmund, Germany.
| | - Alexandre Paiva
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Ana Rita C Duarte
- LAQV, REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund, 44227 Dortmund, Germany.
| |
Collapse
|
23
|
Celebi AT, Vlugt TJH, Moultos OA. Thermal conductivity of aqueous solutions of reline, ethaline, and glyceline deep eutectic solvents; a molecular dynamics simulation study. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1876263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alper T. Celebi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
24
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 841] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
25
|
Salehi HS, Hens R, Moultos OA, Vlugt TJ. Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Celebi AT, Jamali SH, Bardow A, Vlugt TJH, Moultos OA. Finite-size effects of diffusion coefficients computed from molecular dynamics: a review of what we have learned so far. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1810685] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alper T. Celebi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Seyed Hossein Jamali
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - André Bardow
- Energy & Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zürich, Switzerland
| | - Thijs J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
27
|
Gebhardt J, Kiesel M, Riniker S, Hansen N. Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients. J Chem Inf Model 2020; 60:5319-5330. [DOI: 10.1021/acs.jcim.0c00479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julia Gebhardt
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Matthias Kiesel
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
28
|
Pal S, Roy R, Paul S. Potential of a Natural Deep Eutectic Solvent, Glyceline, in the Thermal Stability of the Trp-Cage Mini-protein. J Phys Chem B 2020; 124:7598-7610. [DOI: 10.1021/acs.jpcb.0c03501] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
29
|
Chatterjee S, Haldar T, Ghosh D, Bagchi S. Electrostatic Manifestation of Micro-Heterogeneous Solvation Structures in Deep-Eutectic Solvents: A Spectroscopic Approach. J Phys Chem B 2020; 124:3709-3715. [DOI: 10.1021/acs.jpcb.9b11352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Tapas Haldar
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Deborin Ghosh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
30
|
Kaur S, Gupta A, Kashyap HK. How Hydration Affects the Microscopic Structural Morphology in a Deep Eutectic Solvent. J Phys Chem B 2020; 124:2230-2237. [DOI: 10.1021/acs.jpcb.9b11753] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Supreet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aditya Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
31
|
Alkhatib II, Bahamon D, Llovell F, Abu-Zahra MR, Vega LF. Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112183] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Celebi AT, Vlugt TJH, Moultos OA. Structural, Thermodynamic, and Transport Properties of Aqueous Reline and Ethaline Solutions from Molecular Dynamics Simulations. J Phys Chem B 2019; 123:11014-11025. [PMID: 31794220 PMCID: PMC6935864 DOI: 10.1021/acs.jpcb.9b09729] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Deep eutectic solvents (DESs) are a new generation of green solvents, which are considered an environmentally friendly alternative to ionic liquids and volatile organic compounds. The addition of controlled amounts of water to DESs has a significant effect on their microscopic structure and thus on their thermodynamic and transport properties. In this way, DESs can be modified, leading to solvents with improved characteristics. In this work, molecular dynamics (MD) simulations are performed to obtain a better understanding of the relation between the microscopic structure, molecular interactions, and thermophysical properties of aqueous reline and ethaline solutions at temperatures ranging from 303.15 to 363.15 K. For both reline and ethaline solutions, the hydrogen bond (HB) networks disappear with increasing mass fraction of water, and the intensity of radial distribution function (RDF) peaks decreases. For a mass fraction of water of 40%, most of the HBs between the compounds of reline and ethaline are broken, and DESs are fully dissolved in water. Consequently, a monotonic decrease in viscosities and an increase in self-diffusion coefficients are observed. Ionic conductivities show a nonmonotonic behavior with increasing water content. Up to 60% water mass fraction, the ionic conductivities increase with increasing water content. A further increase in the mass fraction of water decreases conductivities. For all studied systems, the HB network and the peaks of RDFs show relatively small changes for water mass fractions below 5% and beyond 40%. The MD results show that viscosities decrease with temperature, while diffusivities and ionic conductivities increase. The effect of the temperature on the structure of DES-water mixtures is negligible.
Collapse
Affiliation(s)
- Alper T Celebi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , The Netherlands
| |
Collapse
|
33
|
Held C, Stolzke T, Knierbein M, Jaworek MW, Luong TQ, Winter R, Sadowski G. Cosolvent and pressure effects on enzyme-catalysed hydrolysis reactions. Biophys Chem 2019; 252:106209. [DOI: 10.1016/j.bpc.2019.106209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
|
34
|
Turner AH, Holbrey JD. Investigation of glycerol hydrogen-bonding networks in choline chloride/glycerol eutectic-forming liquids using neutron diffraction. Phys Chem Chem Phys 2019; 21:21782-21789. [DOI: 10.1039/c9cp04343h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neutron scattering reveals the persistent three-dimensional hydrogen-bonding network between glycerol molecules in the 1 : 2 choline chloride/glycerol eutectic.
Collapse
Affiliation(s)
- Adam H. Turner
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - John D. Holbrey
- The QUILL Research Centre
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| |
Collapse
|