1
|
Kornas A, Mlekodaj K, Tabor E. Nature and Redox Properties of Iron Sites in Zeolites Revealed by Mössbauer Spectroscopy. Chempluschem 2024; 89:e202300543. [PMID: 38063835 DOI: 10.1002/cplu.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Indexed: 05/16/2024]
Abstract
Iron-containing zeolite-based catalysts play a pivotal role in environmental processes aimed at mitigating the release of harmful greenhouse gases, such as nitrous oxide (N2O) and methane (CH4). Despite the rich iron chemistry in zeolites, only a fraction of iron species that exhibit an open coordination sphere and possess the ability for electron transfer are responsible for activating reagents. In addition, the splitting of molecular oxygen is facilitated by bare iron cations embedded in zeolitic matrices. Mössbauer spectroscopy is the ideal tool for investigating the valency and geometry of iron species in zeolites because it leaves no iron forms silent and provides insights into in-situ processes. This review is dedicated to the utilization of Mössbauer spectroscopy to elucidate the nature of the extra-framework iron centers in ferrierite (FER), beta-structured (*BEA), and ZSM-5 zeolite (MFI) zeolites, which are active in N2O decomposition and CH4 oxidation through using the active oxygen derived from N2O and O2. In this work, a structured summary of the Mössbauer parameters established over the last two decades is presented, characterizing the specific iron active centers and intermediates formed upon iron's interaction with N2O/O2 and CH4. Additionally, the impact of preparation methods, iron loading, and the long-term stability on iron speciation and its redox behavior under reaction conditions is discussed.
Collapse
Affiliation(s)
- Agnieszka Kornas
- Structure and Dynamics in Catalysis, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Kinga Mlekodaj
- Structure and Dynamics in Catalysis, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Edyta Tabor
- Structure and Dynamics in Catalysis, J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| |
Collapse
|
2
|
Wang Q, Sang K, Liu C, Zhang Z, Chen W, Ji T, Li L, Lian C, Qian G, Zhang J, Zhou X, Yuan W, Duan X. Nanoparticles as an antidote for poisoned gold single-atom catalysts in sustainable propylene epoxidation. Nat Commun 2024; 15:3249. [PMID: 38627484 PMCID: PMC11021464 DOI: 10.1038/s41467-024-47538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
The development of sustainable and anti-poisoning single-atom catalysts (SACs) is essential for advancing their research from laboratory to industry. Here, we present a proof-of-concept study on the poisoning of Au SACs, and the antidote of Au nanoparticles (NPs), with trace addition shown to reinforce and sustain propylene epoxidation. Multiple characterizations, kinetics investigations, and multiscale simulations reveal that Au SACs display remarkable epoxidation activity at a low propylene coverage, but become poisoned at higher coverages. Interestingly, Au NPs can synergistically cooperate with Au SACs by providing distinct active sites required for H2/O2 and C3H6 activations, as well as hydroperoxyl radical to restore poisoned SACs. The difference in reaction order between C3H6 and H2 (nC3H6-nH2) is identified as the descriptor for establishing the volcano curves, which can be fine-tuned by the intimacy and composition of SACs and NPs to achieve a rate-matching scenario for the formation, transfer, and consumption of hydroperoxyl. Consequently, only trace addition of Au NPs antidote (0.3% ratio of SACs) stimulates significant improvements in propylene oxide formation rate, selectivity, and H2 efficiency compared to SACs alone, offering a 56-fold, 3-fold, and 22-fold increase, respectively, whose performances can be maintained for 150 h.
Collapse
Affiliation(s)
- Qianhong Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Keng Sang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Changwei Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhihua Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Te Ji
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
3
|
Gomes GJ, Zalazar MF, Padilha JC, Costa MB, Bazzi CL, Arroyo PA. Unveiling the mechanisms of carboxylic acid esterification on acid zeolites for biomass-to-energy: A review of the catalytic process through experimental and computational studies. CHEMOSPHERE 2024; 349:140879. [PMID: 38061565 DOI: 10.1016/j.chemosphere.2023.140879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
In recent years, there has been significant interest from industrial and academic areas in the esterification of carboxylic acids catalyzed by acidic zeolites, as it represents a sustainable and economically viable approach to producing a wide range of high-value-added products. However, there is a lack of comprehensive reviews that address the intricate reaction mechanisms occurring at the catalyst interface at both the experimental and atomistic levels. Therefore, in this review, we provide an overview of the esterification reaction on acidic zeolites based on experimental and theoretical studies. The combination of infrared spectroscopy with atomistic calculations and experimental strategies using modulation excitation spectroscopy techniques combined with phase-sensitive detection is presented as an approach to detecting short-lived intermediates at the interface of zeolitic frameworks under realistic reaction conditions. To achieve this goal, this review has been divided into four sections: The first is a brief introduction highlighting the distinctive features of this review. The second addresses questions about the topology and activity of different zeolitic systems, since these properties are closely correlated in the esterification process. The third section deals with the mechanisms proposed in the literature. The fourth section presents advances in IR techniques and theoretical calculations that can be applied to gain new insights into reaction mechanisms. Finally, this review concludes with a subtle approach, highlighting the main aspects and perspectives of combining experimental and theoretical techniques to elucidate different reaction mechanisms in zeolitic systems.
Collapse
Affiliation(s)
- Glaucio José Gomes
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada Del Nordeste Argentino, (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Del Nordeste (CONICET-UNNE), Avenida Libertad 5460, 3400, Corrientes, Argentina; Laboratório de Catálise Heterogênea e Biodiesel (LCHBio), Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, (87020-900), Maringá, Paraná, Brazil; Programa de Pós-Graduação Interdisciplinar Em Energia e Sustentabilidade, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Presidente Tancredo Neves, 3838, (85870-650), Foz Do Iguaçu, Paraná, Brazil.
| | - María Fernanda Zalazar
- Laboratorio de Estructura Molecular y Propiedades (LEMyP), Instituto de Química Básica y Aplicada Del Nordeste Argentino, (IQUIBA-NEA), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional Del Nordeste (CONICET-UNNE), Avenida Libertad 5460, 3400, Corrientes, Argentina.
| | - Janine Carvalho Padilha
- Programa de Pós-Graduação Interdisciplinar Em Energia e Sustentabilidade, Universidade Federal da Integração Latino-Americana (UNILA), Avenida Presidente Tancredo Neves, 3838, (85870-650), Foz Do Iguaçu, Paraná, Brazil
| | - Michelle Budke Costa
- Universidade Tecnológica Federal Do Paraná (UTFPR), Avenida Brasil 4232, (85884-000), Medianeira, Brazil
| | - Claudio Leones Bazzi
- Universidade Tecnológica Federal Do Paraná (UTFPR), Avenida Brasil 4232, (85884-000), Medianeira, Brazil
| | - Pedro Augusto Arroyo
- Laboratório de Catálise Heterogênea e Biodiesel (LCHBio), Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, (87020-900), Maringá, Paraná, Brazil
| |
Collapse
|
4
|
Pham TN, Nguyen V, Nguyen-Phu H, Wang B, Crossley S. Influence of Brønsted Acid Site Proximity on Alkane Cracking in MFI Zeolites. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tram N. Pham
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Vy Nguyen
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Huy Nguyen-Phu
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Steven Crossley
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| |
Collapse
|
5
|
Bickel EE, Lee S, Gounder R. Influence of Brønsted Acid-Site Density on Reaction-Diffusion Phenomena that Govern Propene Oligomerization Rate and Selectivity in MFI Zeolites. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Elizabeth E. Bickel
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Songhyun Lee
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| |
Collapse
|
6
|
Bickel E, Gounder R. Hydrocarbon Products Occluded within Zeolite Micropores Impose Transport Barriers that Regulate Brønsted Acid-Catalyzed Propene Oligomerization. JACS AU 2022; 2:2585-2595. [PMID: 36465546 PMCID: PMC9709944 DOI: 10.1021/jacsau.2c00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
Brønsted acid zeolites catalyze alkene oligomerization to heavier hydrocarbon products of varied size and branching. Propene dimerization rates decrease monotonically with increasing crystallite size for MFI zeolites synthesized with fixed H+-site density, revealing the strong influence of intrazeolite transport limitations on measured rates, which has gone unrecognized in previous studies. Transient changes in dimerization rates upon step-changes in reactant pressure (150-470 kPa C3H6) or temperature (483-523 K) reveal that intrazeolite diffusion limitations become more severe under reaction conditions that favor the formation of heavier products. Together with effectiveness factor formalisms, these data reveal that product and reactant diffusion, and consequently oligomerization rates and selectivity, are governed by the composition of hydrocarbon products that accumulate within zeolitic micropores during alkene oligomerization. This occluded organic phase strongly influences rates and selectivities of alkene oligomerization on medium-pore zeolites (MFI, MEL, TON). Recognizing the coupled influences of kinetic factors and intrazeolite transport limitations imposed by occluded reaction products provides opportunities to competently tailor rates and selectivity in alkene oligomerization and other molecular chain-growth reactions through judicious selection of zeolite topology and reaction conditions.
Collapse
|
7
|
Liu C, Uslamin EA, van Vreeswijk SH, Yarulina I, Ganapathy S, Weckhuysen BM, Kapteijn F, Pidko EA. An integrated approach to the key parameters in methanol-to-olefins reaction catalyzed by MFI/MEL zeolite materials. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Chen W, Yi X, Liu Z, Tang X, Zheng A. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chem Soc Rev 2022; 51:4337-4385. [PMID: 35536126 DOI: 10.1039/d1cs00966d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
The Route from Green H2 Production through Bioethanol Reforming to CO2 Catalytic Conversion: A Review. ENERGIES 2022. [DOI: 10.3390/en15072383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Currently, a progressively different approach to the generation of power and the production of fuels for the automotive sector as well as for domestic applications is being taken. As a result, research on the feasibility of applying renewable energy sources to the present energy scenario has been progressively growing, aiming to reduce greenhouse gas emissions. Following more than one approach, the integration of renewables mainly involves the utilization of biomass-derived raw material and the combination of power generated via clean sources with conventional power generation systems. The aim of this review article is to provide a satisfactory overview of the most recent progress in the catalysis of hydrogen production through sustainable reforming and CO2 utilization. In particular, attention is focused on the route that, starting from bioethanol reforming for H2 production, leads to the use of the produced CO2 for different purposes and by means of different catalytic processes, passing through the water–gas shift stage. The newest approaches reported in the literature are reviewed, showing that it is possible to successfully produce “green” and sustainable hydrogen, which can represent a power storage technology, and its utilization is a strategy for the integration of renewables into the power generation scenario. Moreover, this hydrogen may be used for CO2 catalytic conversion to hydrocarbons, thus giving CO2 added value.
Collapse
|
10
|
Rodaum C, Thivasasith A, Iadrat P, Kidkhunthod P, Pengpanich S, Wattanakit C. Ge‐Substituted Hierarchical Ferrierite for
n
‐Pentane Cracking to Light Olefins: Mechanistic Investigations via
In‐situ
DRIFTS Studies and DFT Calculations. ChemCatChem 2021. [DOI: 10.1002/cctc.202101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chadatip Rodaum
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Anawat Thivasasith
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Ploychanok Iadrat
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima 30000 Thailand
| | | | - Chularat Wattanakit
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| |
Collapse
|
11
|
Synergistic effect of micro-meso-macroporous system and structural Al amount of ZSM-5 for intensification of light olefins production in n-hexane cracking. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Liu C, Zhang L, Tan L, Liu Y, Tian W, Ma L. Immobilized Crosslinked Pectinase Preparation on Porous ZSM-5 Zeolites as Reusable Biocatalysts for Ultra-Efficient Hydrolysis of β-Glycosidic Bonds. Front Chem 2021; 9:677868. [PMID: 34458232 PMCID: PMC8385667 DOI: 10.3389/fchem.2021.677868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we immobilized pectinase preparation on porous zeolite ZSM-5 as an enzyme carrier. We realized this immobilized enzyme catalyst, pectinase preparation@ZSM-5, via a simple combined strategy involving the van der Waals adsorption of pectinase preparation followed by crosslinking of the adsorbed pectinase preparation with glutaraldehyde over ZSM-5. Conformal pectinase preparation coverage of various ZSM-5 supports was achieved for the as-prepared pectinase preparation@ZSM-5. The porous pectinase preparation@ZSM-5 catalyst exhibited ultra-efficient biocatalytic activity for hydrolyzing the β-glycosidic bonds in the model substrate 4-nitrophenyl β-D-glucopyranoside, with a broad operating temperature range, high thermal stability, and excellent reusability. The relative activity of pectinase preparation@ZSM-5 at a high temperature (70 °C) was nine times higher than that of free pectinase preparation. Using thermal inactivation kinetic analysis based on the Arrhenius law, pectinase preparation@ZSM-5 showed higher activation energy for denaturation (315 kJ mol−1) and a longer half-life (62 min−1) than free pectinase preparation. Moreover, a Michaelis–Menten enzyme kinetic analysis indicated a higher maximal reaction velocity for pectinase preparation@ZSM-5 (0.22 µmol mg−1 min−1). This enhanced reactivity was attributed to the microstructure of the immobilized pectinase preparation@ZSM-5, which offered a heterogeneous reaction system that decreased the substrate–pectinase preparation binding affinity and modulated the kinetic characteristics of the enzyme. Additionally, pectinase preparation@ZSM-5 showed the best ethanol tolerance among all the reported pectinase preparation-immobilized catalysts, and an activity 247% higher than that of free pectinase preparation at a 10% (v/v) ethanol concentration was measured. Furthermore, pectinase preparation@ZSM-5 exhibited potential for practical engineering applications, promoting the hydrolysis of β-glycosidic bonds in baicalin to convert it into baicalein. This was achieved with a 98% conversion rate, i.e., 320% higher than that of the free enzyme.
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Liming Zhang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Li Tan
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Yueping Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Weiqian Tian
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lanqing Ma
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
13
|
|
14
|
Kostetskyy P, Koninckx E, Broadbelt LJ. Probing Monomer and Dimer Adsorption Trends in the MFI Framework. J Phys Chem B 2021; 125:7199-7212. [PMID: 34165314 DOI: 10.1021/acs.jpcb.1c02929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous aluminosilicates such as zeolites are ubiquitous catalysts for the production of high-value and industrially relevant commodity chemicals, including the conversion of hydrocarbons, amines, alcohols, and others. Bimolecular reactions are an important subclass of reactions that can occur on Brønsted acid sites of a zeolite catalyst. Kinetic modeling of these systems at the process scale requires the interaction energetics of reactants and the active sites to be described accurately. It is generally known that adsorption is a coverage-dependent phenomenon, with lower heats of adsorption observed for molecules at higher coverage. However, few studies have systematically investigated the coadsorption of molecules on a single active site, specifically focusing on the strength of interaction of the second adsorbate after the initial adsorption step. In this work, we quantify the unimolecular and bimolecular adsorption energies of varying adsorbates, including paraffins, olefins, alcohols, amines, and noncondensible gases in the acidic and siliceous ZSM-5 frameworks. As a special case, olefin adsorption was examined for physisorption and chemisorption regimes, characterized by π-complex, framework alkoxide and carbenium ion adsorption, respectively. The effects of functional groups and molecular size were quantified, and correlations that relate the adsorption of the second adsorbate identity to that of the first adsorbate are provided.
Collapse
Affiliation(s)
- Pavlo Kostetskyy
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Elsa Koninckx
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Sakha MR, Soltanali S, Salari D, Rashidzadeh M, Halimitabrizi P. Synergistic effect of Fe and Ga incorporation into ZSM-5 to increase propylene production in the cracking of n-hexane utilizing a microchannel reactor. NEW J CHEM 2021. [DOI: 10.1039/d1nj01866c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comprehensive investigation of the synergistic effect of incorporating Fe and Ga into ZSM-5 in cracking of hexane.
Collapse
Affiliation(s)
- Mohsen Rostami Sakha
- Reactor and Catalysis Research Lab., Department of Chemistry, University of Tabriz, Tabriz
- Iran
- Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| | - Saeed Soltanali
- Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| | - Darush Salari
- Reactor and Catalysis Research Lab., Department of Chemistry, University of Tabriz, Tabriz
- Iran
| | - Mehdi Rashidzadeh
- Catalysis Technologies Development Division, Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| | - Parya Halimitabrizi
- Reactor and Catalysis Research Lab., Department of Chemistry, University of Tabriz, Tabriz
- Iran
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz
- Iran
| |
Collapse
|
16
|
Valecillos J, Elordi G, Aguayo AT, Castaño P. The intrinsic effect of co-feeding water on the formation of active/deactivating species in the methanol-to-hydrocarbons reaction on ZSM-5 zeolite. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02497j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water is formed and added in the conversion of methanol to hydrocarbons, slowing down both the reaction and deactivation rates. The retained species that are reaction intermediates and coke precursors are swept/desorbed, particularly those on silanol sites.
Collapse
Affiliation(s)
- José Valecillos
- Department of Chemical Engineering
- University of the Basque Country (UPV/EHU)
- Bilbao
- 48080 Spain
| | - Gorka Elordi
- Department of Chemical Engineering
- University of the Basque Country (UPV/EHU)
- Bilbao
- 48080 Spain
| | - Andrés T. Aguayo
- Department of Chemical Engineering
- University of the Basque Country (UPV/EHU)
- Bilbao
- 48080 Spain
| | - Pedro Castaño
- Department of Chemical Engineering
- University of the Basque Country (UPV/EHU)
- Bilbao
- 48080 Spain
- Multiscale Reaction Engineering KAUST Catalysis Center (KCC)
| |
Collapse
|
17
|
Olszowka JE, Pashkova V, Kornas A, Dedecek J, Brus J, Urbanova M, Tabor E, Klein P, Brabec L, Mlekodaj K. Influence of the ultrasonic-assisted synthesis on Al distribution in a MOR zeolite: from gel to resulting material. NEW J CHEM 2021. [DOI: 10.1039/d1nj00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two Al-rich mordenite samples were prepared by the same synthesis procedure except for the activation of the gel for which classical stirring and ultrasonic pretreatment was used.
Collapse
Affiliation(s)
- Joanna E. Olszowka
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Veronika Pashkova
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Agnieszka Kornas
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Jiri Dedecek
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Jiri Brus
- Institute of Macromolecular Chemistry of the CAS, v.v.i. Heyrovského nám. 1888, 162 00 Prague, Czech Republic
| | - Martina Urbanova
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Institute of Macromolecular Chemistry of the CAS, v.v.i. Heyrovského nám. 1888, 162 00 Prague, Czech Republic
| | - Edyta Tabor
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Petr Klein
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Libor Brabec
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Kinga Mlekodaj
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| |
Collapse
|
18
|
Hoffman AJ, Bates JS, Di Iorio JR, Nystrom SV, Nimlos CT, Gounder R, Hibbitts D. Rigid Arrangements of Ionic Charge in Zeolite Frameworks Conferred by Specific Aluminum Distributions Preferentially Stabilize Alkanol Dehydration Transition States. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander J. Hoffman
- Department of Chemical Engineering University of Florida 1030 Center Dr Gainesville FL 32608 USA
| | - Jason S. Bates
- Charles D. Davidson School of Chemical Engineering Purdue University 480 Stadium Mall Drive West Lafayette IN 47907 USA
| | - John R. Di Iorio
- Charles D. Davidson School of Chemical Engineering Purdue University 480 Stadium Mall Drive West Lafayette IN 47907 USA
| | - Steven V. Nystrom
- Department of Chemical Engineering University of Florida 1030 Center Dr Gainesville FL 32608 USA
| | - Claire T. Nimlos
- Charles D. Davidson School of Chemical Engineering Purdue University 480 Stadium Mall Drive West Lafayette IN 47907 USA
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering Purdue University 480 Stadium Mall Drive West Lafayette IN 47907 USA
| | - David Hibbitts
- Department of Chemical Engineering University of Florida 1030 Center Dr Gainesville FL 32608 USA
| |
Collapse
|
19
|
Hoffman AJ, Bates JS, Di Iorio JR, Nystrom SV, Nimlos CT, Gounder R, Hibbitts D. Rigid Arrangements of Ionic Charge in Zeolite Frameworks Conferred by Specific Aluminum Distributions Preferentially Stabilize Alkanol Dehydration Transition States. Angew Chem Int Ed Engl 2020; 59:18686-18694. [PMID: 32659034 DOI: 10.1002/anie.202007790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Zeolite reactivity depends on the solvating environments of their micropores and the proximity of their Brønsted acid sites. Turnover rates (per H+ ) for methanol and ethanol dehydration increase with the fraction of H+ sites sharing six-membered rings of chabazite (CHA) zeolites. Density functional theory (DFT) shows that activation barriers vary widely with the number and arrangement of Al (1-5 per 36 T-site unit cell), but cannot be described solely by Al-Al distance or density. Certain Al distributions yield rigid arrangements of anionic charge that stabilize cationic intermediates and transition states via H-bonding to decrease barriers. This is a key feature of acid catalysis in zeolite solvents, which lack the isotropy of liquid solvents. The sensitivity of polar transition states to specific arrangements of charge in their solvating environments and the ability to position such charges in zeolite lattices with increasing precision herald rich catalytic diversity among zeolites of varying Al arrangement.
Collapse
Affiliation(s)
- Alexander J Hoffman
- Department of Chemical Engineering, University of Florida, 1030 Center Dr, Gainesville, FL, 32608, USA
| | - Jason S Bates
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - John R Di Iorio
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Steven V Nystrom
- Department of Chemical Engineering, University of Florida, 1030 Center Dr, Gainesville, FL, 32608, USA
| | - Claire T Nimlos
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - David Hibbitts
- Department of Chemical Engineering, University of Florida, 1030 Center Dr, Gainesville, FL, 32608, USA
| |
Collapse
|
20
|
Synthesis of HZSM-5 Rich in Paired Al and Its Catalytic Performance for Propane Aromatization. Catalysts 2020. [DOI: 10.3390/catal10060622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of HZSM-5 catalysts with similar Si/AlF mole ratio, textual properties and morphology, but different contents of AlF pairs, were synthesized by controlling the Na/Al molar ratios in the precursor gel and used for propane aromatization. It is shown that the catalyst with a Na/Al molar ratio of 0.8 in the synthetic gel possesses the highest paired AlF concentration (64.4%) and shows higher propane conversion (38.2%) and aromatics selectivity (19.7 wt.%). Propane pulse experiments, micro reactor activity estimation, Operando diffuse reflectance ultraviolet-visible (DR UV-vis) spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) analysis of coke species deposited on the catalysts provide evidence that AlF pairs in the ZSM-5 framework promote oligomerization and cyclization reactions of olefins, and then produce more aromatics. Density Functional Theory (DFT) calculations demonstrate that the cyclization of olefins and hydride transfer reaction occurring on AlF pairs in HZSM-5 zeolite show a lower free energy barrier and a higher rate constant than those on single AlF, indicating that the structure of AlF pairs in the HZSM-5 zeolite has a stronger electrostatic stabilization effect on the transition states than that of single AlF.
Collapse
|
21
|
The proximity of aluminium atoms influences the reaction pathway of ethanol transformation over zeolite ZSM-5. Commun Chem 2020; 3:25. [PMID: 36703441 PMCID: PMC9814039 DOI: 10.1038/s42004-020-0268-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/29/2020] [Indexed: 01/29/2023] Open
Abstract
The organization of aluminium atoms in zeolites affects their catalytic properties. Here we demonstrate that the aluminium distribution is a key parameter controlling the reaction pathway of acid catalysed reactions over ZSM-5 zeolites. We study ethanol transformation over two ZSM-5 samples with similar Si/Al ratios of ~15, and with aluminium atoms located mainly at the channel intersections but differently distributed in the framework. One of the samples contains mostly isolated aluminium atoms while the other has a large fraction of two aluminium atoms located in one ring. The FT-IR time-resolved operando study, supported by catalytic results, reveals that the reaction pathway in ethanol transformation over ZSM-5 is controlled by the proximity of aluminium atoms in the framework. ZSM-5 containing mostly isolated Al atoms transforms ethanol in the associative pathway, and conversely ZSM-5 containing a dominating fraction of two aluminium atoms in one ring transforms ethanol in the dissociative pathway.
Collapse
|
22
|
Chen G, Liu H, Fadaeerayeni S, Shan J, Xing A, Cheng J, Wang H, Xiang Y. Tuning the reactivity of ethylene oligomerization by HZSM-5 framework Alf proximity. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00632g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of HZSM-5 catalysts for ethylene oligomerization is highly dependent upon their framework Alf proximity.
Collapse
Affiliation(s)
- Genwei Chen
- Dave C. Swalm School of Chemical Engineering
- Mississippi State University
- USA
| | - Hua Liu
- National Institute of Clean-and-Low-Carbon Energy
- Beijing 102211
- P. R. China
| | | | | | - Aihua Xing
- National Institute of Clean-and-Low-Carbon Energy
- Beijing 102211
- P. R. China
| | | | - Hui Wang
- NICE America Research, Inc
- Mountain View
- USA
| | - Yizhi Xiang
- Dave C. Swalm School of Chemical Engineering
- Mississippi State University
- USA
| |
Collapse
|