1
|
Giannoulis A, Butbul K, Carmieli R, Kim J, Montrazi ET, Singh K, Frydman L. Cryogenic and Dissolution DNP NMR on γ-Irradiated Organic Molecules. J Am Chem Soc 2024; 146:20758-20769. [PMID: 39029111 PMCID: PMC11295201 DOI: 10.1021/jacs.4c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
Nuclear magnetic resonance (NMR) plays a central role in the elucidation of chemical structures but is often limited by low sensitivity. Dissolution dynamic nuclear polarization (dDNP) emerges as a transformative methodology for both solution-state NMR and metabolic NMR imaging, which could overcome this limitation. Typically, dDNP relies on combining a stable radical with the analyte within a uniform glass under cryogenic conditions. The electron polarization is then transferred through microwave irradiation to the nuclei. The present study explores the use of radicals introduced via γ-irradiation, as bearers of the electron spins that will enhance 1H or 13C nuclides. 1H solid-state NMR spectra of γ-irradiated powders at 1-5 K revealed, upon microwave irradiation, signal enhancements that, in general, were higher than those achieved through conventional glass-based DNP. Transfer of these samples to a solution-state NMR spectrometer via a rapid dissolution driven by a superheated water provided significant enhancements of solution-state 1H NMR signals. Enhancements of 13C signals in the γ-irradiated solids were more modest, as a combined consequence of a low radical concentration and of the dilute concentration of 13C in the natural abundant samples examined. Nevertheless, ca. 700-800-fold enhancements in 13C solution NMR spectra of certain sites recorded at 11.7 T could still be achieved. A total disappearance of the radicals upon performing a dDNP-like aqueous dissolution and a high stability of the samples were found. Overall, the study showcases the advantages and limitations of γ-irradiated radicals as candidates for advancing spectroscopic dDNP-enhanced NMR.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Korin Butbul
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, 234 Herzl
Street, Rehovot 7610001, Israel
| | - Jihyun Kim
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
- Department
of Chemistry Education, Kyungpook National
University, Daegu 41566, Republic of Korea
| | - Elton Tadeu Montrazi
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Kawarpal Singh
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Levien M, Yang L, van der Ham A, Reinhard M, John M, Purea A, Ganz J, Marquardsen T, Tkach I, Orlando T, Bennati M. Overhauser enhanced liquid state nuclear magnetic resonance spectroscopy in one and two dimensions. Nat Commun 2024; 15:5904. [PMID: 39003303 PMCID: PMC11246421 DOI: 10.1038/s41467-024-50265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Nuclear magnetic resonance (NMR) is fundamental in the natural sciences, from chemical analysis and structural biology, to medicine and physics. Despite its enormous achievements, one of its most severe limitations is the low sensitivity, which arises from the small population difference of nuclear spin states. Methods such as dissolution dynamic nuclear polarization and parahydrogen induced hyperpolarization can enhance the NMR signal by several orders of magnitude, however, their intrinsic limitations render multidimensional hyperpolarized liquid-state NMR a challenge. Here, we report an instrumental design for 9.4 Tesla liquid-state dynamic nuclear polarization that enabled enhanced high-resolution NMR spectra in one and two-dimensions for small molecules, including drugs and metabolites. Achieved enhancements of up to two orders of magnitude translate to signal acquisition gains up to a factor of 10,000. We show that hyperpolarization can be transferred between nuclei, allowing DNP-enhanced two-dimensional 13C-13C correlation experiments at 13C natural abundance. The enhanced sensitivity opens up perspectives for structural determination of natural products or characterization of drugs, available in small quantities. The results provide a starting point for a broader implementation of DNP in liquid-state NMR.
Collapse
Affiliation(s)
- Marcel Levien
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Luming Yang
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Alex van der Ham
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Maik Reinhard
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany
| | - Michael John
- Institute of Organic and Biomolecular Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 2, 37077, Göttingen, Germany
| | - Armin Purea
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Jürgen Ganz
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | | | - Igor Tkach
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Tomas Orlando
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., 32310, Tallahassee, FL, USA
| | - Marina Bennati
- Electron-Spin Resonance Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
- Institute of Physical Chemistry, Department of Chemistry, Georg-August-University, Tammannstr. 6, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Nevzorov AA, Marek A, Milikisiyants S, Smirnov AI. High-frequency high-power DNP/EPR spectrometer operating at 7 T magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107677. [PMID: 38631171 PMCID: PMC11102838 DOI: 10.1016/j.jmr.2024.107677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
One of the most essential prerequisites for the development of pulse Dynamic Nuclear Polarization (DNP) is the ability to generate high-power coherent mm-wave pulses at the electron precession frequencies corresponding to the magnetic fields of modern high-resolution NMR spectrometers. As a major step towards achieving this goal, an Extended Interaction Klystron (EIK) pulse amplifier custom-built by the Communications and Power Industries, Inc. and producing up to 140 W at 197.8 GHz, was integrated with in-house built NMR/DNP/EPR spectrometer operating at 7 T magnetic field. The spectrometer employs a Thomas Keating, Ltd. quasioptical bridge to direct mm-waves into a homebuilt DNP probe incorporating photonic bandgap (PBG) resonators to further boost electronic B1e fields. Three-pulse electron spin echo nutation experiments were employed to characterize the B1e fields at the sample by operating the homodyne 198 GHz bridge in an induction mode. Room-temperature experiments with a single-crystal high-pressure, high-temperature (HPHT) diamond and a polystyrene film doped with BDPA radical yielded < 9 ns π/2 pulses at ca. 50 W specified EIK output at the corresponding resonance frequencies and the PBG resonator quality factor of Q≈300. DNP experiments carried out in a "gated" mode by supplying 20 μs mm-wave pulses every 1 ms yielded 13C solid-effect DNP with gains up to 20 for the polystyrene-BDPA sample at natural 13C abundance. For a single-crystal HPHT diamond, the gated DNP mode yielded almost the same 13C enhancement as a low-power continuous wave (CW) mode at 0.4 W, whereas no DNP effect was observed for the BDPA/polystyrene sample in the latter case. To illustrate the versatility of our upgraded DNP spectrometer, room-temperature Overhauser DNP enhancements of 7-14 for 31P NMR signal were demonstrated using a liquid droplet of 1 M tri-phenyl phosphine co-dissolved with 100 mM of BDPA in toluene‑d8.
Collapse
Affiliation(s)
- Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, US.
| | - Antonin Marek
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, US
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, US
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, US.
| |
Collapse
|
4
|
Concilio MG, Frydman L. Microwave-free J-driven dynamic nuclear polarization: A proposal for enhancing the sensitivity of solution-state NMR. Phys Rev E 2023; 107:035303. [PMID: 37073023 DOI: 10.1103/physreve.107.035303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
J-driven dynamic nuclear polarization (JDNP) was recently proposed for enhancing the sensitivity of solution-state nuclear magnetic resonance (NMR), while bypassing the limitations faced by conventional (Overhauser) DNP at magnetic fields of interest in analytical applications. Like Overhauser DNP, JDNP also requires saturating the electronic polarization using high-frequency microwaves known to have poor penetration and associated heating effects in most liquids. The present microwave-free JDNP (MF-JDNP) proposal seeks to enhance solution NMR's sensitivity by shuttling the sample between higher and lower magnetic fields, with one of these fields providing an electron Larmor frequency that matches the interelectron exchange coupling J_{ex}. If spins cross this so-called JDNP condition sufficiently fast, we predict that a sizable nuclear polarization will be created without microwave irradiation. This MF-JDNP proposal requires radicals whose singlet-triplet self-relaxation rates are dominated by dipolar hyperfine relaxation, and shuttling times that can compete with these electron relaxation processes. This paper discusses the theory behind the MF-JDNP, as well as proposals for radicals and conditions that could enable this new approach to NMR sensitivity enhancement.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
6
|
Reinhard M, Levien M, Bennati M, Orlando T. Large 31P-NMR enhancements in liquid state dynamic nuclear polarization through radical/target molecule non-covalent interaction. Phys Chem Chem Phys 2022; 25:822-828. [PMID: 36511338 PMCID: PMC9768845 DOI: 10.1039/d2cp04092a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic nuclear polarization (DNP) is a method to enhance the low sensitivity of nuclear magnetic resonance (NMR) via spin polarization transfer from electron spins to nuclear spins. In the liquid state, this process is mediated by fast modulations of the electron-nuclear hyperfine coupling and its efficiency depends strongly on the applied magnetic field. A peculiar case study is triphenylphosphine (PPh3) dissolved in benzene and doped with BDPA radical because it gives 31P-NMR signal enhancements of two orders of magnitude up to a magnetic field of 14.1 T. Here we show that the large 31P enhancements of BDPA/PPh3 in benzene at 1.2 T (i) decrease when the moieties are dissolved in other organic solvents, (ii) are strongly reduced when using a nitroxide radical, and (iii) vanish with pentavalent 31P triphenylphosphine oxide. Those experimental observations are rationalized with numerical calculations based on density functional theory that show the tendency of BDPA and PPh3 to form a weak complex via non-covalent interaction that leads to large hyperfine couplings to 31P (ΔAiso ≥ 13 MHz). This mechanism is hampered in other investigated systems. The case study of 31P-DNP in PPh3 is an important example that extends the current understanding of DNP in the liquids state: non-covalent interactions between radical and target can be particularly effective to obtain large NMR signal enhancements.
Collapse
Affiliation(s)
- Maik Reinhard
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany,Department of Chemistry, Georg-August-University, Tammannstraße 4GöttingenGermany
| | - Marcel Levien
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany,Department of Chemistry, Georg-August-University, Tammannstraße 4GöttingenGermany
| | - Marina Bennati
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany,Department of Chemistry, Georg-August-University, Tammannstraße 4GöttingenGermany
| | - Tomas Orlando
- ESR Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11GöttingenGermany
| |
Collapse
|
7
|
Soundararajan M, Dubroca T, van Tol J, Hill S, Frydman L, Wi S. Proton-detected solution-state NMR at 14.1 T based on scalar-driven 13C Overhauser dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 343:107304. [PMID: 36228539 DOI: 10.1016/j.jmr.2022.107304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Overhauser dynamic nuclear polarization (ODNP) NMR of solutions at high fields is usually mediated by scalar couplings that polarize the nuclei of heavier, electron-rich atoms. This leaves 1H-detected NMR outside the realm of such studies. This study presents experiments that deliver 1H-detected NMR experiments on relatively large liquid volumes (60 ∼ 100 μL) and at high fields (14.1 T), while relying on ODNP enhancements. To this end 13C NMR polarizations were first enhanced by relying on a mechanism that utilizes e--13C scalar coupling interactions; the nuclear spin alignment thus achieved was then passed on to neighboring 1H for observation, by a reverse INEPT scheme relying on one-bond JCH-couplings. Such 13C →1H polarization transfer ported the 13C ODNP gains into the 1H, permitting detection at higher frequencies and with higher potential sensitivities. For a model solution of labeled 13CHCl3 comixed with a nitroxide-based TEMPO derivative as polarizing agent, an ODNP enhancement factor of ca. 5x could thus be imparted to the 1H signal. When applied to bigger organic molecules like 2-13C-phenylacetylene and 13C8-indole, ODNP enhancements in the 1.2-3x range were obtained. Thus, although handicapped by the lower γ of the 13C, enhancements could be imparted on the 1H thermal acquisitions in all cases. We also find that conventional 1H-13C nuclear Overhauser enhancements (NOEs) are largely absent in these solutions due to the presence of co-dissolved radicals, adding negligible gains and playing negligible roles on the scalar e-→13C ODNP transfer. Potential rationalizations of these effects as well as extensions of these experiments, are briefly discussed.
Collapse
Affiliation(s)
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Johan van Tol
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Stephen Hill
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA; Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA; Department of Chemical and Biological Physics, Weizmann Institute of Sciences, 76100001 Rehovot, Israel.
| | - Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA.
| |
Collapse
|
8
|
Rao Y, Venkatesh A, Moutzouri P, Emsley L. 1H Hyperpolarization of Solutions by Overhauser Dynamic Nuclear Polarization with 13C- 1H Polarization Transfer. J Phys Chem Lett 2022; 13:7749-7755. [PMID: 35969266 PMCID: PMC9421900 DOI: 10.1021/acs.jpclett.2c01956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Dynamic nuclear polarization (DNP) is a method that can significantly increase the sensitivity of nuclear magnetic resonance. The only effective DNP mechanism for in situ hyperpolarization in solution is Overhauser DNP, which is inefficient for 1H at high magnetic fields. Here we demonstrate the possibility of generating significant 1H hyperpolarization in solution at room temperature. To counter the poor direct 1H Overhauser DNP, we implement steady-state 13C Overhauser DNP in solutions and then transfer the 13C hyperpolarization to 1H via a reverse insensitive nuclei enhanced by polarization transfer scheme. We demonstrate this approach using a 400 MHz gyrotron-equipped 3.2 mm magic angle spinning DNP system to obtain 1H DNP enhancement factors of 48, 8, and 6 for chloroform, tetrachloroethane, and phenylacetylene, respectively, at room temperature.
Collapse
|
9
|
Hilty C, Kurzbach D, Frydman L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat Protoc 2022; 17:1621-1657. [PMID: 35546640 DOI: 10.1038/s41596-022-00693-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced 1H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile 1H or neighboring 15N/13C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Collapse
Affiliation(s)
- Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, USA.
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Concilio MG, Kuprov I, Frydman L. J-Driven dynamic nuclear polarization for sensitizing high field solution state NMR. Phys Chem Chem Phys 2022; 24:2118-2125. [PMID: 35024715 DOI: 10.1039/d1cp04186j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B0, unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings Jex of the order of the electron Larmor frequency ωE. Numerical and analytical calculations show that in such Jex ≈ ±ωE cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton, UK
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel. .,National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| |
Collapse
|
11
|
Kuzhelev AA, Dai D, Denysenkov V, Prisner TF. Solid-like Dynamic Nuclear Polarization Observed in the Fluid Phase of Lipid Bilayers at 9.4 T. J Am Chem Soc 2022; 144:1164-1168. [PMID: 35029974 DOI: 10.1021/jacs.1c12837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamic nuclear polarization (DNP) is a powerful method to enhance NMR sensitivity. Much progress has been achieved recently to optimize DNP performance at high magnetic fields in solid-state samples, mostly by utilizing the solid or the cross effect. In liquids, only the Overhauser mechanism is active, which exhibits a DNP field profile matching the EPR line shape of the radical, distinguishable from other DNP mechanisms. Here, we observe DNP enhancements with a field profile indicative of the solid effect and thermal mixing at ∼320 K and a magnetic field of 9.4 T in the fluid phase of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers doped with the radical BDPA (1,3-bis(diphenylene)-2-phenylallyl). This interesting observation might open up new perspectives for DNP applications in macromolecular systems at ambient temperatures.
Collapse
Affiliation(s)
- Andrei A Kuzhelev
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Danhua Dai
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Vasyl Denysenkov
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| | - Thomas F Prisner
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Dai D, Wang X, Liu Y, Yang XL, Glaubitz C, Denysenkov V, He X, Prisner T, Mao J. Room-temperature dynamic nuclear polarization enhanced NMR spectroscopy of small biological molecules in water. Nat Commun 2021; 12:6880. [PMID: 34824218 PMCID: PMC8616939 DOI: 10.1038/s41467-021-27067-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful and popular technique for probing the molecular structures, dynamics and chemical properties. However the conventional NMR spectroscopy is bottlenecked by its low sensitivity. Dynamic nuclear polarization (DNP) boosts NMR sensitivity by orders of magnitude and resolves this limitation. In liquid-state this revolutionizing technique has been restricted to a few specific non-biological model molecules in organic solvents. Here we show that the carbon polarization in small biological molecules, including carbohydrates and amino acids, can be enhanced sizably by in situ Overhauser DNP (ODNP) in water at room temperature and at high magnetic field. An observed connection between ODNP 13C enhancement factor and paramagnetic 13C NMR shift has led to the exploration of biologically relevant heterocyclic compound indole. The QM/MM MD simulation underscores the dynamics of intermolecular hydrogen bonds as the driving force for the scalar ODNP in a long-living radical-substrate complex. Our work reconciles results obtained by DNP spectroscopy, paramagnetic NMR and computational chemistry and provides new mechanistic insights into the high-field scalar ODNP.
Collapse
Affiliation(s)
- Danhua Dai
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Xianwei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, China
| | - Yiwei Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Liang Yang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Clemens Glaubitz
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Vasyl Denysenkov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
| | - Thomas Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jiafei Mao
- Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Keller T, Maly T. Overhauser dynamic nuclear polarization (ODNP)-enhanced two-dimensional proton NMR spectroscopy at low magnetic fields. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:117-128. [PMID: 35465650 PMCID: PMC9030190 DOI: 10.5194/mr-2-117-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/23/2021] [Indexed: 04/16/2023]
Abstract
The majority of low-field Overhauser dynamic nuclear polarization (ODNP) experiments reported so far have been 1D NMR experiments to study molecular dynamics and in particular hydration dynamics. In this work, we demonstrate the application of ODNP-enhanced 2D J-resolved (JRES) spectroscopy to improve spectral resolution beyond the limit imposed by the line broadening introduced by the paramagnetic polarizing agent. Using this approach, we are able to separate the overlapping multiplets of ethyl crotonate into a second dimension and clearly identify each chemical site individually. Crucial to these experiments is interleaved spectral referencing, a method introduced to compensate for temperature-induced field drifts over the course of the NMR acquisition. This method does not require additional hardware such as a field-frequency lock, which is especially challenging when designing compact systems.
Collapse
Affiliation(s)
- Timothy J. Keller
- Bridge12 Technologies Inc., 37 Loring Drive, Framingham, MA 01702, USA
| | - Thorsten Maly
- Bridge12 Technologies Inc., 37 Loring Drive, Framingham, MA 01702, USA
| |
Collapse
|
14
|
Keller TJ, Maly T. Overhauser dynamic nuclear polarization (ODNP)-enhanced two-dimensional proton NMR spectroscopy at low magnetic fields. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021. [PMID: 35465650 DOI: 10.5281/zenodo.4479048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
The majority of low-field Overhauser dynamic nuclear polarization (ODNP) experiments reported so far have been 1D NMR experiments to study molecular dynamics and in particular hydration dynamics. In this work, we demonstrate the application of ODNP-enhanced 2D J-resolved (JRES) spectroscopy to improve spectral resolution beyond the limit imposed by the line broadening introduced by the paramagnetic polarizing agent. Using this approach, we are able to separate the overlapping multiplets of ethyl crotonate into a second dimension and clearly identify each chemical site individually. Crucial to these experiments is interleaved spectral referencing, a method introduced to compensate for temperature-induced field drifts over the course of the NMR acquisition. This method does not require additional hardware such as a field-frequency lock, which is especially challenging when designing compact systems.
Collapse
Affiliation(s)
- Timothy J Keller
- Bridge12 Technologies Inc., 37 Loring Drive, Framingham, MA 01702, USA
| | - Thorsten Maly
- Bridge12 Technologies Inc., 37 Loring Drive, Framingham, MA 01702, USA
| |
Collapse
|
15
|
Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:5-23. [PMID: 33185800 DOI: 10.1007/s10334-020-00894-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Dissolution-DNP is a method to boost liquid-state NMR sensitivity by several orders of magnitude. The technique consists in hyperpolarizing samples by solid-state dynamic nuclear polarization at low temperature and moderate magnetic field, followed by an instantaneous melting and dilution of the sample happening inside the polarizer. Although the technique is well established and the outstanding signal enhancement paved the way towards many applications precluded to conventional NMR, the race to develop new methods allowing higher throughput, faster and higher polarization, and longer exploitation of the signal is still vivid. In this work, we review the most recent advances on dissolution-DNP methods trying to overcome the original technique's shortcomings. The review describes some of the new approaches in the field, first, in terms of sample formulation and properties, and second, in terms of instrumentation.
Collapse
|
16
|
Levien M, Hiller M, Tkach I, Bennati M, Orlando T. Nitroxide Derivatives for Dynamic Nuclear Polarization in Liquids: The Role of Rotational Diffusion. J Phys Chem Lett 2020; 11:1629-1635. [PMID: 32003568 PMCID: PMC7307959 DOI: 10.1021/acs.jpclett.0c00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/31/2020] [Indexed: 06/07/2023]
Abstract
Polarization transfer efficiency in liquid-state dynamic nuclear polarization (DNP) depends on the interaction between polarizing agents (PAs) and target nuclei modulated by molecular motions. We show how translational and rotational diffusion differently affect the DNP efficiency. These contributions were disentangled by measuring 1H-DNP enhancements of toluene and chloroform doped with nitroxide derivatives at 0.34 T as a function of either the temperature or the size of the PA. The results were employed to analyze 13C-DNP data at higher fields, where the polarization transfer is also driven by the Fermi contact interaction. In this case, bulky nitroxide PAs perform better than the small TEMPONE radical due to structural fluctuations of the ring conformation. These findings will help in designing PAs with features specifically optimized for liquid-state DNP at various magnetic fields.
Collapse
Affiliation(s)
- M. Levien
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
- Department
of Chemistry, Georg-August University, Göttingen 37077, Germany
| | - M. Hiller
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| | - I. Tkach
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| | - M. Bennati
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
- Department
of Chemistry, Georg-August University, Göttingen 37077, Germany
| | - T. Orlando
- Research
Group EPR Spectroscopy, Max Planck Institute
for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
17
|
Abstract
Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
Collapse
Affiliation(s)
- Björn Corzilius
- Institute of Chemistry and Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany;
| |
Collapse
|