1
|
Selg C, Grell T, Brakel A, Andrews PC, Hoffmann R, Hey-Hawkins E. Fusing Bismuth and Mercaptocarboranes: Design and Biological Evaluation of Low-Toxicity Antimicrobial Thiolato Complexes. Chempluschem 2024; 89:e202300759. [PMID: 38263504 DOI: 10.1002/cplu.202300759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
This study proposes an innovative strategy to enhance the pharmacophore model of antimicrobial bismuth thiolato complex drugs by substituting hydrocarbon ligand structures with boron clusters, particularly icosahedral closo-dicarbadodecaborane (C2B10H12, carboranes). The hetero- and homoleptic mercaptocarborane complexes BiPh2L (1) and BiL3 (2) (L=9-S-1,2-C2B10H11) were prepared from 9-mercaptocarborane (HL) and triphenylbismuth. Comprehensive characterization using NMR, IR, MS, and XRD techniques confirmed their successful synthesis. Evaluation of antimicrobial activity in a liquid broth microdilution assay demonstrated micromolar to submicromolar minimum inhibitory concentrations (MIC) suggesting high effectiveness against S. aureus and limited efficacy against E. coli. This study highlights the potential of boron-containing bismuth complexes as promising antimicrobial agents, especially targeting Gram-positive bacteria, thus contributing to the advancement of novel therapeutic approaches.
Collapse
Affiliation(s)
- Christoph Selg
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Toni Grell
- Department of Chemistry, University of Milano, Via Camillo Golgi 19, 20133, Milano, Italy
| | - Alexandra Brakel
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, 3800, Melbourne, VIC, Australia
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
3
|
Beck-Sickinger AG, Becker DP, Chepurna O, Das B, Flieger S, Hey-Hawkins E, Hosmane N, Jalisatgi SS, Nakamura H, Patil R, Vicente MDGH, Viñas C. New Boron Delivery Agents. Cancer Biother Radiopharm 2023; 38:160-172. [PMID: 36350709 PMCID: PMC10325817 DOI: 10.1089/cbr.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This proceeding article compiles current research on the development of boron delivery drugs for boron neutron capture therapy that was presented and discussed at the National Cancer Institute (NCI) Workshop on Neutron Capture Therapy that took place on April 20-22, 2022. The most used boron sources are icosahedral boron clusters attached to peptides, proteins (such as albumin), porphyrin derivatives, dendrimers, polymers, and nanoparticles, or encapsulated into liposomes. These boron clusters and/or carriers can be labeled with contrast agents allowing for the use of imaging techniques, such as PET, SPECT, and fluorescence, that enable quantification of tumor-localized boron and their use as theranostic agents.
Collapse
Affiliation(s)
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Sebastian Flieger
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany
| | - Narayan Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Clara Viñas
- Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain
| |
Collapse
|
4
|
Alpatova VM, Rys EG, Kononova EG, Khakina EA, Markova AA, Shibaeva AV, Kuzmin VA, Ol'shevskaya VA. Multicomponent Molecular Systems Based on Porphyrins, 1,3,5-Triazine and Carboranes: Synthesis and Characterization. Molecules 2022; 27:6200. [PMID: 36234729 PMCID: PMC9572311 DOI: 10.3390/molecules27196200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
2,4,6-Trichloro-1,3,5-triazine (cyanuric chloride) is an excellent coupling reagent for the preparation of highly structured multifunctional molecules. Three component systems based on porphyrin, cyanuric chloride and carborane clusters were prepared by a one-pot stepwise amination of cyanuric chloride with 5-(4-aminophenyl)-10,15,20-triphenylporphyrin, followed by replacement of the remaining chlorine atoms with carborane S- or N-nucleophiles. Some variants of 1,3,5-triazine derivatives containing porphyrin, carborane and residues of biologically active compounds such as maleimide, glycine methyl ester as well as thioglycolic acid, mercaptoethanol and hexafluoroisopropanol were also prepared. A careful control of the reaction temperature during the substitution reactions will allow the synthesis of desired compounds in a good to high yields. The structures of synthesized compounds were determined with UV-vis, IR, 1H NMR, 11B NMR, MALDI-TOF or LC-MS spectroscopic data. The dark and photocytotoxicity as well as intracellular localization and photoinduced cell death for compounds 8, 9, 17, 18 and 24 were evaluated.
Collapse
Affiliation(s)
- Victoria M Alpatova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1, Vavilova St., 119334 Moscow, Russia
| | - Evgeny G Rys
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1, Vavilova St., 119334 Moscow, Russia
| | - Elena G Kononova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1, Vavilova St., 119334 Moscow, Russia
| | - Ekaterina A Khakina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1, Vavilova St., 119334 Moscow, Russia
| | - Alina A Markova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1, Vavilova St., 119334 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119334 Moscow, Russia
| | - Anna V Shibaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119334 Moscow, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119334 Moscow, Russia
| | - Valentina A Ol'shevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1, Vavilova St., 119334 Moscow, Russia
| |
Collapse
|
5
|
Matović J, Järvinen J, Sokka IK, Stockmann P, Kellert M, Imlimthan S, Sarparanta M, Johansson MP, Hey-Hawkins E, Rautio J, Ekholm FS. Synthesis and In Vitro Evaluation of a Set of 6-Deoxy-6-thio-carboranyl d-Glucoconjugates Shed Light on the Substrate Specificity of the GLUT1 Transporter. ACS OMEGA 2022; 7:30376-30388. [PMID: 36061667 PMCID: PMC9434784 DOI: 10.1021/acsomega.2c03646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/04/2022] [Indexed: 05/20/2023]
Abstract
Glucose- and sodium-dependent glucose transporters (GLUTs and SGLTs) play vital roles in human biology. Of the 14 GLUTs and 12 SGLTs, the GLUT1 transporter has gained the most widespread recognition because GLUT1 is overexpressed in several cancers and is a clinically valid therapeutic target. We have been pursuing a GLUT1-targeting approach in boron neutron capture therapy (BNCT). Here, we report on surprising findings encountered with a set of 6-deoxy-6-thio-carboranyl d-glucoconjugates. In more detail, we show that even subtle structural changes in the carborane cluster, and the linker, may significantly reduce the delivery capacity of GLUT1-based boron carriers. In addition to providing new insights on the substrate specificity of this important transporter, we reach a fresh perspective on the boundaries within which a GLUT1-targeting approach in BNCT can be further refined.
Collapse
Affiliation(s)
- Jelena Matović
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Juulia Järvinen
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Iris K. Sokka
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Philipp Stockmann
- Institute
of Inorganic Chemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Martin Kellert
- Institute
of Inorganic Chemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Surachet Imlimthan
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mirkka Sarparanta
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mikael P. Johansson
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Helsinki
Institute of Sustainability Science, HELSUS, FI-00014 Helsinki, Finland
- CSC
− IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | | | - Jarkko Rautio
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Filip S. Ekholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
6
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
7
|
Sweet Boron: Boron-Containing Sugar Derivatives as Potential Agents for Boron Neutron Capture Therapy. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020182] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary type of radiotherapy for the treatment of cancer. Due to recent developments of neutron accelerators and their installation in some hospitals, BNCT is on the rise worldwide and is expected to have a significant impact on patient treatments. Therefore, there is an increasing need for improved boron delivery agents. Among the many small molecules and delivery systems developed, a significant amount of recent research focused on the synthesis of boron-containing sugar and amino acid derivatives to exploit specific transport proteins, as d-glucose transporter 1 (GLUT1) and large neutral amino acid transporter (LAT1), overexpressed by tumor cells. This review will discuss the last year’s achievements in the synthesis and some biological evaluation of boronated sugars derivatives. The compounds described in this review are intrinsically asymmetric due to the presence of chiral sugar moieties, often joined to boron clusters, which are structural elements with high symmetry.
Collapse
|
8
|
Ueda H, Suzuki M, Sakurai Y, Tanaka T, Aoki S. Design, Synthesis and Biological Evaluation of Boron‐Containing Macrocyclic Polyamine Dimers and Their Zinc(II) Complexes for Boron Neutron Capture Therapy. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hiroki Ueda
- Faculty of Pharmaceutical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science Kyoto University 2-Asashiro-nishi, Kumatori Osaka 590-0494 Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science Kyoto University 2-Asashiro-nishi, Kumatori Osaka 590-0494 Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
- Research Institute for Science and Technology Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
- Research Institute for Biomedical Sciences Tokyo University of Science 2641 Yamazaki, Noda Chiba 278-8510 Japan
| |
Collapse
|
9
|
|
10
|
Kellert M, Friedrichs JSJ, Ullrich NA, Feinhals A, Tepper J, Lönnecke P, Hey-Hawkins E. Modular Synthetic Approach to Carboranyl‒Biomolecules Conjugates. Molecules 2021; 26:2057. [PMID: 33916755 PMCID: PMC8038343 DOI: 10.3390/molecules26072057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
The development of novel, tumor-selective and boron-rich compounds as potential agents for use in boron neutron capture therapy (BNCT) represents a very important field in cancer treatment by radiation therapy. Here, we report the design and synthesis of two promising compounds that combine meta-carborane, a water-soluble monosaccharide and a linking unit, namely glycine or ethylenediamine, for facile coupling with various tumor-selective biomolecules bearing a free amino or carboxylic acid group. In this work, coupling experiments with two selected biomolecules, a coumarin derivative and folic acid, were included. The task of every component in this approach was carefully chosen: the carborane moiety supplies ten boron atoms, which is a tenfold increase in boron content compared to the l-boronophenylalanine (l-BPA) presently used in BNCT; the sugar moiety compensates for the hydrophobic character of the carborane; the linking unit, depending on the chosen biomolecule, acts as the connection between the tumor-selective component and the boron-rich moiety; and the respective tumor-selective biomolecule provides the necessary selectivity. This approach makes it possible to develop a modular and feasible strategy for the synthesis of readily obtainable boron-rich agents with optimized properties for potential applications in BNCT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (J.-S.J.F.); (N.A.U.); (A.F.); (J.T.); (P.L.)
| |
Collapse
|
11
|
Gruzdev DA, Levit GL, Krasnov VP, Charushin VN. Carborane-containing amino acids and peptides: Synthesis, properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Synthesis and Characterisation of a Boron-Rich Symmetric Triazine Bearing a Hypoxia-Targeting Nitroimidazole Moiety. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Boron Neutron Capture Therapy (BNCT) is a binary therapy that promises to be suitable in treating many non-curable cancers. To that, the discovery of new boron compounds able to accumulate selectively in the tumour tissue is still required. Hypoxia, a deficiency of oxygen in tumor tissue, is a great challenge in the conventional treatment of cancer, because hypoxic areas are resistant to conventional anticancer treatments. 2-Nitroimidazole derivatives are known to be hypoxia markers due to their enrichment by bioreduction in hypoxic cells. In the present work, 2-nitroimidazole was chosen as the starting point for the synthesis of a new boron-containing compound based on a 1,3,5-triazine skeleton. Two o-carborane moieties were inserted to achieve a high ratio of boron on the molecular weight, exploiting a short PEG spacer to enhance the polarity of the compound and outdistance the active part from the core. The compound showed no toxicity on normal human primary fibroblasts, while it showed noteworthy toxicity in multiple myeloma cells together with a consistent intracellular boron accumulation.
Collapse
|
13
|
Mu X, Hopp M, Dziedzic RM, Waddington MA, Rheingold AL, Sletten EM, Axtell JC, Spokoyny AM. Expanding the Scope of Palladium-Catalyzed B - N Cross-Coupling Chemistry in Carboranes. Organometallics 2020; 39:4380-4386. [PMID: 34012188 DOI: 10.1021/acs.organomet.0c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past several years, a number of strategies for the functionalization of dicarba-closo-dodecaboranes (carboranes) have emerged. Despite these developments, B - N bond formation on the carborane scaffold remains a challenge due to the propensity of strong nucleophiles to partially deboronate the parent closo-carborane cluster into the corresponding nido form. Here we show that azide, sulfonamide, cyanate, and phosphoramidate nucleophiles can be straightforwardly cross-coupled onto the B(9) vertices of the o- and m-carborane core from readily accessible precursors without significant deboronation by-products, laying the groundwork for further study into the utility and properties of these new B-aminated carborane species. We further showcase select reactivity of the installed functional groups highlighting some unique features stemming from the combination of the electron-donating B(9) position and the large steric profile of the B-connected carborane substituent.
Collapse
Affiliation(s)
- Xin Mu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Morgan Hopp
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Rafal M Dziedzic
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Mary A Waddington
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jonathan C Axtell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Jena BB, Jena SR, Swain BR, Mahanta CS, Samanta L, Dash BP, Satapathy R. Triazine‐cored dendritic molecules containing multiple
o
‐carborane clusters. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Biswa Ranjan Swain
- Department of ChemistryRavenshaw University Cuttack Odisha 753 003 India
| | | | - Luna Samanta
- Department of ZoologyRavenshaw University Cuttack Odisha 753 003 India
| | - Barada P. Dash
- Department of ChemistrySiksha 'O' Anusandhan (Deemed to be University) Bhubaneswar Odisha 751 030 India
| | | |
Collapse
|
15
|
Kalot G, Godard A, Busser B, Pliquett J, Broekgaarden M, Motto-Ros V, Wegner KD, Resch-Genger U, Köster U, Denat F, Coll JL, Bodio E, Goze C, Sancey L. Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications. Cells 2020; 9:cells9091953. [PMID: 32854219 PMCID: PMC7565158 DOI: 10.3390/cells9091953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle emission that inducing extensive damage on a very localized level (<10 μm). To be efficient, a sufficient amount of 10B should accumulate in the tumor area while being almost cleared from the normal surroundings. A water-soluble aza-boron-dipyrromethene dyes (BODIPY) fluorophore was reported to strongly accumulate in the tumor area with high and BNCT compatible Tumor/Healthy Tissue ratios. The clinically used 10B-BSH (sodium borocaptate) was coupled to the water-soluble aza-BODIPY platform for enhanced 10B-BSH tumor vectorization. We demonstrated a strong uptake of the compound in tumor cells and determined its biodistribution in mice-bearing tumors. A model of chorioallantoic membrane-bearing glioblastoma xenograft was developed to evidence the BNCT potential of such compound, by subjecting it to slow neutrons. We demonstrated the tumor accumulation of the compound in real-time using optical imaging and ex vivo using elemental imaging based on laser-induced breakdown spectroscopy. The tumor growth was significantly reduced as compared to BNCT with 10B-BSH. Altogether, the fluorescent aza-BODIPY/10B-BSH compound is able to vectorize and image the 10B-BSH in the tumor area, increasing its theranostic potential for efficient approach of BNCT.
Collapse
Affiliation(s)
- Ghadir Kalot
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
| | - Amélie Godard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
| | - Benoît Busser
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
- Grenoble Alpes University Hospital, 38043 Grenoble, France
| | - Jacques Pliquett
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
| | - Mans Broekgaarden
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
| | - Vincent Motto-Ros
- Institut Lumière Matière UMR 5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France;
| | - Karl David Wegner
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany; (K.D.W.); (U.R.-G.)
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany; (K.D.W.); (U.R.-G.)
| | - Ulli Köster
- Institut Laue Langevin, 38042 Grenoble, France;
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
- Correspondence: (E.B.); (C.G.); (L.S.); Tel.: +33-380-396-076 (E.B.); +33-380-399-043 (C.G.); +33-476-549-410 (L.S.)
| | - Christine Goze
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
- Correspondence: (E.B.); (C.G.); (L.S.); Tel.: +33-380-396-076 (E.B.); +33-380-399-043 (C.G.); +33-476-549-410 (L.S.)
| | - Lucie Sancey
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
- Correspondence: (E.B.); (C.G.); (L.S.); Tel.: +33-380-396-076 (E.B.); +33-380-399-043 (C.G.); +33-476-549-410 (L.S.)
| |
Collapse
|
16
|
Worm DJ, Els‐Heindl S, Beck‐Sickinger AG. Targeting of peptide‐binding receptors on cancer cells with peptide‐drug conjugates. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dennis J. Worm
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | - Sylvia Els‐Heindl
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | | |
Collapse
|
17
|
Hoppenz P, Els-Heindl S, Kellert M, Kuhnert R, Saretz S, Lerchen HG, Köbberling J, Riedl B, Hey-Hawkins E, Beck-Sickinger AG. A Selective Carborane-Functionalized Gastrin-Releasing Peptide Receptor Agonist as Boron Delivery Agent for Boron Neutron Capture Therapy. J Org Chem 2019; 85:1446-1457. [PMID: 31813224 DOI: 10.1021/acs.joc.9b02406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Boron neutron capture therapy (BNCT) allows the selective elimination of malignant tumor cells without affecting healthy tissue. Although this binary radiotherapy approach has been known for decades, BNCT failed to reach the daily clinics to date. One of the reasons is the lack of selective boron delivery agents. Using boron loaded peptide conjugates, which address G protein-coupled receptors overexpressed on tumor cells allow the intracellular accumulation of boron. The gastrin-releasing peptide receptor (GRPR) is a well-known target in cancer diagnosis and can potentially be used for BNCT. Here, we present the successful introduction of multiple bis-deoxygalactosyl-carborane building blocks to the GRPR-selective ligand [d-Phe6, β-Ala11, Ala13, Nle14]Bn(6-14) (sBB2L) generating peptide conjugates with up to 80 boron atoms per molecule. Receptor activation was retained, metabolic stability was increased, and uptake into PC3 cells was proven without showing any intrinsic cytotoxicity. Furthermore, undesired uptake into liver cells was suppressed by using l-deoxygalactosyl modified carborane building blocks. Due to its high boron loading and excellent GRPR selectivity, this conjugate can be considered as a promising boron delivery agent for BNCT.
Collapse
Affiliation(s)
- Paul Hoppenz
- Institute of Biochemistry, Faculty of Life Sciences , Leipzig University , Brüderstrasse 34 , 04103 Leipzig , Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Life Sciences , Leipzig University , Brüderstrasse 34 , 04103 Leipzig , Germany
| | - Martin Kellert
- Institute of Inorganic Chemistry , Leipzig University , Johannisallee 29 , 04103 Leipzig , Germany
| | - Robert Kuhnert
- Institute of Inorganic Chemistry , Leipzig University , Johannisallee 29 , 04103 Leipzig , Germany
| | - Stefan Saretz
- Institute of Inorganic Chemistry , Leipzig University , Johannisallee 29 , 04103 Leipzig , Germany
| | | | | | - Bernd Riedl
- Bayer AG , Aprather Weg 18A , Wuppertal , Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry , Leipzig University , Johannisallee 29 , 04103 Leipzig , Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences , Leipzig University , Brüderstrasse 34 , 04103 Leipzig , Germany
| |
Collapse
|
18
|
Kellert M, Hoppenz P, Lönnecke P, Worm DJ, Riedl B, Koebberling J, Beck-Sickinger AG, Hey-Hawkins E. Tuning a modular system - synthesis and characterisation of a boron-rich s-triazine-based carboxylic acid and amine bearing a galactopyranosyl moiety. Dalton Trans 2019; 49:57-69. [PMID: 31808482 DOI: 10.1039/c9dt04031e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of a bis(isopropylidene)-protected galactopyranosyl moiety in s-triazine-based boron-rich carboxylic acids and amines results in soluble and suitable coupling partners for tumour-selective biomolecules with applications as selective agents for boron neutron capture therapy (BNCT). Bearing either a carboxylic acid or primary amine as a functional group, these compounds are highly versatile and thus largely extend the possible coupling strategies with suitable biomolecules. Modification of the gastrin-releasing peptide receptor (GRPR) selective agonist [d-Phe6, β-Ala11, Ala13, Nle14]Bn(6-14) with the carboxylic acid derivative yielded a bioconjugate with an optimal receptor activation and internalisation profile. This demonstrates the great potential of this approach for the development of novel boron delivery agents.
Collapse
Affiliation(s)
- Martin Kellert
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Worm DJ, Hoppenz P, Els-Heindl S, Kellert M, Kuhnert R, Saretz S, Köbberling J, Riedl B, Hey-Hawkins E, Beck-Sickinger AG. Selective Neuropeptide Y Conjugates with Maximized Carborane Loading as Promising Boron Delivery Agents for Boron Neutron Capture Therapy. J Med Chem 2019; 63:2358-2371. [PMID: 31589041 DOI: 10.1021/acs.jmedchem.9b01136] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors like the human Y1 receptor (hY1R) are promising targets in cancer therapy due to their high overexpression on cancer cells and their ability to internalize together with the bound ligand. This mechanism was exploited to shuttle boron atoms into cancer cells for the application of boron neutron capture therapy (BNCT), a noninvasive approach to eliminate cancer cells. A maximized number of carboranes was introduced to the hY1R-preferring ligand [F7,P34]-NPY by solid phase peptide synthesis. Branched conjugates loaded with up to 80 boron atoms per peptide molecule exhibited a maintained receptor activation profile, and the selective uptake into hY1R-expressing cells was demonstrated by internalization studies. In order to ensure appropriate solubility in aqueous solution, we proved the need for eight hydroxyl groups per carborane. Thus, we suggest the utilization of bis-deoxygalactosyl-carborane building blocks in solid phase peptide synthesis to produce selective boron delivery agents for BNCT.
Collapse
Affiliation(s)
- Dennis J Worm
- Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Paul Hoppenz
- Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Leipzig University, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Martin Kellert
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Robert Kuhnert
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Stefan Saretz
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | | | - Bernd Riedl
- Bayer AG, Aprather Weg 18A, 42113 Wuppertal, Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | | |
Collapse
|
20
|
Kellert M, Lönnecke P, Riedl B, Koebberling J, Hey-Hawkins E. Enlargement of a Modular System-Synthesis and Characterization of an s-Triazine-Based Carboxylic Acid Ester Bearing a Galactopyranosyl Moiety and an Enormous Boron Load. Molecules 2019; 24:E3288. [PMID: 31509949 PMCID: PMC6767515 DOI: 10.3390/molecules24183288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 11/26/2022] Open
Abstract
The amount of boron accumulated in tumor tissue plays an important role regarding the success of the boron neutron capture therapy (BNCT). In this article, we report a modular system, combining readily available starting materials, like glycine, 1,3,5-triazine and the well-known 9-mercapto-1,7-dicarba-closo-dodecaborane(12), as well as α-d-galactopyranose for increased hydrophilicity, with a novel boron-rich tris-meta-carboranyl thiol.
Collapse
Affiliation(s)
- Martin Kellert
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| | - Bernd Riedl
- Bayer AG, Aprather Weg 18A, 42113 Wuppertal, Germany.
| | | | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany.
| |
Collapse
|