1
|
Farshadfar K, Laasonen K. DFT Mechanistic Investigation into Ni(II)-Catalyzed Hydroxylation of Benzene to Phenol by H 2O 2. Inorg Chem 2024; 63:5509-5519. [PMID: 38471975 PMCID: PMC11186014 DOI: 10.1021/acs.inorgchem.3c04461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Introduction of oxygen into aromatic C-H bonds is intriguing from both fundamental and practical perspectives. Although the 3d metal-catalyzed hydroxylation of arenes by H2O2 has been developed by several prominent researchers, a definitive mechanism for these crucial transformations remains elusive. Herein, density functional theory calculations were used to shed light on the mechanism of the established hydroxylation reaction of benzene with H2O2, catalyzed by [NiII(tepa)]2+ (tepa = tris[2-(pyridin-2-yl)ethyl]amine). Dinickel(III) bis(μ-oxo) species have been proposed as the key intermediate responsible for the benzene hydroxylation reaction. Our findings indicate that while the dinickel dioxygen species can be generated as a stable structure, it cannot serve as an active catalyst in this transformation. The calculations allowed us to unveil an unprecedented mechanism composed of six main steps as follows: (i) deprotonation of coordinated H2O2, (ii) oxidative addition, (iii) water elimination, (iv) benzene addition, (v) ketone generation, and (vi) tautomerization and regeneration of the active catalyst. Addition of benzene to oxygen, which occurs via a radical mechanism, turns out to be the rate-determining step in the overall reaction. This study demonstrates the critical role of Ni-oxyl species in such transformations, highlighting how the unpaired spin density value on oxygen and positive charges on the Ni-O• complex affect the activation barrier for benzene addition.
Collapse
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry and
Material Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kari Laasonen
- Department of Chemistry and
Material Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
2
|
Chen Y, Miller CJ, Xie J, Waite TD. Challenges Relating to the Quantification of Ferryl(IV) Ion and Hydroxyl Radical Generation Rates Using Methyl Phenyl Sulfoxide (PMSO), Phthalhydrazide, and Benzoic Acid as Probe Compounds in the Homogeneous Fenton Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18617-18625. [PMID: 36721331 DOI: 10.1021/acs.est.2c06753] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ferryl ion ([FeIVO]2+) has often been suggested to play a role in iron-based advanced oxidation processes (AOPs) with its presence commonly determined using the unique oxidation pathway from methyl phenyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2). However, we show here that the oxidation products of PMSO, formed on reaction with hydroxyl radical, enhance PMSO2 formation as a result of their complexation with Fe(III) leading to the changes in the reactivity of Fe(III) species in the homogeneous Fenton reaction. As such, PMSO should be used with caution to investigate the role of [FeIVO]2+ in iron-based AOPs with these insights suggesting the need to reassess the findings of many previous studies in which this reagent was used. The other common target compounds, phthalhydrazide and hydroxybenzoic acids, were also found to modify the rate and extent of iron cycling as a result of complexation and/or redox reactions, either by the probe compound itself and/or oxidation products formed. Overall, this study highlights that these confounding effects of the aromatic probe compounds on the reactivity of iron species should be recognized if reliable mechanistic insights into iron-based AOPs are to be obtained.
Collapse
Affiliation(s)
- Yufan Chen
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| | - Christopher J Miller
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| | - Jieli Xie
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu Province214206, P. R. China
| |
Collapse
|
3
|
Muthuramalingam S, Velusamy M, Singh Rajput S, Alam M, Mayilmurugan R. Nickel(II) Complexes of Tripodal Ligands as Catalysts for Fixation of Atmospheric CO 2 as Organic Carbonates. Chem Asian J 2023; 18:e202201204. [PMID: 36734191 DOI: 10.1002/asia.202201204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The fixation of atmospheric CO2 into value-added products is a promising methodology. A series of novel nickel(II) complexes of the type [Ni(L)(CH3 CN)2 ](BPh4 )2 1-5, where L=N,N-bis(2-pyridylmethyl)-N', N'-dimethylpropane-1,3-diamine (L1), N,N-dimethyl-N'-(2-(pyridin-2-yl)ethyl)-N'-(pyridin-2-ylmethyl) propane-1,3-diamine (L2), N,N-bis((4-methoxy-3,5-dimethylpyridin-2-ylmethyl)-N',N'-dimethylpropane-1,3-diamine (L3), N-(2-(dimethylamino) benzyl)-N',N'-dimethyl-N-(pyridin-2-ylmethyl) propane-1,3-diamine (L4) and N,N-bis(2-(dimethylamino)benzyl)-N', N'-dimethylpropane-1,3-diamine (L5) have been synthesized and characterized as the catalysts for the conversion of atmospheric CO2 into organic cyclic carbonates. The single-crystal X-ray structure of 2 was determined and exhibited distorted octahedral coordination geometry with cis-α configuration. The complexes have been used as a catalyst for converting CO2 and epoxides into five-membered cyclic carbonates under 1 atmospheric (atm) pressure at room temperature in the presence of Bu4 NBr. The catalyst containing electron-releasing -Me and -OMe groups afforded the maximum yield of cyclic carbonates, 34% (TON, 680) under 1 atm air. It was drastically enhanced to 89% (TON, 1780) under pure CO2 gas at 1 atm. It is the highest catalytic efficiency known for CO2 fixation using nickel-based catalysts at room temperature and 1 atm pressure. The electronic and steric factors of the ligands strongly influence the catalytic efficiency. Furthermore, all the catalysts can convert a wide range of epoxides (ten examples) into corresponding cyclic carbonate with excellent selectivity (>99%) under this mild condition.
Collapse
Affiliation(s)
- Sethuraman Muthuramalingam
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India.,Institut de Química Computacional i Catalisì (IQCC) and Departament de Química, Universitat de Girona, Girona, E-17003 Catalonia, Spain
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong, 793022, India
| | - Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India
| | - Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India
| | - Ramasamy Mayilmurugan
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur, 492015 Chattisgarh, India
| |
Collapse
|
4
|
Rajeev A, Balamurugan M, Sankaralingam M. Rational Design of First-Row Transition Metal Complexes as the Catalysts for Oxidation of Arenes: A Homogeneous Approach. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
5
|
Addison AW, Jaworski SJ, Jasinski JP, Turnbull MM, Xiao F, Zeller M, O’Connor MA, Brayman EA. Chloro-cobalt complexes with pyridyl-ethyl-derived di-aza-cyclo-alkanes. Acta Crystallogr E Crystallogr Commun 2022; 78:235-243. [PMID: 35371556 PMCID: PMC8900507 DOI: 10.1107/s2056989022001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
Syntheses are described for the blue/purple complexes of cobalt(II) chloride with the tetra-dentate ligands 1,4-bis-[2-(pyridin-2-yl)eth-yl]piperazine (Ppz), 1,4-bis-[2-(pyridin-2-yl)eth-yl]homopiperazine (Phpz), trans-2,5-dimethyl-1,4-bis-[2-(pyridin-2-yl)eth-yl]piperazine (Pdmpz) and tridentate 4-methyl-1-[2-(pyridin-2-yl)eth-yl]homopiperazine (Pmhpz). The CoCl2 complexes with Ppz, namely, {μ-1,4-bis-[2-(pyridin-2-yl)eth-yl]piperazine}bis-[di-chlorido-cobalt(II)], [Co2Cl4(C18H24N4)] or Co2(Ppz)Cl4, and Pdmpz (structure not reported as X-ray quality crystals were not obtained), are shown to be dinuclear, with the ligands bridging the two tetra-hedrally coordinated CoCl2 units. Co2(Ppz)Cl4 and {di-chlorido-{4-methyl-1-[2-(pyridin-2-yl)eth-yl]-1,4-di-aza-cyclo-hepta-ne}cobalt(II) [CoCl2(C13H21N3)] or Co(Pmhpz)Cl2, crystallize in the monoclinic space group P21/n, while crystals of the penta-coordinate mono-chloro chelate 1,4-bis-[2-(pyr-id-in-2-yl)eth-yl]piperazine}chlorido-cobalt(II) perchlorate, [CoCl(C18H24N4)]ClO4 or [Co(Ppz)Cl]ClO4, are also monoclinic (P21). The complex {1,4-bis-[2-(pyridin-2-yl)eth-yl]-1,4-di-aza-cyclo-hepta-ne}di-chlorido-cobalt(II) [CoCl2(C19H26N4)] or Co(Phpz)Cl2 (P ) is mononuclear, with a penta-coordinated CoII ion, and entails a Phpz ligand acting in a tridentate fashion, with one of the pyridyl moieties dangling and non-coordinated; its displacement by Cl- is attributed to the solvophobicity of Cl- toward MeOH. The penta-coordinate Co atoms in Co(Phpz)Cl2, [Co(Ppz)Cl]+ and Co(Pmhpz)Cl2 have substantial trigonal-bipyramidal character in their stereochemistry. Visible- and near-infrared-region electronic spectra are used to differentiate the two types of coordination spheres. TDDFT calculations suggest that the visible/NIR region transitions contain contributions from MLCT and LMCT character, as well as their expected d-d nature. For Co(Pmhpz)Cl2 and Co(Phpz)Cl2, variable-temperature magnetic susceptibility data were obtained, and the observed decreases in moment with decreasing temperature were modelled with a zero-field-splitting approach, the D values being +28 and +39 cm-1, respectively, with the S = 1/2 state at lower energy.
Collapse
Affiliation(s)
| | | | | | - Mark M. Turnbull
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Fan Xiao
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Molly A. O’Connor
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
6
|
Chen Y, Miller CJ, Waite TD. pH Dependence of Hydroxyl Radical, Ferryl, and/or Ferric Peroxo Species Generation in the Heterogeneous Fenton Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1278-1288. [PMID: 34965094 DOI: 10.1021/acs.est.1c05722] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The heterogeneous Fenton process in the presence of Fe-containing minerals is ubiquitous in nature and widely deployed in wastewater treatment. While there have been extensive relevant studies, the dependence on pH of the nature and extent of oxidant generation and key reaction pathways remain unclear. Herein, the adsorption and decomposition of formate and H2O2 were quantified in the presence of ferrihydrite within the pH range of 3.0-6.0, and experiments with methyl phenyl sulfoxide were conducted to distinguish between HO• and weaker oxidant(s) which react via oxygen atom transfer including ferryl ion ([FeIVO]2+) and/or ferric hydroperoxo intermediates (≡FeIII(O2H)). Both HO• and [FeIVO]2+/≡FeIII(O2H) are concurrently produced on the surface over the acidic to near-neutral pH range. Despite the simultaneous formation of both oxidants, HO• is the major oxidant responsible for substrate oxidation in the interfacial boundary layer with [FeIVO]2+/≡FeIII(O2H) exhibiting limited exposure to substrates. With an increase of pH, the yield of both oxidants is inhibited by the decreasing availability of surface sites due to ferrihydrite particle aggregation. Increasing pH also favors the nonradical decay of H2O2 as evident from the consistent oxidant production rate relative to the surface area (SSA) despite an accelerated H2O2 decay rate relative to SSA with pH increase.
Collapse
Affiliation(s)
- Yufan Chen
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher J Miller
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Li T, Hammond GB, Xu B. Cobalt-Catalyzed Aerobic Oxidative Cleavage of Alkyl Aldehydes: Synthesis of Ketones, Esters, Amides, and α-Ketoamides. Chemistry 2021; 27:9737-9741. [PMID: 34010489 DOI: 10.1002/chem.202101035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 12/17/2022]
Abstract
A widely applicable approach was developed to synthesize ketones, esters, amides via the oxidative C-C bond cleavage of readily available alkyl aldehydes. Green and abundant molecular oxygen (O2 ) was used as the oxidant, and base metals (cobalt and copper) were used as the catalysts. This strategy can be extended to the one-pot synthesis of ketones from primary alcohols and α-ketoamides from aldehydes.
Collapse
Affiliation(s)
- Tingting Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
8
|
Masferrer‐Rius E, Borrell M, Lutz M, Costas M, Klein Gebbink RJM. Aromatic C−H Hydroxylation Reactions with Hydrogen Peroxide Catalyzed by Bulky Manganese Complexes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eduard Masferrer‐Rius
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Margarida Borrell
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi E-17071 Girona, Catalonia Spain
| | - Martin Lutz
- Structural Biochemistry Bijvoet Centre for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi E-17071 Girona, Catalonia Spain
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
9
|
One-Step Catalytic or Photocatalytic Oxidation of Benzene to Phenol: Possible Alternative Routes for Phenol Synthesis? Catalysts 2020. [DOI: 10.3390/catal10121424] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phenol is an important chemical compound since it is a precursor of the industrial production of many materials and useful compounds. Nowadays, phenol is industrially produced from benzene by the multi-step “cumene process”, which is energy consuming due to high temperature and high pressure. Moreover, in the “cumene process”, the highly explosive cumene hydroperoxide is produced as an intermediate. To overcome these disadvantages, it would be useful to develop green alternatives for the synthesis of phenol that are more efficient and environmentally benign. In this regard, great interest is devoted to processes in which the one-step oxidation of benzene to phenol is achieved, thanks to the use of suitable catalysts and oxidant species. This review article discusses the direct oxidation of benzene to phenol in the liquid phase using different catalyst formulations, including homogeneous and heterogeneous catalysts and photocatalysts, and focuses on the reaction mechanisms involved in the selective conversion of benzene to phenol in the liquid phase.
Collapse
|
10
|
Kumari S, Muthuramalingam S, Dhara AK, Singh UP, Mayilmurugan R, Ghosh K. Cu(I) complexes obtained via spontaneous reduction of Cu(II) complexes supported by designed bidentate ligands: bioinspired Cu(I) based catalysts for aromatic hydroxylation. Dalton Trans 2020; 49:13829-13839. [PMID: 33001072 DOI: 10.1039/d0dt02413a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper(i) complexes [Cu(L1-7)2](ClO4) (1-7) of bidentate ligands (L1-L7) have been synthesized via spontaneous reduction and characterized as catalysts for aromatic C-H activation using H2O2 as the oxidant. The single crystal X-ray structure of 1 exhibited a distorted tetrahedral geometry. All the copper(i) complexes catalyzed direct hydroxylation of benzene to form phenol with good selectivity up to 98%. The determined kinetic isotope effect (KIE) values, 1.69-1.71, support the involvement of a radical type mechanism. The isotope-labeling experiments using H218O2 showed 92% incorporation of 18O into phenol and confirm that H2O2 is the key oxygen supplier. Overall, the catalytic efficiencies of the complexes are strongly influenced by the electronic and steric factor of the ligand, which is fine-tuned by the ligand architecture. The benzene hydroxylation reaction possibly proceeded via a radical mechanism, which was confirmed by the addition of radical scavengers (TEMPO) to the catalytic reaction that showed a reduction in phenol formation.
Collapse
Affiliation(s)
- Sheela Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| | - Ashish Kumar Dhara
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - U P Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| |
Collapse
|
11
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Recent progress in catalytic oxygenation of aromatic C–H groups with the environmentally benign oxidants H
2
O
2
and O
2. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5900] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roman V. Ottenbacher
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Evgenii P. Talsi
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Konstantin P. Bryliakov
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| |
Collapse
|