1
|
Broderick K, Burnley RA, Gellman AJ, Kitchin JR. Surface Segregation Studies in Ternary Noble Metal Alloys: Comparing DFT and Machine Learning with Experimental Data. Chemphyschem 2024; 25:e202400073. [PMID: 38517936 DOI: 10.1002/cphc.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Surface segregation, whereby the surface composition of an alloy differs systematically from the bulk, has historically been hard to study, because it requires experimental and modeling methods that span alloy composition space. In this work, we study surface segregation in catalytically relevant noble and platinum-group metal alloys with a focus on three ternary systems: AgAuCu, AuCuPd, and CuPdPt. We develop a data set of 2478 fcc slabs with those compositions including all three low-index crystallographic orientations relaxed with Density Functional Theory using the PBEsol functional with D3 dispersion corrections. We fine-tune a machine learning model on this data and use the model in a series of 1800 Monte Carlo simulations spanning ternary composition space for each surface orientation and ternary chemical system. The results of these simulations are validated against prior experimental surface segregation data collected using composition spread alloy films for AgAuCu and AuCuPd. Our findings reveal that simulations conducted using the (110) orientation most closely match experimentally observed surface segregation trends, and while predicted trends qualitatively match observation, biases in the PBEsol functional limit numeric accuracy. This study advances understanding of surface segregation and the utility of computational studies and highlights the need for further improvements in simulation accuracy.
Collapse
Affiliation(s)
- Kirby Broderick
- Carnegie Mellon University Department of Chemical Engineering, 5000 Forbes Ave, Pittsburgh, Pennsylvania, 15213, United States
| | - Robert A Burnley
- Carnegie Mellon University Department of Chemical Engineering, 5000 Forbes Ave, Pittsburgh, Pennsylvania, 15213, United States
| | - Andrew J Gellman
- Carnegie Mellon University Department of Chemical Engineering, 5000 Forbes Ave, Pittsburgh, Pennsylvania, 15213, United States
| | - John R Kitchin
- Carnegie Mellon University Department of Chemical Engineering, 5000 Forbes Ave, Pittsburgh, Pennsylvania, 15213, United States
| |
Collapse
|
2
|
Li J, Wu G, Huang Z, Han X, Wu B, Liu P, Hu H, Yu G, Hong X. Vertically Stacked Amorphous Ir/Ru/Ir Oxide Nanosheets for Boosted Acidic Water Splitting. JACS AU 2024; 4:1243-1249. [PMID: 38559737 PMCID: PMC10976594 DOI: 10.1021/jacsau.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Integrating multiple functional components into vertically stacked heterostructures offers a prospective approach to manipulating the physicochemical properties of materials. The synthesis of vertically stacked heterogeneous noble metal oxides remains a challenge. Herein, we report a surface segregation approach to create vertically stacked amorphous Ir/Ru/Ir oxide nanosheets (NSs). Cross-sectional high-angle annular darkfield scanning transmission electron microscopy images demonstrate a three-layer heterostructure in the amorphous Ir/Ru/Ir oxide NSs, with IrOx layers located on the upper and lower surfaces, and a layer of RuOx sandwiched between the two IrOx layers. The vertically stacked heterostructure is a result of the diffusion of Ir atoms from the amorphous IrRuOx solid solution to the surface. The obtained A-Ir/Ru/Ir oxide NSs display an ultralow overpotential of 191 mV at 10 mA cm-2 toward acid oxygen evolution reaction and demonstrate excellent performance in a proton exchange membrane water electrolyzer, which requires only 1.63 V to achieve 1 A cm-2 at 60 °C, with virtually no activity decay observed after a 1300 h test.
Collapse
Affiliation(s)
- Junmin Li
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Geng Wu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zixiang Huang
- National
Synchrotron Radiation Laboratory, University
of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xiao Han
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bei Wu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peigen Liu
- National
Synchrotron Radiation Laboratory, University
of Science and Technology of China, Hefei, Anhui 230029, China
| | - Haohui Hu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ge Yu
- Center
of Advanced Nanocatalysis (CAN), Department of Applied Chemistry,
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xun Hong
- School
of Chemistry and Materials Science, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Ye P, Fang K, Wang H, Wang Y, Huang H, Mo C, Ning J, Hu Y. Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation. Nat Commun 2024; 15:1012. [PMID: 38307871 PMCID: PMC10837452 DOI: 10.1038/s41467-024-45320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Oxygen evolution reaction (OER) is critical to renewable energy conversion technologies, but the structure-activity relationships and underlying catalytic mechanisms in catalysts are not fully understood. We herein demonstrate a strategy to promote OER with simultaneously achieved lattice oxygen activation and enhanced local electric field by dual doping of cations and anions. Rough arrays of Fe and F co-doped CoO nanoneedles are constructed, and a low overpotential of 277 mV at 500 mA cm-2 is achieved. The dually doped Fe and F could cooperatively tailor the electronic properties of CoO, leading to improved metal-oxygen covalency and stimulated lattice oxygen activation. Particularly, Fe doping induces a synergetic effect of tip enhancement and proximity effect, which effectively concentrates OH- ions, optimizes reaction energy barrier and promotes O2 desorption. This work demonstrates a conceptual strategy to couple lattice oxygen and local electric field for effective electrocatalytic water oxidation.
Collapse
Affiliation(s)
- Pengcheng Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Keqing Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yahao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Hao Huang
- Department of Microsystems, University of South-Eastern Norway, Borre, 3184, Norway.
| | - Chenbin Mo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiqiang Ning
- Department of Optical Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Yong Hu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
4
|
Salem M, Loevlie DJ, Mpourmpakis G. Single Atom Alloys Segregation in the Presence of Ligands. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:22790-22798. [PMID: 38037638 PMCID: PMC10683009 DOI: 10.1021/acs.jpcc.3c05827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Single atom alloys (SAAs) have gained remarkable attention due to their tunable properties leading to enhanced catalytic performance, such as high activity and selectivity. The stability of SAAs is dictated by surface segregation, which can be affected by the presence of surface adsorbates. Research efforts have primarily focused on the effect of commonly found catalytic reaction intermediates, such as CO and H, on the stability of SAAs. However, there is a knowledge gap in understanding the effect of ligands from colloidal nanoparticle (NP) synthesis on surface segregation. Herein, we combine density functional theory (DFT) and machine learning to investigate the effect of thiol and amine ligands on the stability of colloidal SAAs. DFT calculations revealed rich segregation energy (Eseg) data of SAAs with d8 (Pt, Pd, Ni) and d9 (Ag, Au, Cu) metals exposing (111) and (100) surfaces, in the presence and absence of ligands. Using these data, we developed an accurate four-feature neural network using a multilayer perceptron regression (NN MLP) model. The model captures the underlying physics behind surface segregation in the presence of adsorbed ligands by incorporating features representing the thermodynamic stability of metals through the bulk cohesive energy, structural effects using the coordination number of the dopant and the ligands, the binding strength of the adsorbate to the metals, strain effects using the Wigner-Seitz radius, and electronic effects through electron affinities. We found that the presence of ligands makes the thermodynamics of segregation milder compared to the bare (nonligated) SAA surfaces. Importantly, the adsorption configuration (e.g., top vs bridge) and the binding strength of the ligand to the SAA surface (e.g., amines vs thiols) play an important role in altering the Eseg trends compared to the bare surface. We also developed an accurate NN MLP model that predicts Eseg in the presence of ligands to find thermodynamically stable SAAs, leading to the rapid and efficient screening of colloidal SAAs. Our model captures several experimental observations and elucidates complex physics governing segregation at nanoscale interfaces.
Collapse
Affiliation(s)
- Maya Salem
- Department of Chemical and Petroleum
Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Dennis J. Loevlie
- Department of Chemical and Petroleum
Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum
Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
5
|
Shin D, Choi G, Hong C, Han JW. Surface segregation machine-learned with inexpensive numerical fingerprint for the design of alloy catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Liu R, El Berch JN, House S, Meil SW, Mpourmpakis G, Porosoff MD. Reactive Separations of CO/CO 2 mixtures over Ru–Co Single Atom Alloys. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Renjie Liu
- Department of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| | - John N. El Berch
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Stephen House
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
- Environmental TEM Catalysis Consortium (ECC), University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico87123, United States
| | - Samuel W. Meil
- Department of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Marc D. Porosoff
- Department of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| |
Collapse
|
7
|
Biz C, Gracia J, Fianchini M. Review on Magnetism in Catalysis: From Theory to PEMFC Applications of 3d Metal Pt-Based Alloys. Int J Mol Sci 2022; 23:14768. [PMID: 36499096 PMCID: PMC9739051 DOI: 10.3390/ijms232314768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between magnetism and catalysis has been an important topic since the mid-20th century. At present time, the scientific community is well aware that a full comprehension of this relationship is required to face modern challenges, such as the need for clean energy technology. The successful use of (para-)magnetic materials has already been corroborated in catalytic processes, such as hydrogenation, Fenton reaction and ammonia synthesis. These catalysts typically contain transition metals from the first to the third row and are affected by the presence of an external magnetic field. Nowadays, it appears that the most promising approach to reach the goal of a more sustainable future is via ferromagnetic conducting catalysts containing open-shell metals (i.e., Fe, Co and Ni) with extra stabilization coming from the presence of an external magnetic field. However, understanding how intrinsic and extrinsic magnetic features are related to catalysis is still a complex task, especially when catalytic performances are improved by these magnetic phenomena. In the present review, we introduce the relationship between magnetism and catalysis and outline its importance in the production of clean energy, by describing the representative case of 3d metal Pt-based alloys, which are extensively investigated and exploited in PEM fuel cells.
Collapse
Affiliation(s)
- Chiara Biz
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - José Gracia
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| | - Mauro Fianchini
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| |
Collapse
|
8
|
Bunting RJ, Rice PS, Yao Z, Thompson J, Hu P. Understanding and tackling the activity and selectivity issues for methane to methanol using single atom alloys. Chem Commun (Camb) 2022; 58:9622-9625. [PMID: 35942706 DOI: 10.1039/d2cc03183c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The process for the direct oxidation of methane to methanol is investigated on single atom alloys using density functional theory. A catalyst search is performed across FCC metal single atom alloys. 7 single atom alloys are found as candidates and microkinetic modelling is performed. The activity and selectivity are remarkably improved over that of pure palladium metal, yet remain unideal.
Collapse
Affiliation(s)
- Rhys J Bunting
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| | - Peter S Rice
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| | - Zihao Yao
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| | - Jillian Thompson
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| | - P Hu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK.
| |
Collapse
|
9
|
Mhatre D, Bhatia D. Insights into the Adsorption, Alloy Formation, and Poisoning Effects of Hg on Monometallic and Bimetallic Adsorbents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6841-6859. [PMID: 35613429 DOI: 10.1021/acs.langmuir.2c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The removal of elemental mercury (Hg0) from coal-derived syngas at high temperatures is desired to improve the thermal efficiency of the coal-to-chemical processes. First-principles density functional theory (DFT) calculations for Hg0 adsorption are performed using different exchange correlation functionals (PBE, optPBE-vdW, and optB88-vdW). Gibbs free energy (ΔG) calculations are further performed to evaluate the feasibility of Hg0 adsorption on various exposed planes of metal nanoparticles and to obtain bimetallic compositions for Hg0 removal at various temperatures. Pd and Pt are shown to be suitable for Hg0 adsorption at high temperatures (473 K), whereas Rh and Ru are effective only until 373 K. The bimetallic adsorbents comprising Ag or Au along with Rh, Ru, Pd, or Pt are identified for Hg0 removal at high temperatures (473 K). The increase in Hg0 adsorption strength on various bimetallic surfaces is correlated to the upward shift in the d-band center. Further, calculations predict the tendency of Hg to segregate toward the surface of amalgams and disturb the perfect planar geometry of the Pd, Pt, Rh, Ru, Ir, Cu, Ag, and Au surfaces to form a noncrystalline Hg-rich amalgam surface. An analysis of the binding of various adsorbates (H, O, N, and S) shows that the adsorption becomes significantly weaker on various sites in close proximity to pre-adsorbed Hg. Moreover, for specific combinations of the adsorbate, surface composition, and the site location, the adsorption does not take place on the proximal sites. These results are complemented by the partial density of states calculations, which show changes in the electronic properties of the amalgam surface, thus explaining the poisoning effect of Hg on metallic catalysts.
Collapse
Affiliation(s)
- Dwijraj Mhatre
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Divesh Bhatia
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Ma K, Zheng D, Yang W, Wu C, Dong S, Gao Z, Zhao X. A computational study on the adsorption of arsenic pollutants on graphene-based single-atom iron adsorbents. Phys Chem Chem Phys 2022; 24:13156-13170. [PMID: 35593151 DOI: 10.1039/d1cp02170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrated gasification combined cycle (IGCC) is a promising clean technology for coal power generation; however, the high volatility and toxicity of arsenic pollutants (As2, As4, AsO and AsH3) released from an IGCC coal plant cause serious damage to human health and the ecological environment. Therefore, highly efficient adsorbents for simultaneous treatment of multiple arsenic pollutants are urgently needed. In this work, the adsorption characteristics and competitive adsorption behaviors of As2, As4, AsO, and AsH3 on four kinds of graphene-based single-atom iron adsorbents (Fe/GA) were systematically investigated through density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The results suggest that single-vacancy Fe/GA doped with three nitrogen atoms has the largest adsorption ability for As2, As4, AsO and AsH3. The adsorption energies of As2, AsO and As4 on Fe/GA depend on both charge transfer and orbital hybridization, while the adsorption energy of AsH3 is mainly decided by electronic transfer. The adsorption differences of As2, As4, AsO and AsH3 on four Fe/GA adsorbents can be explained through the obvious linear relationship between the adsorption energy and Fermi softness. As2, As4, AsO and AsH3 will compete for adsorption sites when they exist on the same adsorbent surface simultaneously, and the adsorption capacities of AsO and As2 are relatively stronger. After the competitive adsorption between AsO and As2, AsO occupies the adsorption site at 300-900 K. This theoretical work suggests that Fe/GA is a promising adsorbent for the simultaneous removal of multiple arsenic pollutants with high adsorption capacity and low cost.
Collapse
Affiliation(s)
- Kai Ma
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
| | - Di Zheng
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
| | - Weijie Yang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
| | - Chongchong Wu
- CNOOC Research Institute of Refining and Petrochemicals, Beijing, 102200, P. R. China.
| | - Shuai Dong
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhengyang Gao
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
| | - Xiaojun Zhao
- Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
11
|
Prabhu AM, Choksi TS. Data-driven methods to predict the stability metrics of catalytic nanoparticles. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Umar M, Nnadiekwe CC, Haroon M, Abdulazeez I, Alhooshani K, Al-Saadi AA, Peng Q. A First-Principles Study on the Multilayer Graphene Nanosheets Anode Performance for Boron-Ion Battery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1280. [PMID: 35457988 PMCID: PMC9030437 DOI: 10.3390/nano12081280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
Advanced battery materials are urgently desirable to meet the rapidly growing demand for portable electronics and power. The development of a high-energy-density anode is essential for the practical application of B3+ batteries as an alternative to Li-ion batteries. Herein, we have investigated the performance of B3+ on monolayer (MG), bilayer (BG), trilayer (TG), and tetralayer (TTG) graphene sheets using first-principles calculations. The findings reveal significant stabilization of the HOMO and the LUMO frontier orbitals of the graphene sheets upon adsorption of B3+ by shifting the energies from -5.085 and -2.242 eV in MG to -20.08 and -19.84 eV in 2B3+@TTG. Similarly, increasing the layers to tetralayer graphitic carbon B3+@TTG_asym and B3+@TTG_sym produced the most favorable and deeper van der Waals interactions. The cell voltages obtained were considerably enhanced, and B3+/B@TTG showed the highest cell voltage of 16.5 V. Our results suggest a novel avenue to engineer graphene anode performance by increasing the number of graphene layers.
Collapse
Affiliation(s)
- Mustapha Umar
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Chidera C Nnadiekwe
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Haroon
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ismail Abdulazeez
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Khalid Alhooshani
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abdulaziz A Al-Saadi
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Qing Peng
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- KACARE Energy Research and Innovation Center at Dhahran, Dhahran 31261, Saudi Arabia
| |
Collapse
|
13
|
Salem M, Cowan MJ, Mpourmpakis G. Predicting Segregation Energy in Single Atom Alloys Using Physics and Machine Learning. ACS OMEGA 2022; 7:4471-4481. [PMID: 35155939 PMCID: PMC8830057 DOI: 10.1021/acsomega.1c06337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Single atom alloys (SAAs) show great promise as catalysts for a wide variety of reactions due to their tunable properties, which can enhance the catalytic activity and selectivity. To design SAAs, it is imperative for the heterometal dopant to be stable on the surface as an active catalytic site. One main approach to probe SAA stability is to calculate surface segregation energy. Density functional theory (DFT) can be applied to investigate the surface segregation energy in SAAs. However, DFT is computationally expensive and time-consuming; hence, there is a need for accelerated frameworks to screen metal segregation for new SAA catalysts across combinations of metal hosts and dopants. To this end, we developed a model that predicts surface segregation energy using machine learning for a series of SAA periodic slabs. The model leverages elemental descriptors and features inspired by the previously developed bond-centric model. The initial model accurately captures surface segregation energy across a diverse series of FCC-based SAAs with various surface facets and metal-host pairs. Following our machine learning methodology, we expanded our analysis to develop a new model for SAAs formed from FCC hosts with FCC, BCC, and HCP dopants. Our final, five-feature model utilizes second-order polynomial kernel ridge regression. The model is able to predict segregation energies with a high degree of accuracy, which is due to its physically motivated features. We then expanded our data set to test the accuracy of the five features used. We find that the retrained model can accurately capture E seg trends across different metal hosts and facets, confirming the significance of the features used in our final model. Finally, we apply our pretrained model to a series of Ir- and Pd-based SAA cuboctahedron nanoparticles (NPs), ranging in size and FCC dopants. Remarkably, our model (trained on periodic slabs) accurately predicts the DFT segregation energies of the SAA NPs. The results provide further evidence supporting the use of our model as a general tool for the rapid prediction of SAA segregation energies. By creating a framework to predict the metal segregation from bulk surfaces to NPs, we can accelerate the SAA catalyst design while simultaneously unraveling key physicochemical properties driving thermodynamic stabilization of SAAs.
Collapse
Affiliation(s)
- Maya Salem
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Michael J. Cowan
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
14
|
Nanba Y, Koyama M. Thermodynamic Stabilities of PdRuM (M = Cu, Rh, Ir, Au) Alloy Nanoparticles Assessed by Wang–Landau Sampling Combined with DFT Calculations and Multiple Regression Analysis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yusuke Nanba
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Michihisa Koyama
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Open Innovation Institute, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
An Q, McDonald M, Fortunelli A, Goddard WA. Controlling the Shapes of Nanoparticles by Dopant-Induced Enhancement of Chemisorption and Catalytic Activity: Application to Fe-Based Ammonia Synthesis. ACS NANO 2021; 15:1675-1684. [PMID: 33355457 DOI: 10.1021/acsnano.0c09346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We showed recently that the catalytic efficiency of ammonia synthesis on Fe-based nanoparticles (NP) for Haber-Bosch (HB) reduction of N2 to ammonia depends very dramatically on the crystal surface exposed and on the doping. In turn, the stability of each surface depends on the stable intermediates present during the catalysis. Thus, under reaction conditions, the shape of the NP is expected to evolve to optimize surface energies. In this paper, we propose to manipulate the shape of the nanoparticles through doping combined with chemisorption and catalysis. To do this, we consider the relationships between the catalyst composition (adding dopant elements) and on how the distribution of the dopant atoms on the bulk and facet sites affects the shape of the particles and therefore the number of active sites on the catalyst surfaces. We use our hierarchical, high-throughput catalyst screening (HHTCS) approach but extend the scope of HHTCS to select dopants that can increase the catalytically active surface orientations, such as Fe-bcc(111), at the expense of catalytically inactive facets, such as Fe-bcc(100). Then, for the most promising dopants, we predict the resulting shape and activity of doped Fe-based nanoparticles under reaction conditions. We examined 34 possible dopants across the periodic table and found 16 dopants that can potentially increase the fraction of active Fe-bcc(111) vs inactive Fe-bcc(100) facets. Combining this reshaping criterion with our HHTCS estimate of the resulting catalytic performance, we show that Si and Ni are the most promising elements for improving the rates of catalysis by optimizing the shape to decrease reaction barriers. Then, using Si dopant as a working example, we build a steady-state dynamical Wulff construction of Si-doped Fe bcc nanoparticles. We use nanoparticles with a diameter of ∼10 nm, typical of industrial catalysts. We predict that doping Si into such Fe nanoparticles at the optimal atomic content of ∼0.3% leads to rate enhancements by a factor of 56 per nanoparticle under target HB conditions.
Collapse
Affiliation(s)
- Qi An
- Department of Chemical and Materials Engineering, University of Nevada-Reno, Reno, Nevada 89577, United States
| | - Molly McDonald
- Department of Chemical and Materials Engineering, University of Nevada-Reno, Reno, Nevada 89577, United States
| | - Alessandro Fortunelli
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
- CNR-ICCOM, Consiglio Nazionale delle Ricerche, ThC2-Lab, Pisa 56124, Italy
| | - William A Goddard
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
16
|
Zhang X, Li H, Xia Z, Yu S, Wang S, Sun G. Effect of an external electric field, aqueous solution and specific adsorption on segregation of Pt ML/M ML/Pt(111) (M = Cu, Pd, Au): a DFT study. Phys Chem Chem Phys 2021; 23:1584-1589. [PMID: 33409529 DOI: 10.1039/d0cp04223d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen reduction reaction (ORR) that occurs on the outermost layer of electrocatalysts is significantly affected by the composition and structure of the electrocatalysts. During the preparation of PtM alloy electrocatalysts, high-temperature annealing in an inert or reducing atmosphere could promote the segregation of M toward the core, forming a highly active Pt-skin structure. However, under fuel cell operating conditions, the adsorption of oxygen-containing groups could stimulate the easily dissolved M to segregate to the surface, reducing the activity and stability of the electrocatalysts. In this work, we conducted segregation energy calculation of PtM (M = Cu, Pd, Au) electrocatalysts under specific adsorption (SA), aqueous solution (AS) and an external electric field (EEF) with a density functional theory method. It was found that different factors have different effects on the segregation energy: ΔΔESA ≫ ΔΔEEEF > ΔΔEAS. The coupling effects have also been considered and compared: ΔΔESA+EEF > ΔΔESA+AS > ΔΔEEEF+AS. When including all three factors, the change of segregation energy could reach 1.63 eV. Therefore, operating conditions have a noteworthy influence on the segregation behavior of PtM ORR electrocatalysts, which should be considered in the further design of PtM ORR electrocatalysts.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and Key Laboratory of Fuel Cell & Hybrid Power Sources, Chinese Academy of Sciences, Dalian 116023, China
| | - Huanqiao Li
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and Key Laboratory of Fuel Cell & Hybrid Power Sources, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhangxun Xia
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and Key Laboratory of Fuel Cell & Hybrid Power Sources, Chinese Academy of Sciences, Dalian 116023, China
| | - Shansheng Yu
- Department of Materials Science, Jilin University, Changchun 130012, China
| | - Suli Wang
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and Key Laboratory of Fuel Cell & Hybrid Power Sources, Chinese Academy of Sciences, Dalian 116023, China
| | - Gongquan Sun
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and Key Laboratory of Fuel Cell & Hybrid Power Sources, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
17
|
Biz C, Fianchini M, Polo V, Gracia J. Magnetism and Heterogeneous Catalysis: In Depth on the Quantum Spin-Exchange Interactions in Pt 3M (M = V, Cr, Mn, Fe, Co, Ni, and Y)(111) Alloys. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50484-50494. [PMID: 33124822 DOI: 10.1021/acsami.0c15353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bimetallic Pt-based alloys have drawn considerable attention in the last decades as catalysts in proton-exchange membrane fuel cells (PEMFCs) because they closely fulfill the two major requirements of high performance and good stability under operating conditions. Pt3Fe, Pt3Co, and Pt3Ni stand out as major candidates, given their good activity toward the challenging oxygen reduction reaction (ORR). The common feature across catalysts based on 3d-transition metals and their alloys is magnetism. Ferromagnetic spin-electron interactions, quantum spin-exchange interactions (QSEIs), are one of the most important energetic contributions in allowing milder chemisorption of reactants onto magnetic catalysts, in addition to spin-selective electron transport. The understanding of the role played by QSEIs in the properties of magnetic 3d-metal-based alloys is important to design and develop novel and effective electrocatalysts based on abundant and cheap metals. We present a detailed theoretical study (via density functional theory) on the most experimentally explored bimetallic alloys Pt3M (M = V, Cr, Mn, Fe, Co, Ni, and Y)(111). The investigation starts with a thorough structural study on the composition of the layers, followed by a comprehensive physicochemical description of their resistance toward segregation and their chemisorption capabilities toward hydrogen and oxygen atoms. Our study demonstrates that Pt3Fe(111), Pt3Co(111), and Pt3Ni(111) possess the same preferential multilayered structural organization, known for exhibiting specific magnetic properties. The specific role of QSEIs in their catalytic behavior is justified via comparison between spin-polarized and non-spin-polarized calculations.
Collapse
Affiliation(s)
- Chiara Biz
- Universitat Jaume I, Av. Vicente Sos Baynat s/n, E-12071 Castellón de la Plana, Spain
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Technology, Avgda Països Catalans 16, 43007 Tarragona, Spain
| | - Victor Polo
- Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jose Gracia
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| |
Collapse
|
18
|
Dean J, Cowan MJ, Estes J, Ramadan M, Mpourmpakis G. Rapid Prediction of Bimetallic Mixing Behavior at the Nanoscale. ACS NANO 2020; 14:8171-8180. [PMID: 32515581 DOI: 10.1021/acsnano.0c01586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The nanoparticle (NP) design space allows for variations in size, shape, composition, and chemical ordering. In the search for low-energy structures, this results in an extremely large search space which cannot be screened by brute force methods. In this work, we develop a genetic algorithm to predict stable bimetallic NPs of any size, shape, and metal composition. Our method predicts nanostructures in agreement with experimental trends and it captures the detailed chemical ordering of an experimental 23,196-atom FePt NP with nearly atom-by-atom accuracy. Our developed screening process is extremely fast, allowing us to generate and analyze a database of 5454 low-energy bimetallic NPs. By identifying thermodynamically stable NPs, we rationalize bimetallic mixing at the nanoscale and reveal metal-, size-, and temperature-dependent mixing behavior. Importantly, our method is applicable to any bimetallic NP size, bridging the materials gap in nanoscale simulations, and guides experimentation in the lab by elucidating stability, mixing, and detailed chemical ordering behavior of bimetallic NPs.
Collapse
Affiliation(s)
- James Dean
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Michael J Cowan
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jonathan Estes
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mahmoud Ramadan
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
19
|
Machine Learning Prediction of Surface Segregation Energies on Low Index Bimetallic Surfaces. ENERGIES 2020. [DOI: 10.3390/en13092182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Surface chemical composition of bimetallic catalysts can differ from the bulk composition because of the segregation of the alloy components. Thus, it is very useful to know how the different components are arranged on the surface of catalysts to gain a fundamental understanding of the catalysis occurring on bimetallic surfaces. First-principles density functional theory (DFT) calculations can provide deeper insight into the surface segregation behavior and help understand the surface composition on bimetallic surfaces. However, the DFT calculations are computationally demanding and require large computing platforms. In this regard, statistical/machine learning methods provide a quick and alternative approach to study materials properties. Here, we trained previously reported surface segregation energies on low index surfaces of bimetallic catalysts using various linear and non-linear statistical methods to find a correlation between surface segregation energies and elemental properties. The results revealed that the surface segregation energies on low index bimetallic surfaces can be predicted using fundamental elemental properties.
Collapse
|
20
|
Choksi TS, Streibel V, Abild-Pedersen F. Predicting metal-metal interactions. II. Accelerating generalized schemes through physical insights. J Chem Phys 2020; 152:094702. [PMID: 33480718 DOI: 10.1063/1.5141378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Operando-computational frameworks that integrate descriptors for catalyst stability within catalyst screening paradigms enable predictions of rates and selectivity on chemically faithful representations of nanoparticles under reaction conditions. These catalyst stability descriptors can be efficiently predicted by density functional theory (DFT)-based models. The alloy stability model, for example, predicts the stability of metal atoms in nanoparticles with site-by-site resolution. Herein, we use physical insights to present accelerated approaches of parameterizing this recently introduced alloy-stability model. These accelerated approaches meld quadratic functions for the energy of metal atoms in terms of the coordination number with linear correlations between model parameters and the cohesive energies of bulk metals. By interpolating across both the coordination number and chemical space, these accelerated approaches shrink the training set size for 12 fcc p- and d-block metals from 204 to as few as 24 DFT calculated total energies without sacrificing the accuracy of our model. We validate the accelerated approaches by predicting adsorption energies of metal atoms on extended surfaces and 147 atom cuboctahedral nanoparticles with mean absolute errors of 0.10 eV and 0.24 eV, respectively. This efficiency boost will enable a rapid and exhaustive exploration of the vast material space of transition metal alloys for catalytic applications.
Collapse
Affiliation(s)
- Tej S Choksi
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Verena Streibel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
21
|
Abdelgaid M, Dean J, Mpourmpakis G. Improving alkane dehydrogenation activity on γ-Al2O3 through Ga doping. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01474e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doping the surface of γ-Al2O3 with gallium enhances the alkane dehydrogenation catalytic activity.
Collapse
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| | - James Dean
- Department of Chemical Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| | | |
Collapse
|
22
|
Uskoković V. X-ray photoelectron and ion scattering spectroscopic surface analyses of amorphous and crystalline calcium phosphate nanoparticles with different chemical histories. Phys Chem Chem Phys 2020; 22:5531-5547. [PMID: 32123882 DOI: 10.1039/c9cp06529f] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The surface of hydroxyapatite nanoparticles is enriched in the topmost atomic layer with calcium and depleted of it elsewhere, alongside being dependent on the history of formation of hydroxyapatite from the amorphous precursor.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical and Aerospace Engineering
- University of California Irvine
- Irvine
- USA
| |
Collapse
|