1
|
Katsoukis G, Heida H, Gutgesell M, Mul G. Time-Resolved Infrared Spectroscopic Evidence for Interfacial pH-Dependent Kinetics of Formate Evolution on Cu Electrodes. ACS Catal 2024; 14:13867-13876. [PMID: 39324054 PMCID: PMC11420947 DOI: 10.1021/acscatal.4c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
By deployment of rapid-scan (second time scale) electrochemical FT-IR reflection-absorption spectroscopy, we studied the reduction of CO2 in 0.1 M Na2SO4 in deuterated water at a pD of 3.7. We report on the impact of dynamic changes in the bicarbonate equilibrium concentration in the vicinity of a polycrystalline Cu electrode, induced by step changes in applied electrode potential. We correlate these changes in interfacial composition and concentrations of dissolved species to the formation rate of formate, and provide evidence for the following conclusions: (i) the kinetics for the conversion of dissolved CO2 to formate (formic acid) are fast, (ii) bicarbonate is also converted to formate, but with less favorable kinetics, and (iii) carbonate does not yield any formate. These results reveal that formate formation requires (mildly) acidic conditions at the interface for CO2 to undergo a proton-coupled conversion step, and we postulate that bicarbonate reduction to formate is driven by catalytic hydrogenation via in situ formed H2. Interestingly CO was not observed, suggesting that the kinetics of the CO2 to CO reaction are significantly less favorable than formate formation under the experimental conditions (pH and applied potential). We also analyzed the feasibility of pulsed electrolysis to enhance the (average) rate of formation of formate. While a short positive potential pulse enhances the CO2 concentration, this also leads to the formation of basic copper carbonates, resulting in electrode deactivation. These observations demonstrate the potential of rapid-scan EC-IRRAS to elucidate the mechanisms and kinetics of electrochemical reactions, offering valuable insights for optimizing catalyst and electrolyte performance and advancing CO2 reduction technologies.
Collapse
Affiliation(s)
- Georgios Katsoukis
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente Faculty of Science and Technology, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Hilbert Heida
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente Faculty of Science and Technology, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Merlin Gutgesell
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente Faculty of Science and Technology, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Guido Mul
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente Faculty of Science and Technology, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| |
Collapse
|
2
|
Joll K, Schienbein P, Rosso KM, Blumberger J. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials. Nat Commun 2024; 15:8192. [PMID: 39294144 PMCID: PMC11411082 DOI: 10.1038/s41467-024-52491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
The interaction of condensed phase systems with external electric fields is of major importance in a myriad of processes in nature and technology, ranging from the field-directed motion of cells (galvanotaxis), to geochemistry and the formation of ice phases on planets, to field-directed chemical catalysis and energy storage and conversion systems including supercapacitors, batteries and solar cells. Molecular simulation in the presence of electric fields would give important atomistic insight into these processes but applications of the most accurate methods such as ab-initio molecular dynamics (AIMD) are limited in scope by their computational expense. Here we introduce Perturbed Neural Network Potential Molecular Dynamics (PNNP MD) to push back the accessible time and length scales of such simulations. We demonstrate that important dielectric properties of liquid water including the field-induced relaxation dynamics, the dielectric constant and the field-dependent IR spectrum can be machine learned up to surprisingly high field strengths of about 0.2 V Å-1 without loss in accuracy when compared to ab-initio molecular dynamics. This is remarkable because, in contrast to most previous approaches, the two neural networks on which PNNP MD is based are exclusively trained on molecular configurations sampled from zero-field MD simulations, demonstrating that the networks not only interpolate but also reliably extrapolate the field response. PNNP MD is based on rigorous theory yet it is simple, general, modular, and systematically improvable allowing us to obtain atomistic insight into the interaction of a wide range of condensed phase systems with external electric fields.
Collapse
Affiliation(s)
- Kit Joll
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK
| | - Philipp Schienbein
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK.
- Department of Physics, Imperial College London, South Kensington, London, UK.
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington, UK
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK.
| |
Collapse
|
3
|
Rai S, Rai D. Probing the Electric Field Response of a Water Molecule Confined in Small Carbon Nanocages: A Density Functional Theory Investigation. Chemphyschem 2024:e202400718. [PMID: 39287975 DOI: 10.1002/cphc.202400718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
We consider a water molecule under tight confinement in the small-sized fullerenes (C28 ${_{28} }$ , C30 ${_{30} }$ , C32 ${_{32} }$ ) within the density functional theory (DFT) calculations with suitable exchange-correlation functionals. Such nanoscopic molecular cages provide an ideal setup to study their characteristic properties not present in the condensed phase. The water molecule entirely loses its feature of typical water when it is confined in small fullerenes of size equal to C30 ${_{30} }$ or smaller, in which the asymmetric O-H stretching vibration occurs at a lower wavenumber than the symmetric stretching. We study the response of the confined water molecule to the applied electric fields in terms of change in geometrical parameters, NMR spin-spin coupling constants, dipole moment, HOMO-LUMO (HL) gap, and vibrational frequency shift. The electric field shielding property of small-sized fullerene cages is explored and found to be strongly correlated with the HL gap. Since the electric field modulates the gap to decrease generally, shielding efficiency varies with field strength, thereby making large fields better shielded than small fields for the small penetration factor at large fields. The results that hold significance for technological applications are discussed.
Collapse
Affiliation(s)
- Smita Rai
- Department of Physics, Sikkim University, Samdur, India, 737102
| | - Dhurba Rai
- Department of Physics, Sikkim University, Samdur, India, 737102
| |
Collapse
|
4
|
Zheng X, Pei Q, Tan J, Bai S, Luo Y, Ye S. Local electric field in nanocavities dictates the vibrational relaxation dynamics of interfacial molecules. Chem Sci 2024; 15:11507-11514. [PMID: 39055024 PMCID: PMC11268483 DOI: 10.1039/d4sc02463j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
Plasmonic nanocavities enable the generation of strong light-matter coupling and exhibit great potential in plasmon-mediated chemical reactions (PMCRs). Although an electric field generated by nanocavities (E n) has recently been reported, its effect on the vibrational energy relaxation (VER) of the molecules in the nanocavities has not been explored. In this study, we reveal the impact of an electric field sensed by molecules (para-substituted thiophenol derivatives) in a nanocavity (E f) on VER processes by employing advanced time-resolved femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) supplemented by electrochemical measurements. The magnitude of E n is almost identical (1.0 ± 0.2 V nm-1) beyond the experimental deviation while E f varies from 0.3 V nm-1 to 1.7 V nm-1 depending on the substituent. An exponential correlation between E f and the complete recovery time of the ground vibrational C[double bond, length as m-dash]C state (T 2) of the phenyl ring is observed. Substances with a smaller T 2 are strongly correlated with the reported macroscopic chemical reactivity. This finding may aid in enriching the current understanding of PMCRs and highlights the possibility of regulating vibrational energy flow into desired reaction coordinates by using a local electric field.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Shiyu Bai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| |
Collapse
|
5
|
Torre MF, Amadeo A, Cassone G, Tommasini M, Mráziková K, Saija F. Water Dimer under Electric Fields: An Ab Initio Investigation up to Quantum Accuracy. J Phys Chem A 2024; 128:5490-5499. [PMID: 38976361 DOI: 10.1021/acs.jpca.4c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
It is well-established that strong electric fields (EFs) can align water dipoles, partially order the H-bond network of liquid water, and induce water splitting and proton transfers. To illuminate the fundamental behavior of water under external EFs, we present the first benchmark, to the best of our knowledge, of DFT calculations of the water dimer exposed to intense EFs against coupled cluster calculations. The analyses of the vibrational Stark effect and electron density provide a consistent picture of the intermolecular charge transfer effects driven along the H-bond by the increasing applied field at all theory levels. However, our findings prove that at extreme field regimes (∼1-2 V/Å) DFT calculations significantly exaggerate by ∼10-30% the field-induced strengthening of the H-bond, both within the GGA, hybrid GGA, and hybrid meta-GGA approximations. Notably, a linear correlation emerges between the vibrational Stark effect on OH stretching and H-bond strengthening: a 1 kcal mol-1 increase corresponds to an 80 cm-1 red-shift in OH stretching frequency.
Collapse
Affiliation(s)
- Marco Francesco Torre
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Alessandro Amadeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ing. Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Klaudia Mráziková
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| |
Collapse
|
6
|
Pullanchery S, Kulik S, Schönfeldová T, Egan CK, Cassone G, Hassanali A, Roke S. pH drives electron density fluctuations that enhance electric field-induced liquid flow. Nat Commun 2024; 15:5951. [PMID: 39009573 PMCID: PMC11251051 DOI: 10.1038/s41467-024-50030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Liquid flow along a charged interface is commonly described by classical continuum theory, which represents the electric double layer by uniformly distributed point charges. The electrophoretic mobility of hydrophobic nanodroplets in water doubles in magnitude when the pH is varied from neutral to mildly basic (pH 7 → 11). Classical continuum theory predicts that this increase in mobility is due to an increased surface charge. Here, by combining all-optical measurements of surface charge and molecular structure, as well as electronic structure calculations, we show that surface charge and molecular structure at the nanodroplet surface are identical at neutral and mildly basic pH. We propose that the force that propels the droplets originates from two factors: Negative charge on the droplet surface due to charge transfer from and within water, and anisotropic gradients in the fluctuating polarization induced by the electric field. Both charge density fluctuations couple with the external electric field, and lead to droplet flow. Replacing chloride by hydroxide doubles both the charge conductivity via the Grotthuss mechanism, and the droplet mobility. This general mechanism deeply impacts a plethora of processes in biology, chemistry, and nanotechnology and provides an explanation of how pH influences hydrodynamic phenomena and the limitations of classical continuum theory currently used to rationalize these effects.
Collapse
Affiliation(s)
- S Pullanchery
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Kulik
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - T Schönfeldová
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C K Egan
- International Centre for Theoretical Physics, Trieste, Italy
| | - G Cassone
- Institute for Physical-Chemical Processes, Italian National Research Council (IPCF-CNR), Messina, Italy
| | - A Hassanali
- International Centre for Theoretical Physics, Trieste, Italy.
| | - S Roke
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
7
|
Verduci R, Creazzo F, Tavella F, Abate S, Ampelli C, Luber S, Perathoner S, Cassone G, Centi G, D'Angelo G. Water Structure in the First Layers on TiO 2: A Key Factor for Boosting Solar-Driven Water-Splitting Performances. J Am Chem Soc 2024; 146:18061-18073. [PMID: 38909313 DOI: 10.1021/jacs.4c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The water hydrogen-bonded network is strongly perturbed in the first layers in contact with the semiconductor surface. Even though this aspect influences the outer-sphere electron transfer, it was not recognized that it is a crucial factor impacting the solar-driven water-splitting performances. To fill this gap, we have selected two TiO2 anatase samples (with and without B-doping), and by extensive experimental and computational investigations, we have demonstrated that the remarkable 5-fold increase in water-splitting photoactivity of the B-doped sample cannot be ascribed to effects typically associated to enhanced photocatalytic properties, such as band gap, heterojunctions, crystal facets, and other aspects. Studying these samples by combining FTIR measurements under controlled humidity with first-principles simulations sheds light on the role and nature of the first-layer water structure in contact with the photocatalyst surfaces. It turns out that the doping hampers the percolation of tetrahedrally coordinated water molecules while enhancing the population of topological H-bond defects forming approximately linear H-bonded chains. This work unveils how doping the semiconductor surface affects the local electric field, determining the water splitting rate by influencing the H-bond topologies in the first water layers. This evidence opens new prospects for designing efficient photocatalysts for water splitting.
Collapse
Affiliation(s)
- Rosaria Verduci
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science (MIFT), University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Fabrizio Creazzo
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Francesco Tavella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, ERIC aisbl and CASPE/INSTM, 98166 Messina, Italy
| | - Salvatore Abate
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, ERIC aisbl and CASPE/INSTM, 98166 Messina, Italy
| | - Claudio Ampelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, ERIC aisbl and CASPE/INSTM, 98166 Messina, Italy
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Siglinda Perathoner
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, ERIC aisbl and CASPE/INSTM, 98166 Messina, Italy
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Gabriele Centi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, ERIC aisbl and CASPE/INSTM, 98166 Messina, Italy
| | - Giovanna D'Angelo
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science (MIFT), University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
8
|
Novelli F. Terahertz spectroscopy of thick and diluted water solutions. OPTICS EXPRESS 2024; 32:11041-11056. [PMID: 38570962 DOI: 10.1364/oe.510393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024]
Abstract
While bright terahertz sources are used to perform nonlinear experiments, they can be advantageous for high-precision linear measurements of opaque samples. By placing the sample away from the focus, nonlinearities can be suppressed, and sizeable amounts of transmitted radiation detected. Here, this approach is demonstrated for a 0.5 mm thick layer of liquid water in a static sample holder. Variations of the index of refraction as small as (7 ± 2) · 10-4 were detected at 0.58 THz for an aqueous salt solution containing ten millimoles of sodium chloride. To my knowledge, this precision is unprecedented in time-domain spectroscopy studies of diluted aqueous systems or other optically thick and opaque materials.
Collapse
|
9
|
Cassone G, Martelli F. Electrofreezing of liquid water at ambient conditions. Nat Commun 2024; 15:1856. [PMID: 38424051 PMCID: PMC10904787 DOI: 10.1038/s41467-024-46131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Water is routinely exposed to external electric fields. Whether, for example, at physiological conditions, in contact with biological systems, or at the interface of polar surfaces in countless technological settings, water responds to fields on the order of a few V Å-1 in a manner that is under intense investigation. Dating back to the 19th century, the possibility of solidifying water upon applying electric fields - a process known as electrofreezing - is an alluring promise that has canalized major efforts since, with uncertain outcomes. Here, we perform long (up to 500 ps per field strength) ab initio molecular dynamics simulations of water at ambient conditions under external electric fields. We show that fields of 0.10 - 0.15 V Å-1 induce electrofreezing to a ferroelectric amorphous phase which we term f-GW (ferroelectric glassy water). The transition occurs after ~ 150 ps for a field of 0.15 V Å-1 and after ~ 200 ps for a field of 0.10 V Å-1 and is signaled by a structural and dynamic arrest and the suppression of the fluctuations of the hydrogen bond network. Our work reports evidence of electrofreezing of bulk liquid water at ambient conditions and therefore impacts several fields, from fundamental chemical physics to biology and catalysis.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council, Viale F. Stagno d'Alcontres 37, Messina, 98158, Italy.
| | - Fausto Martelli
- IBM Research Europe, Keckwik Lane, Daresbury, WA4 4AD, UK.
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
10
|
Li K, Chen B, Li M, Jiang L, Song Y, Yang M. Facilitation of Hydrate Dissociation and Structural Evolution by Major Marine Anions under Static Electric Fields. J Phys Chem B 2023; 127:10447-10457. [PMID: 37991934 DOI: 10.1021/acs.jpcb.3c06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Electric fields have been proven to be capable of significantly affecting the equilibrium state of hydrates. In this study, the thermodynamic properties and structural changes of methane hydrate (MH) in various anion solutions in an electric field at 0.7 V/nm were investigated by molecular dynamics simulations. The presence of anions significantly enhances the instability of methane hydrates under electric fields, leading to a staged dissociation process. First, the anions coexist with MH to form a temporary metastable structure under the action of an electric field. Then, the migration of anions causes the dissociation of nearby hydrates and the formation of flow channels in the hydrate layer, which leads to the complete dissociation of MH after a period. The promotive effects of F-, Br-, I-, and Cl- ions were close, while SO42- was relatively weak. The anions are still in hydration shells in the MH phase, but the structure of the hydration shells differs slightly from that in solution (the coordination numbers of I- and SO42- ions increased). The migration resistances of multiple anions to cross the surface of the hydrate layer are similar. However, inside the hydrate phase, the anions with a larger radius have a higher migration resistance. It is difficult for SO42- ions to migrate inside the hydrate phase, and they tend to form a metastable structure on the hydrate surface. Combining our previous studies, SrCl2 solution has the best hydrate promotion under an electric field environment.
Collapse
Affiliation(s)
- Kehan Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Bingbing Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Mingjun Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Lanlan Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Mingjun Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Zhang Y, Jiang B. Universal machine learning for the response of atomistic systems to external fields. Nat Commun 2023; 14:6424. [PMID: 37827998 PMCID: PMC10570356 DOI: 10.1038/s41467-023-42148-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
Machine learned interatomic interaction potentials have enabled efficient and accurate molecular simulations of closed systems. However, external fields, which can greatly change the chemical structure and/or reactivity, have been seldom included in current machine learning models. This work proposes a universal field-induced recursively embedded atom neural network (FIREANN) model, which integrates a pseudo field vector-dependent feature into atomic descriptors to represent system-field interactions with rigorous rotational equivariance. This "all-in-one" approach correlates various response properties like dipole moment and polarizability with the field-dependent potential energy in a single model, very suitable for spectroscopic and dynamics simulations in molecular and periodic systems in the presence of electric fields. Especially for periodic systems, we find that FIREANN can overcome the intrinsic multiple-value issue of the polarization by training atomic forces only. These results validate the universality and capability of the FIREANN method for efficient first-principles modeling of complicated systems in strong external fields.
Collapse
Affiliation(s)
- Yaolong Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Bin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China.
| |
Collapse
|
12
|
Cassone G, Saija F, Sponer J, Shaik S. The Reactivity-Enhancing Role of Water Clusters in Ammonia Aqueous Solutions. J Phys Chem Lett 2023; 14:7808-7813. [PMID: 37623433 PMCID: PMC10494223 DOI: 10.1021/acs.jpclett.3c01810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Among the many prototypical acid-base systems, ammonia aqueous solutions hold a privileged place, owing to their omnipresence in various planets and their universal solvent character. Although the theoretical optimal water-ammonia molar ratio to form NH4+ and OH- ion pairs is 50:50, our ab initio molecular dynamics simulations show that the tendency of forming these ionic species is inversely (directly) proportional to the amount of ammonia (water) in ammonia aqueous solutions, up to a water-ammonia molar ratio of ∼75:25. Here we prove that the reactivity of these liquid mixtures is rooted in peculiar microscopic patterns emerging at the H-bonding scale, where the highly orchestrated motion of 5 solvating molecules modulates proton transfer events through local electric fields. This study demonstrates that the reaction of water with NH3 is catalyzed by a small cluster of water molecules, in which an H atom possesses a high local electric field, much like the effect observed in catalysis by water droplets [ PNAS 2023, 120, e2301206120].
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute
for Physical-Chemical Processes, Italian
National Research Council (CNR-IPCF), Viale Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Franz Saija
- Institute
for Physical-Chemical Processes, Italian
National Research Council (CNR-IPCF), Viale Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Jiri Sponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czechia
| | - Sason Shaik
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
13
|
Anand G, Safaripour S, Snoeyink C. Novel Raman Spectroscopy Method for Solutions in Uniform, High-Strength Electric Field. APPLIED SPECTROSCOPY 2023:37028231175178. [PMID: 37211622 DOI: 10.1177/00037028231175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel method of measuring the influence of high electric fields on the Raman scattering of fluids is introduced, which can help understand various interactions of a fluid with the high electric field. The microfluidic chip can impose highly controlled, uniform electric fields across the measurement volume with blocked electrodes, eliminating spurious reactions at the electrode surface. The developed methodology and the experimental setup are utilized to examine the effect of the electric field on three of the stretching vibrations of ethanol in water-ethanol mixtures with varying concentrations of ethanol and effective electric fields up to 1.0MV/m. The increase in the electric field is seen to broadly decrease the intensity of Raman scattering due to a decrease in the polarizability of the ethanol molecules. Although this effect is uniform for all water-ethanol mixtures, it reduces in mixtures with high weight-fractions of water because of the already reduced polarizability of an ethanol molecule due to hydrogen bonding. The combined effect of hydrogen bonding and increase in temperature due to the alternating high electric field even results in an increase in the magnitude of peak intensity for relatively low-weight fractions of ethanol.
Collapse
Affiliation(s)
- Gaurav Anand
- Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Samira Safaripour
- Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| | - Craig Snoeyink
- Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
14
|
Conti Nibali V, Maiti S, Saija F, Heyden M, Cassone G. Electric-field induced entropic effects in liquid water. J Chem Phys 2023; 158:2889002. [PMID: 37154276 DOI: 10.1063/5.0139460] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023] Open
Abstract
Externally applied electric fields in liquid water can induce a plethora of effects with wide implications in electrochemistry and hydrogen-based technologies. Although some effort has been made to elucidate the thermodynamics associated with the application of electric fields in aqueous systems, to the best of our knowledge, field-induced effects on the total and local entropy of bulk water have never been presented so far. Here, we report on classical TIP4P/2005 and ab initio molecular dynamics simulations measuring entropic contributions carried by diverse field intensities in liquid water at room temperature. We find that strong fields are capable of aligning large fractions of molecular dipoles. Nevertheless, the order-maker action of the field leads to quite modest entropy reductions in classical simulations. Albeit more significant variations are recorded during first-principles simulations, the associated entropy modifications are small compared to the entropy change involved in the freezing phenomenon, even at intense fields slightly beneath the molecular dissociation threshold. This finding further corroborates the idea that electrofreezing (i.e., the electric-field-induced crystallization) cannot take place in bulk water at room temperature. In addition, here, we propose a molecular-dynamics-based analysis (3D-2PT) that spatially resolves the local entropy and the number density of bulk water under an electric field, which enables us to map their field-induced changes in the environment of reference H2O molecules. By returning detailed spatial maps of the local order, the proposed approach is capable of establishing a link between entropic and structural modifications with atomistic resolution.
Collapse
Affiliation(s)
- Valeria Conti Nibali
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, 98166 Messina, Italy
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Sthitadhi Maiti
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| |
Collapse
|
15
|
Gullbrekken Ø, Røe IT, Selbach SM, Schnell SK. Charge Transport in Water-NaCl Electrolytes with Molecular Dynamics Simulations. J Phys Chem B 2023; 127:2729-2738. [PMID: 36921121 PMCID: PMC10068734 DOI: 10.1021/acs.jpcb.2c08047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
A systematic description of microscopic mechanisms is necessary to understand mass transport in solid and liquid electrolytes. From Molecular Dynamics (MD) simulations, transport properties can be computed and provide a detailed view of the molecular and ionic motions. In this work, ionic conductivity and transport numbers in electrolyte systems are computed from equilibrium and nonequilibrium MD simulations. Results from the two methods are compared with experimental results, and we discuss the significance of the frame of reference when determining and comparing transport numbers. Two ways of computing ionic conductivity from equilibrium simulations are presented: the Nernst-Einstein approximation or the Onsager coefficients. The Onsager coefficients take ionic correlations into account and are found to be more suitable for concentrated electrolytes. Main features and differences between equilibrium and nonequilibrium simulations are discussed, and some potential anomalies and critical pitfalls of using nonequilibrium molecular dynamics to determine transport properties are highlighted.
Collapse
Affiliation(s)
- Øystein Gullbrekken
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NTNU, Trondheim NO-7491, Norway
| | - Ingeborg Treu Røe
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NTNU, Trondheim NO-7491, Norway
| | - Sverre Magnus Selbach
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NTNU, Trondheim NO-7491, Norway
| | - Sondre Kvalvåg Schnell
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NTNU, Trondheim NO-7491, Norway
| |
Collapse
|
16
|
Urbic T. The electric field changes the anomalous properties of the Mercedes Benz water model. Phys Chem Chem Phys 2023; 25:4987-4996. [PMID: 36722865 PMCID: PMC9906975 DOI: 10.1039/d2cp05670d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The influence of a homogeneous constant electric field on water properties was assessed. We used a simple two-dimensional statistical mechanical model called the Mercedes-Benz (MB) model of water in the study. The MB water molecules are two-dimensional disks with Gaussian arms that mimic the formation of hydrogen bonds. The model is modified with added charges for interaction with the electric field. The influence of the strength of the electric field on the water's properties was studied using Monte Carlo simulations. The structure and thermodynamics of the water were determined as a function of the strength of the electric field. We observed that the properties and phase transitions of the water in the low strength electric field does not change. In contrast, the high strength electric field shifts boiling and melting points as well as the position of the density maxima. After further increasing the strength of the electric field the density anomaly disappears.
Collapse
Affiliation(s)
- Tomaz Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1000, Slovenia.
| |
Collapse
|
17
|
Chen B, Li K, Sun H, Jiang L, Yang M, Song Y. Promoting Effect of Common Marine Cations on Hydrate Dissociation and Structural Evolution under a Static Electric Field. J Phys Chem B 2023; 127:698-709. [PMID: 36629388 DOI: 10.1021/acs.jpcb.2c05382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Natural gas hydrate, a potential energy resource, is attracting worldwide attention. In this study, we propose a new method of hydrate dissociation which uses seawater and electrostatic fields (SE method) cooperatively. The hydrate molecular dissociation mechanism of gas hydrate is a key issue in studying the kinetic properties of gas hydrate using the SE method. Therefore, molecular dynamics simulations were used to investigate the thermodynamic properties and structural changes of methane hydrate (MH) in multiple kinds of salt solutions under an electrostatic field. The results show that the electric field can drive cations into the MH phase to form a series of random semiopen cages, which are essentially temporary and metastable. The variation in free energy indicates that it is more difficult for divalent cations to enter the hydrate phase than monovalent cations, meaning that the hydrate structures formed with divalent cations are more unstable. Then, the ion current occurred in the hydrate phase (called ion migration in this study), which greatly accelerated hydrate dissociation. In contrast, the promotion effect of cations with the same charge on MH dissociation is as follows: Sr2+ > K+ ≈ Na+ > Ca2+ ≈ Mg2+. In general, the presence of common marine cations enhanced the promotion effect of the electric field on gas hydrate dissociation.
Collapse
Affiliation(s)
- Bingbing Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| | - Kehan Li
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| | - Huiru Sun
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| | - Lanlan Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| | - Mingjun Yang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
18
|
Effects and Influence of External Electric Fields on the Equilibrium Properties of Tautomeric Molecules. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020695. [PMID: 36677753 PMCID: PMC9865840 DOI: 10.3390/molecules28020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
In this review, we have attempted to briefly summarize the influence of an external electric field on an assembly of tautomeric molecules and to what experimentally observable effects this interaction can lead to. We have focused more extensively on the influence of an oriented external electric field (OEEF) on excited-state intramolecular proton transfer (ESIPT) from the studies available to date. The possibilities provided by OEEF for regulating several processes and studying physicochemical processes in tautomers have turned this direction into an attractive area of research due to its numerous applications.
Collapse
|
19
|
Cassone G, Sponer J, Sponer JE, Saija F. Electrofreezing of Liquid Ammonia. J Phys Chem Lett 2022; 13:9889-9894. [PMID: 36255376 PMCID: PMC9619927 DOI: 10.1021/acs.jpclett.2c02576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 05/25/2023]
Abstract
Here we prove that, in addition to temperature and pressure, another important thermodynamic variable permits the exploration of the phase diagram of ammonia: the electric field. By means of (path integral) ab initio molecular dynamics simulations, we predict that, upon applying intense electric fields on ammonia, the electrofreezing phenomenon occurs, leading the liquid toward a novel ferroelectric solid phase. This study proves that electric fields can generally be exploited as the access key to otherwise-unreachable regions in phase diagrams, unveiling the existence of new condensed-phase structures. Furthermore, the reported findings have manifold practical implications, from the safe storage and transportation of ammonia to the understanding of the solid structures this compound forms in planetary contexts.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute
for Chemical-Physical Processes, National
Research Council of Italy, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Jiri Sponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czechia
- Regional
Center of Advanced Technologies and Materials, The Czech Advanced
Technology and Research Institute (CATRIN), Palacky University Olomouc, Slechtitelu 27, 77900 Olomouc, Czechia
| | - Judit E. Sponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czechia
| | - Franz Saija
- Institute
for Chemical-Physical Processes, National
Research Council of Italy, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
20
|
Palchowdhury S, Mukherjee K, Maroncelli M. Rapid Water Dynamics Structures the OH-Stretching Spectra of Solitary Water in Ionic Liquids and Dipolar Solvents. J Chem Phys 2022; 157:084502. [DOI: 10.1063/5.0107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a recent study [ J. Phys. Chem. B 126, 4584 (2022)] we used infrared spectroscopy to investigate the solvation and dynamics of solitary water in ionic liquids and dipolar solvents. Complex shapes observed for water OH-stretching bands common to all high-polarity solvents were assigned to water in several solvation states. In the present study, classical molecular dynamics simulations of a single water molecule in four ionic liquids and three dipolar solvents were used to test and refine this interpretation. Consistent with past assignments, simulations show solitary water usually donates two hydrogen bonds to distinct solvent molecules. Such symmetrically solvated water produces the primary pair of peaks identified in the OH spectra of water in nearly all solvents. We had further proposed that additional features flanking this main peak are due to asymmetric solvation states, states in which only one OH group makes a hydrogen bond to solvent. Such states were found in significant concentrations in all of the systems simulated. Simulations of the OH stretching spectra using a semiclassical description and the vibrational map developed by Auer and Skinner [ J. Chem. Phys. 128, 224511 (2008)] provided semi-quantitative agreement with experiment. Analysis of species-specific spectra also confirmed assignment of the additional features in the experimental spectra to asymmetrically solvated water. The simulations also showed that rapid water motions cause a marked motional narrowing compared to the inhomogeneous limit, and that this narrowing is largely responsible for making the additional features due to minority solvation states manifest in the spectra.
Collapse
Affiliation(s)
- Souarv Palchowdhury
- The Pennsylvania State University - University Park Campus, United States of America
| | - Kallol Mukherjee
- The Pennsylvania State University - University Park Campus, United States of America
| | - Mark Maroncelli
- Department of Chemsitry, The Pennsylvania State University - University Park Campus, United States of America
| |
Collapse
|
21
|
Cassone G, Sponer J, Saija F. Molecular dissociation and proton transfer in aqueous methane solution under an electric field. Phys Chem Chem Phys 2021; 23:25649-25657. [PMID: 34782902 DOI: 10.1039/d1cp04202e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methane-water mixtures are ubiquitous in our solar system and they have been the subject of a wide variety of experimental, theoretical, and computational studies aimed at understanding their behaviour under disparate thermodynamic scenarios, up to extreme planetary ice conditions of pressures and temperatures [Lee and Scandolo, Nat. Commun., 2011, 2, 185]. Although it is well known that electric fields, by interacting with condensed matter, can produce a range of catalytic effects which can be similar to those observed when material systems are pressurised, to the best of our knowledge, no quantum-based computational investigations of methane-water mixtures under an electric field have been reported so far. Here we present a study relying upon state-of-the-art ab initio molecular dynamics simulations where a liquid aqueous methane solution is exposed to strong oriented static and homogeneous electric fields. It turns out that a series of field-induced effects on the dipoles, polarisation, and the electronic structure of both methane and water molecules are recorded. Moreover, upon increasing the field strength, increasing fractions of water molecules are not only re-oriented towards the field direction, but are also dissociated by the field, leading to the release of oxonium and hydroxyde ions in the mixture. However, in contrast to what is observed upon pressurisation (∼50 GPa), where the presence of the water counterions triggers methane ionisation and other reactions, methane molecules preserve their integrity up to the strongest field explored (i.e., 0.50 V Å-1). Interestingly, neither the field-induced molecular dissociation of neat water (i.e., 0.30 V Å-1) nor the proton conductivity typical of pure aqueous samples at these field regimes (i.e., 1.3 S cm-1) are affected by the presence of hydrophobic interactions, at least in a methane-water mixture containing a molar fraction of 40% methane.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy.
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolska 135, 61265 Brno, Czech Republic
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy.
| |
Collapse
|
22
|
Shenderovich IG, Denisov GS. Modeling of the Response of Hydrogen Bond Properties on an External Electric Field: Geometry, NMR Chemical Shift, Spin-Spin Scalar Coupling. Molecules 2021; 26:molecules26164967. [PMID: 34443575 PMCID: PMC8399935 DOI: 10.3390/molecules26164967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
The response of the geometric and NMR properties of molecular systems to an external electric field has been studied theoretically in a wide field range. It has been shown that this adduct under field approach can be used to model the geometric and spectral changes experienced by molecular systems in polar media if the system in question has one and only one bond, the polarizability of which significantly exceeds the polarizability of other bonds. If this requirement is met, then it becomes possible to model even extreme cases, for example, proton dissociation in hydrogen halides. This requirement is fulfilled for many complexes with one hydrogen bond. For such complexes, this approach can be used to facilitate a detailed analysis of spectral changes associated with geometric changes in the hydrogen bond. For example, in hydrogen-bonded complexes of isocyanide C≡15N-1H⋯X, 1J(15N1H) depends exclusively on the N-H distance, while δ(15N) is also slightly influenced by the nature of X.
Collapse
Affiliation(s)
- Ilya G. Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia;
- Correspondence:
| | - Gleb S. Denisov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia;
| |
Collapse
|
23
|
Kurosawa R, Takeuchi M, Ryu J. Fourier-transform infrared and X-ray diffraction analyses of the hydration reaction of pure magnesium oxide and chemically modified magnesium oxide. RSC Adv 2021; 11:24292-24311. [PMID: 35479034 PMCID: PMC9039418 DOI: 10.1039/d1ra04290d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
The magnesium hydroxide/magnesium oxide (Mg(OH)2/MgO) system is a promising chemical heat storage system that utilizes unused heat at the temperature range of 200-500 °C. We have previously reported that the addition of lithium chloride (LiCl) and/or lithium hydroxide (LiOH) promotes the dehydration of Mg(OH)2. The results revealed that LiOH primarily catalyzed the dehydration of the surface of Mg(OH)2, while LiCl promoted the dehydration of bulk Mg(OH)2. However, the roles of Li compounds in the hydration of MgO have not been discussed in detail. X-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) techniques were used to analyze the effects of adding the Li compounds. The results revealed that the addition of LiOH promoted the diffusion of water into the MgO bulk phase and the addition of LiCl promoted the hydration of the MgO bulk phase. It was also observed that the concentration (number) of OH- affected hydration. The mechanism of hydration of pure and LiCl- (or LiOH)-added MgO has also been discussed.
Collapse
Affiliation(s)
- Ryo Kurosawa
- Graduate School of Engineering, Chiba University 1-33, Yayoi-cho, Inage-ku Chiba Japan
| | - Masato Takeuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University 1-1, Gaku-en-cho, Naka-ku Sakai Osaka 599-8531 Japan
| | - Junichi Ryu
- Graduate School of Engineering, Chiba University 1-33, Yayoi-cho, Inage-ku Chiba Japan
| |
Collapse
|
24
|
Electric Field and Temperature Effects on the Ab Initio Spectroscopy of Liquid Methanol. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although many H-bonded systems have been extensively investigated by means of infrared (IR) spectroscopy, the vibrational response to externally applied electric fields of polar liquids remains poorly investigated. However, local electric fields along with quantum-mechanical interactions rule the behavior of H-bonded samples at the molecular level. Among the many H-bonded systems, liquid methanol holds a key place in that it exhibits a very simple H-bond network where, on average, each molecule acts as a single H-bond donor and, at the same time, as a single H-bond acceptor. Here we report on the IR spectra emerging from a series of state-of-the-art ab initio molecular dynamics simulations of bulk liquid methanol under the action of static and homogeneous electric fields. In addition, the same analysis is here conducted in the absence of the external field and for different temperatures. Although some electric-field-induced effects resemble the response of other polar liquids (such as the global contraction of the IR spectrum upon field exposure), it turns out that, distinctly from water, the “electrofreezing” phenomenon is unlikely to happen in liquid methanol. Finally, we provide atomistic analyses magnifying the completely different nature of electric-field- and temperature-induced effects on bulk liquid methanol and on its vibrational response.
Collapse
|
25
|
Influence of external static and alternating electric fields on self-diffusion of water from molecular dynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Shenderovich IG. 1,3,5-Triaza-7-Phosphaadamantane (PTA) as a 31P NMR Probe for Organometallic Transition Metal Complexes in Solution. Molecules 2021; 26:molecules26051390. [PMID: 33806666 PMCID: PMC7961616 DOI: 10.3390/molecules26051390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the rigid structure of 1,3,5-triaza-7-phosphaadamantane (PTA), its 31P chemical shift solely depends on non-covalent interactions in which the molecule is involved. The maximum range of change caused by the most common of these, hydrogen bonding, is only 6 ppm, because the active site is one of the PTA nitrogen atoms. In contrast, when the PTA phosphorus atom is coordinated to a metal, the range of change exceeds 100 ppm. This feature can be used to support or reject specific structural models of organometallic transition metal complexes in solution by comparing the experimental and Density Functional Theory (DFT) calculated values of this 31P chemical shift. This approach has been tested on a variety of the metals of groups 8-12 and molecular structures. General recommendations for appropriate basis sets are reported.
Collapse
Affiliation(s)
- Ilya G Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
27
|
Modeling of Solute-Solvent Interactions Using an External Electric Field-From Tautomeric Equilibrium in Nonpolar Solvents to the Dissociation of Alkali Metal Halides. Molecules 2021; 26:molecules26051283. [PMID: 33652943 PMCID: PMC7956811 DOI: 10.3390/molecules26051283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
An implicit account of the solvent effect can be carried out using traditional static quantum chemistry calculations by applying an external electric field to the studied molecular system. This approach allows one to distinguish between the effects of the macroscopic reaction field of the solvent and specific solute-solvent interactions. In this study, we report on the dependence of the simulation results on the use of the polarizable continuum approximation and on the importance of the solvent effect in nonpolar solvents. The latter was demonstrated using experimental data on tautomeric equilibria between the pyridone and hydroxypyridine forms of 2,6-di-tert-butyl-4-hydroxy-pyridine in cyclohexane and chloroform.
Collapse
|
28
|
Mollica Nardo V, Cassone G, Ponterio RC, Saija F, Sponer J, Tommasini M, Trusso S. Electric-Field-Induced Effects on the Dipole Moment and Vibrational Modes of the Centrosymmetric Indigo Molecule. J Phys Chem A 2020; 124:10856-10869. [PMID: 33306380 DOI: 10.1021/acs.jpca.0c09791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intense static electric fields can strongly perturb chemical bonds and induce frequency shifts of the molecular vibrations in the so-called vibrational Stark effect. Based on a density functional theory (DFT) approach, here, we report a detailed investigation of the influence of oriented external electric fields (OEEFs) on the dipole moment and infrared (IR) spectrum of the nonpolar centrosymmetric indigo molecule. When an OEEF as intense as ∼0.1 V Å-1 is applied, several modifications in the IR spectrum are observed. Besides the notable frequency shift of some modes, we observe the onset of new bands-forbidden by the selection rules in the zero-field case. Such a neat field-induced modification of the vibrational selection rules, and the subsequent variations of the peaks' intensities in the IR spectrum, paves the way toward the design of smart tools employing centrosymmetric molecules as proxies for mapping local electric fields. In fact, here, we show that the ratio between the IR and the Raman intensities of selected modes is proportional to the square of the local field. This indicator can be used to quantitatively measure local fields, not only in condensed matter systems under standard conditions but also in field-emitting-tip apparatus.
Collapse
Affiliation(s)
- Viviana Mollica Nardo
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Giuseppe Cassone
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Rosina Celeste Ponterio
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Franz Saija
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ing. Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Sebastiano Trusso
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
29
|
Jiang E, Huo J, Luo Y, Li Z, Zhang X, Bao J, Yan X, He G, Zhang N. Influence of electric field on nanoconfined proton behaviours: A molecular dynamics simulation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Cassone G. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field. J Phys Chem Lett 2020; 11:8983-8988. [PMID: 33035059 DOI: 10.1021/acs.jpclett.0c02581] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proton transfer in liquid water controls acid-base chemistry, crucial enzyme reactions, and the functioning of fuel cells. Externally applied static electric fields in water are capable of dissociating molecules and transferring protons across the H-bond network. However, the impact of nuclear quantum effects (NQEs) on these fundamental field-induced phenomena has not yet been reported. By comparing state-of-the-art ab initio molecular dynamics (AIMD) and path integral AIMD simulations of water under electric fields, I show that quantum delocalization of the proton lowers the molecular ionization threshold to approximately one-third. Moreover, also the water behavior as a protonic semiconductor is considerably modified by the inclusion of NQEs. In fact, when the quantum nature of the nuclei is taken into account, the proton conductivity is ∼50% larger. This work proves that NQEs sizably affect the protolysis phenomenon and proton transfer in room-temperature liquid water.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
31
|
Gaweł BA, Ulvensøen A, Łukaszuk K, Arstad B, Muggerud AMF, Erbe A. Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz. RSC Adv 2020; 10:29018-29030. [PMID: 35520046 PMCID: PMC9055915 DOI: 10.1039/d0ra05798c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Abstract
Fused silica crucibles are commonly used in the fabrication process of solar grade silicon ingots. These crucibles are manufactured from high purity natural quartz sand and as a consequence, their properties are influenced by the presence of water and hydroxyls in the raw quartz. In this work, diffuse reflectance IR, 1H magic angle spinning NMR, and Raman spectroscopy were used to investigate the influence of thermal treatment on water and hydroxyl groups in high purity natural quartz sand. Most of the water in dry sand is present in the form of closed inclusions within the quartz grains which were detected in Raman imaging studies, even after thermally treating the samples at 600 °C. Only after heating to 900 °C did this water completely vanish, most likely as a result of rupturing of the inclusions. However, newly formed OH groups, identified as isolated and hydrogen bound OH were observed as products of the reaction between water and quartz. Similarly, liquid water was observed in NMR spectra even after treatment at 600 °C while at temperatures >900 °C, only non-interacting silanol groups were present. The comparison of the temperature dependence of the IR and NMR spectra also yields insight into the assignment of the OH stretching mode region of the IR spectrum in this system. The intensity of water related bands decreases while the intensity of OH bands first increases and then decreases with increasing temperature. The band intensity of Al-rich defects as well as the characteristic feature at 3200 cm−1 does not follow the temperature dependence of typical water peaks. It is also shown that leaching the quartz sand in HF solution helps to remove water from inclusions, likely by forming pathways for fluid flow inside the quartz grains. Milling of the samples caused formation of an additional type of hydroxyl group, possibly due to partial amorphisation of the surfaces of the quartz grains surface during the process. The results improve the basis for a knowledge-based processes development for the processing of high purity natural quartz. In dry quartz stable closed liquid micron-size inclusions and newly formed OH groups were observed after thermal treatment.![]()
Collapse
Affiliation(s)
- Bartłomiej A Gaweł
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology 7491 Trondheim Norway +47 73 594048
| | - Anna Ulvensøen
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology 7491 Trondheim Norway +47 73 594048
| | | | | | | | - Andreas Erbe
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology 7491 Trondheim Norway +47 73 594048
| |
Collapse
|
32
|
Abstract
The solvation properties of liquid water originate from the transient network of hydrogen-bonded molecules. In order to probe the coupling between the different modes of this network, nonlinear terahertz (THz) spectroscopy techniques are required. Ideally, these techniques should use a minimal volume and capitalize on sensitive field-resolved detection. Here we performed open aperture z-scan transmission experiments on static liquid cells, and detect the THz fields with electro-optical techniques. We show that it is possible to quantify the nonlinear response of liquid water at ~1 THz even when large signals originate from the sample holder windows.
Collapse
|
33
|
Ab Initio Molecular Dynamics Study of Methanol-Water Mixtures under External Electric Fields. Molecules 2020; 25:molecules25153371. [PMID: 32722281 PMCID: PMC7435743 DOI: 10.3390/molecules25153371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022] Open
Abstract
Intense electric fields applied on H-bonded systems are able to induce molecular dissociations, proton transfers, and complex chemical reactions. Nevertheless, the effects induced in heterogeneous molecular systems such as methanol-water mixtures are still elusive. Here we report on a series of state-of-the-art ab initio molecular dynamics simulations of liquid methanol-water mixtures at different molar ratios exposed to static electric fields. If, on the one hand, the presence of water increases the proton conductivity of methanol-water mixtures, on the other, it hinders the typical enhancement of the chemical reactivity induced by electric fields. In particular, a sudden increase of the protonic conductivity is recorded when the amount of water exceeds that of methanol in the mixtures, suggesting that important structural changes of the H-bond network occur. By contrast, the field-induced multifaceted chemistry leading to the synthesis of e.g., hydrogen, dimethyl ether, formaldehyde, and methane observed in neat methanol, in 75:25, and equimolar methanol-water mixtures, completely disappears in samples containing an excess of water and in pure water. The presence of water strongly inhibits the chemical reactivity of methanol.
Collapse
|
34
|
Dutta Dubey K, Stuyver T, Kalita S, Shaik S. Solvent Organization and Rate Regulation of a Menshutkin Reaction by Oriented External Electric Fields are Revealed by Combined MD and QM/MM Calculations. J Am Chem Soc 2020; 142:9955-9965. [PMID: 32369357 PMCID: PMC7304904 DOI: 10.1021/jacs.9b13029] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 01/01/2023]
Abstract
When and how do external electric fields (EEFs) lead to catalysis in the presence of a (polar or nonpolar) solvent? This is the question that is addressed here using a combination of molecular dynamics (MD) simulations, quantum mechanical/molecular mechanical calculations with EEF, and quantum mechanical/(local) electric field calculations. The paper focuses on a model reaction, the Menshutkin reaction between CH3I and pyridine in three solvents of varying polarity. Using MD simulations, we find that the EEF causes the solvent to undergo organization; the solvent molecules gradually align with the applied field as the field strength increases. The collective orientation of the solvent molecules modifies the electrostatic environment around the Menshutkin species and induces a global electric field pointing in the opposite direction of the applied EEF. The combination of these two entangled effects leads to partial or complete screening of the EEF, with the extent of screening being proportional to the polarity/polarizability of the solvent. Nevertheless, we find that catalysis of the Menshutkin reaction inevitably emerges once the EEF exceeds the opposing field of the organizing solvent, i.e., once polarization of the Menshutkin complex is observed to set in. Overall, our analysis provides a lucid and pictorial interpretation of the behavior of solutions in the presence of EEFs and indicates that EEF-mediated catalysis should, in principle, be feasible in bulk setups, especially for nonpolar and mildly polar solvents. By application of the charge-transfer paradigm, it is shown that the emergence of OEEF catalysis in solution can be generalized to other reactions as well.
Collapse
Affiliation(s)
- Kshatresh Dutta Dubey
- Department
of Chemistry & Center for Informatics, Shiv Nadar University, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Thijs Stuyver
- Institute
of Chemistry, Edmond J. Safra Campus at Givat Ram, The Hebrew University, Jerusalem 9190400, Israel
- Algemene
Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Surajit Kalita
- Department
of Chemistry & Center for Informatics, Shiv Nadar University, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute
of Chemistry, Edmond J. Safra Campus at Givat Ram, The Hebrew University, Jerusalem 9190400, Israel
| |
Collapse
|
35
|
Brehm M, Thomas M, Gehrke S, Kirchner B. TRAVIS—A free analyzer for trajectories from molecular simulation. J Chem Phys 2020; 152:164105. [DOI: 10.1063/5.0005078] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- M. Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - M. Thomas
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - S. Gehrke
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - B. Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
36
|
Novelli F, Guchhait B, Havenith M. Towards Intense THz Spectroscopy on Water: Characterization of Optical Rectification by GaP, OH1, and DSTMS at OPA Wavelengths. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1311. [PMID: 32183131 PMCID: PMC7143731 DOI: 10.3390/ma13061311] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/02/2022]
Abstract
Water is the most prominent solvent. The unique properties of water are rooted in the dynamical hydrogen-bonded network. While TeraHertz (THz) radiation can probe directly the collective molecular network, several open issues remain about the interpretation of these highly anharmonic, coupled bands. In order to address this problem, we need intense THz radiation able to drive the liquid into the nonlinear response regime. Firstly, in this study, we summarize the available brilliant THz sources and compare their emission properties. Secondly, we characterize the THz emission by Gallium Phosphide (GaP), 2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile (OH1), and 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS) crystals pumped by an amplified near-infrared (NIR) laser with tunable wavelength. We found that both OH1 as well as DSTMS could convert NIR laser radiation between 1200 and 2500 nm into THz radiation with high efficiency (> 2 × 10-4), resulting in THz peak fields exceeding 0.1 MV/cm for modest pump excitation (~ mJ/cm2). DSTMS emits the broadest spectrum, covering the entire bandwidth of our detector from ca. 0.5 to ~7 THz, also at a laser wavelength of 2100 nm. Future improvements will require handling the photothermal damage of these delicate organic crystals, and increasing the THz frequency.
Collapse
Affiliation(s)
- Fabio Novelli
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany;
| | - Biswajit Guchhait
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany;
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
37
|
Zhang Y, Stirnemann G, Hynes JT, Laage D. Water dynamics at electrified graphene interfaces: a jump model perspective. Phys Chem Chem Phys 2020; 22:10581-10591. [PMID: 32149294 DOI: 10.1039/d0cp00359j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reorientation dynamics of water at electrified graphene interfaces was recently shown [J. Phys. Chem. Lett., 2020, 11, 624-631] to exhibit a surprising and strongly asymmetric behavior: positive electrode potentials slow down interfacial water reorientation, while for increasingly negative potentials water dynamics first accelerates before reaching an extremum and then being retarded for larger potentials. Here we use classical molecular dynamics simulations to determine the molecular mechanisms governing water dynamics at electrified interfaces. We show that changes in water reorientation dynamics with electrode potential arise from the electrified interfaces' impacts on water hydrogen-bond jump exchanges, and can be quantitatively described by the extended jump model. Finally, our simulations indicate that no significant dynamical heterogeneity occurs within the water interfacial layer next to the weakly interacting graphene electrode.
Collapse
Affiliation(s)
- Yiwei Zhang
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | | | | | | |
Collapse
|
38
|
Dettori R, Donadio D. Carbon dioxide, bicarbonate and carbonate ions in aqueous solutions under deep Earth conditions. Phys Chem Chem Phys 2020; 22:10717-10725. [PMID: 32103223 DOI: 10.1039/c9cp06904f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We investigate the effect of pressure, temperature and acidity on the composition of water-rich carbon-bearing fluids under thermodynamic conditions that correspond to the Earth's deep crust and upper mantle. Our first-principles molecular dynamics simulations provide mechanistic insight into the hydration shell of carbon dioxide, bicarbonate and carbonate ions, and into the pathways of the acid/base reactions that convert these carbon species into one another in aqueous solutions. At temperatures of 1000 K and higher, our simulations can sample the chemical equilibrium of these acid/base reactions, thus allowing us to estimate the chemical composition of diluted carbon dioxide and (bi)carbonate ions as a function of acidity and thermodynamic conditions. We find that, especially at the highest temperature, the acidity of the solution is essential to determine the stability domain of CO2vs. HCO3-vs. CO32-.
Collapse
Affiliation(s)
- Riccardo Dettori
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, USA.
| | | |
Collapse
|
39
|
Sommers GM, Calegari Andrade MF, Zhang L, Wang H, Car R. Raman spectrum and polarizability of liquid water from deep neural networks. Phys Chem Chem Phys 2020; 22:10592-10602. [DOI: 10.1039/d0cp01893g] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Using deep neural networks to model the polarizability and potential energy surfaces, we compute the Raman spectrum of liquid water at several temperatures with ab initio molecular dynamics accuracy.
Collapse
Affiliation(s)
| | | | - Linfeng Zhang
- Program in Applied and Computational Mathematics
- Princeton University
- Princeton
- USA
| | - Han Wang
- Laboratory of Computational Physics
- Institute of Applied Physics and Computational Mathematics
- Beijing 100088
- P. R. China
| | - Roberto Car
- Department of Physics
- Princeton University
- Princeton
- USA
- Department of Chemistry
| |
Collapse
|
40
|
Creazzo F, Pezzotti S, Bougueroua S, Serva A, Sponer J, Saija F, Cassone G, Gaigeot MP. Enhanced conductivity of water at the electrified air–water interface: a DFT-MD characterization. Phys Chem Chem Phys 2020; 22:10438-10446. [DOI: 10.1039/c9cp06970d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT-based molecular dynamics simulations of the electrified air–liquid water interface are presented, where a homogeneous field is applied parallel to the surface plane (i.e. parallel to the 2D-HBonded-Network/2DN).
Collapse
Affiliation(s)
| | | | | | - Alessandra Serva
- Sorbonne Université
- CNRS
- Physico-chimie des électrolytes et nano-systèmes interfaciaux
- PHENIX
- Paris
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences
- 61265 Brno
- Czech Republic
| | | | - Giuseppe Cassone
- Institute of Biophysics of the Czech Academy of Sciences
- 61265 Brno
- Czech Republic
- CNR-IPCF
- 98158 Messina
| | | |
Collapse
|
41
|
Weigl P, Koestel D, Pabst F, Gabriel JP, Walther T, Blochowicz T. Local dielectric response in 1-propanol: α-relaxation versus relaxation of mesoscale structures. Phys Chem Chem Phys 2019; 21:24778-24786. [DOI: 10.1039/c9cp05035c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding how the local dielectric response is affected by the supramolecular Debye process in 1-propanol.
Collapse
Affiliation(s)
- Peter Weigl
- Institut für Festkörperphysik
- TU Darmstadt
- 64289 Darmstadt
- Germany
| | - Daniel Koestel
- Institut für angewandte Physik
- TU Darmstadt
- 64289 Darmstadt
- Germany
| | - Florian Pabst
- Institut für Festkörperphysik
- TU Darmstadt
- 64289 Darmstadt
- Germany
| | | | - Thomas Walther
- Institut für angewandte Physik
- TU Darmstadt
- 64289 Darmstadt
- Germany
| | | |
Collapse
|