1
|
Pokochueva EV, Kountoupi E, Janák M, Kuznetsov DA, Prosvirin IP, Müller CR, Fedorov A, Koptyug IV. Implications for the Hydrogenation of Propyne and Propene with Parahydrogen due to the in situ Transformation of Rh 2C to Rh 0/C. Chemphyschem 2024; 25:e202400270. [PMID: 38837531 DOI: 10.1002/cphc.202400270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
NMR spectroscopy studies using parahydrogen-induced polarization have previously established the existence of the pairwise hydrogen addition route in the hydrogenation of unsaturated hydrocarbons over heterogeneous catalysts, including those based on rhodium (Rh0). This pathway requires the incorporation of both hydrogen atoms from one hydrogen molecule to the same product molecule. However, the underlying mechanism for such pairwise hydrogen addition must be better understood. The involvement of carbon, either in the form of carbonaceous deposits on the surface of a catalyst or as a metal carbide phase, is known to modify catalytic properties significantly and thus could also affect the pairwise hydrogen addition route. Here, we explored carbon's role by studying the hydrogenation of propene and propyne with parahydrogen on a Rh2C catalyst and comparing the results with those for a Rh0/C catalyst obtained from Rh2C via H2 pretreatment. While the catalysts Rh2C and Rh0/C differ notably in the rate of conversion of parahydrogen to normal hydrogen as well as in terms of hydrogenation activity, our findings suggest that the carbide phase does not play a significant role in the pairwise H2 addition route on rhodium catalysts.
Collapse
Affiliation(s)
- Ekaterina V Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Institutskaya st. 3A, Novosibirsk, 630090, Russia
- Universite Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS, Villeurbanne, Lyon, 69100, France
| | - Evgenia Kountoupi
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, 8092, Switzerland
| | - Marcel Janák
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, 8092, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, 8092, Switzerland
| | - Igor P Prosvirin
- Boreskov Institute of Catalysis, SB RAS, Acad., Lavrent'yeva Av. 5, Novosibirsk, 630090, Russia
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, 8092, Switzerland
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, 8092, Switzerland
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Institutskaya st. 3A, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Meng L, Pokochueva EV, Chen Z, Fedorov A, Viñes F, Illas F, Koptyug IV. Contrasting Metallic (Rh 0) and Carbidic (2D-Mo 2C MXene) Surfaces in Olefin Hydrogenation Provides Insights on the Origin of the Pairwise Hydrogen Addition. ACS Catal 2024; 14:12500-12511. [PMID: 39169907 PMCID: PMC11334177 DOI: 10.1021/acscatal.4c02534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Kinetic studies are vital for gathering mechanistic insights into heterogeneously catalyzed hydrogenation of unsaturated organic compounds (olefins), where the Horiuti-Polanyi mechanism is ubiquitous on metal catalysts. While this mechanism envisions nonpairwise H2 addition due to the rapid scrambling of surface hydride (H*) species, a pairwise H2 addition is experimentally encountered, rationalized here based on density functional theory (DFT) simulations for the ethene (C2H4) hydrogenation catalyzed by two-dimensional (2D) MXene Mo2C(0001) surface and compared to Rh(111) surface. Results show that ethyl (C2H5*) hydrogenation is the rate-determining step (RDS) on Mo2C(0001), yet C2H5* formation is the RDS on Rh(111), which features a higher reaction rate and contribution from pairwise H2 addition compared to 2D-Mo2C(0001). This qualitatively agrees with the experimental results for propene hydrogenation with parahydrogen over 2D-Mo2C1-x MXene and Rh/TiO2. However, DFT results imply that pairwise selectivity should be negligible owing to the facile H* diffusion on both surfaces, not affected by H* nor C2H4* coverages. DFT results also rule out the Eley-Rideal mechanism appreciably contributing to pairwise addition. The measurable contribution of the pairwise hydrogenation pathway operating concurrently with the dominant nonpairwise one is proposed to be due to the dynamic site blocking at higher adsorbate coverages or another mechanism that would drastically limit the diffusion of H* adatoms.
Collapse
Affiliation(s)
- Ling Meng
- Departament
de Ciència de Materials i Química Física
& Institut de Química Teòrica i Computacional
(IQTCUB), Universitat de Barcelona, c/Martí i Franquès
1-11, 08028 Barcelona, Spain
| | - Ekaterina V. Pokochueva
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russian
Federation
| | - Zixuan Chen
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse
21, Zürich 8092, Switzerland
| | - Alexey Fedorov
- Department
of Mechanical and Process Engineering, ETH
Zürich, Leonhardstrasse
21, Zürich 8092, Switzerland
| | - Francesc Viñes
- Departament
de Ciència de Materials i Química Física
& Institut de Química Teòrica i Computacional
(IQTCUB), Universitat de Barcelona, c/Martí i Franquès
1-11, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física
& Institut de Química Teòrica i Computacional
(IQTCUB), Universitat de Barcelona, c/Martí i Franquès
1-11, 08028 Barcelona, Spain
| | - Igor V. Koptyug
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russian
Federation
| |
Collapse
|
3
|
Wang W, Wang Q, Xu J, Deng F. Understanding Heterogeneous Catalytic Hydrogenation by Parahydrogen-Induced Polarization NMR Spectroscopy. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Weiyu Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
4
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
5
|
Pokochueva EV, Svyatova AI, Burueva DB, Koptyug IV. Chemistry of nuclear spin isomers of the molecules: from the past of the Universe to emerging technologies. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Du Y, Behera RK, Maligal-Ganesh RV, Chen M, Zhao TY, Huang W, Bowers CR. Mesoporous Silica Encapsulated Platinum-Tin Intermetallic Nanoparticles Catalyze Hydrogenation with an Unprecedented 20% Pairwise Selectivity for Parahydrogen Enhanced Nuclear Magnetic Resonance. J Phys Chem Lett 2022; 13:4125-4132. [PMID: 35506614 DOI: 10.1021/acs.jpclett.2c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supported noble metals offer key advantages over homogeneous catalysts for in vivo applications of parahydrogen-based hyperpolarization. However, their performance is compromised by randomization of parahydrogen spin order resulting from rapid hydrogen adatom diffusion. The diffusion on Pt surfaces can be suppressed by introduction of Sn to form Pt-Sn intermetallic phases. Herein, an unprecedented pairwise selectivity of 19.7 ± 1.1% in the heterogeneous hydrogenation of propyne using silica encapsulated Pt-Sn intermetallic nanoparticles is reported. This high level of selectivity exceeds that of all supported metal catalysts by at least a factor of 3. Moreover, the pairwise selectivity for alkyne hydrogenation is about 2 times higher than for alkene hydrogenation, an observation attributed to the higher coverage of the former and its effect on diffusion. Lastly, PtSn@mSiO2 nanoparticles exhibited improved coking resistance, and any loss of activity is shown to be fully reversible through high-temperature oxidation-reduction cycling.
Collapse
Affiliation(s)
- Yong Du
- Department of Chemistry and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Ranjan K Behera
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Minda Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Tommy Yunpu Zhao
- Department of Chemistry and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Clifford R Bowers
- Department of Chemistry and National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Buntkowsky G, Theiss F, Lins J, Miloslavina YA, Wienands L, Kiryutin A, Yurkovskaya A. Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Adv 2022; 12:12477-12506. [PMID: 35480380 PMCID: PMC9039419 DOI: 10.1039/d2ra01346k] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) are analytical and diagnostic tools that are essential for a very broad field of applications, ranging from chemical analytics, to non-destructive testing of materials and the investigation of molecular dynamics, to in vivo medical diagnostics and drug research. One of the major challenges in their application to many problems is the inherent low sensitivity of magnetic resonance, which results from the small energy-differences of the nuclear spin-states. At thermal equilibrium at room temperature the normalized population difference of the spin-states, called the Boltzmann polarization, is only on the order of 10-5. Parahydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, which has widespread applications in Chemistry, Physics, Biochemistry, Biophysics, and Medical Imaging. PHIP creates its signal-enhancements by means of a reversible (SABRE) or irreversible (classic PHIP) chemical reaction between the parahydrogen, a catalyst, and a substrate. Here, we first give a short overview about parahydrogen-based hyperpolarization techniques and then review the current literature on method developments and applications of various flavors of the PHIP experiment.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Franziska Theiss
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Jonas Lins
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Laura Wienands
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Alexey Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| | - Alexandra Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| |
Collapse
|
8
|
Salnikov OG, Burueva DB, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Koptyug IV. Mechanisms of Methylenecyclobutane Hydrogenation over Supported Metal Catalysts Studied by Parahydrogen-Induced Polarization Technique. Chemphyschem 2022; 23:e202200072. [PMID: 35099100 DOI: 10.1002/cphc.202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/08/2022]
Abstract
In this work the mechanism of methylenecyclobutane hydrogenation over titania-supported Rh, Pt and Pd catalysts was investigated using parahydrogen-induced polarization (PHIP) technique. It was found that methylenecyclobutane hydrogenation leads to formation of a mixture of reaction products including cyclic (1-methylcyclobutene, methylcyclobutane), linear (1-pentene, cis-2-pentene, trans-2-pentene, pentane) and branched (isoprene, 2-methyl-1-butene, 2-methyl-2-butene, isopentane) compounds. Generally, at lower temperatures (150-350 °C) the major reaction product was methylcyclobutane while higher temperature of 450 °C favors formation of branched products isoprene, 2-methyl-1-butene and 2-methyl-2-butene. PHIP effects were detected for all reaction products except methylenecyclobutane isomers 1-methylcyclobutene and isoprene implying that the corresponding compounds can incorporate two atoms from the same parahydrogen molecule in a pairwise manner in the course of the reaction in particular positions. The mechanisms were proposed for the formation of these reaction products based on PHIP results.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, Laboratory of Magnetic Resonance Microimaging, 3A Institutskaya street, 630090, Novosibirsk, RUSSIAN FEDERATION
| | - Dudari B Burueva
- International Tomography Center SB RAS: Mezdunarodnyj tomograficeskij centr SO RAN, Laboratory of magnetic resonance microimaging, 630090, Novosibirsk, RUSSIAN FEDERATION
| | - Larisa M Kovtunova
- Boreskov Institute of Catalysis SB RAS: FGBUN Institut kataliza im G K Boreskova Sibirskogo otdelenia Rossijskoj akademii nauk, Department of physico-chemical methods of research, Novosibirsk, RUSSIAN FEDERATION
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS: FGBUN Institut kataliza im G K Boreskova Sibirskogo otdelenia Rossijskoj akademii nauk, Administration, Novosibirsk, RUSSIAN FEDERATION
| | - Kirill V Kovtunov
- International Tomography Center SB RAS: Mezdunarodnyj tomograficeskij centr SO RAN, Laboratory of magnetic resonance microimaging, Novosibirsk, RUSSIAN FEDERATION
| | - Igor V Koptyug
- International Tomography Center SB RAS: Mezdunarodnyj tomograficeskij centr SO RAN, Laboratory of magnetic resonance microimaging, Novosibirsk, RUSSIAN FEDERATION
| |
Collapse
|
9
|
New aspects of parahydrogen-induced polarization for C2—C3 hydrocarbons using metal complexes. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Wang W, Sun Q, Wang Q, Li S, Xu J, Deng F. Heterogeneous parahydrogen induced polarization on Rh-containing silicalite-1 zeolites: effect of the catalyst structure on signal enhancement. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00615d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parahydrogen-induced polarization (PHIP) on Rh-containing silicalite-1 catalysts is studied using both liquid-state and in situ magic angle spinning NMR techniques and the catalyst structure effect is revealed.
Collapse
Affiliation(s)
- Weiyu Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenhui Li
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Salnikov OG, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Shchepin RV, Koptyug IV, Chekmenev EY. Heterogeneous 1 H and 13 C Parahydrogen-Induced Polarization of Acetate and Pyruvate Esters. Chemphyschem 2021; 22:1389-1396. [PMID: 33929077 PMCID: PMC8249325 DOI: 10.1002/cphc.202100156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging of [1-13 C]hyperpolarized carboxylates (most notably, [1-13 C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of 1 H and 13 C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1-13 C-enriched forms with parahydrogen over Rh/TiO2 catalysts in methanol-d4 and in D2 O. The maximum obtained 1 H polarization was 0.6±0.2 % (for propyl acetate in CD3 OD), while the highest 13 C polarization was 0.10±0.03 % (for ethyl acetate in CD3 OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon-carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen-induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum 1 H and 13 C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Roman V Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, 57701, Rapid City, South Dakota, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, Michigan, United States
- Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
12
|
Pokochueva EV, Burueva DB, Salnikov OG, Koptyug IV. Heterogeneous Catalysis and Parahydrogen-Induced Polarization. Chemphyschem 2021; 22:1421-1440. [PMID: 33969590 DOI: 10.1002/cphc.202100153] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Indexed: 01/11/2023]
Abstract
Parahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP. Various practical applications of HET-PHIP, both for catalytic studies and for potential production of hyperpolarized contrast agents for MRI, are described.
Collapse
Affiliation(s)
- Ekaterina V Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|
13
|
Camposeco R, Hinojosa-Reyes M, Castillo S, Nava N, Zanella R. Synthesis and characterization of highly dispersed bimetallic Au-Rh nanoparticles supported on titanate nanotubes for CO oxidation reaction at low temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10734-10748. [PMID: 33099755 DOI: 10.1007/s11356-020-11341-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Low-temperature CO oxidation was carried out by using rhodium incorporated into titanate nanotubes (Rh/NTs) prepared by the sol-gel and hydrothermal methods; otherwise, gold nanoparticles were deposited homogeneously onto the Rh/NT surface through the deposition-precipitation with urea (DPU) method. The Au-Rh/NT sample exhibited high metal dispersion (55%), outstanding CO oxidation at low temperature, and better resistance to deactivation than the monometallic Rh/NT and Au/NT samples. The characterization of bimetallic samples, with particle sizes from 1 to 3 nm, revealed the remarkable presence of interacting Au and Rh species in metallic state. In this way, Au0 and Rh0 were answerable for the higher catalytic activity observed in the bimetallic samples. The interaction between Au and Rh in the nanoparticles of Au-Rh/NT promoted a synergistic effect on the CO oxidation reaction, explained by the creation of new CO adsorption sites.
Collapse
Affiliation(s)
- Roberto Camposeco
- Instituto de Ciencias Aplicadas y Tecnología, ICAT, Universidad Nacional Autónoma de México, UNAM, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Mariana Hinojosa-Reyes
- Faculty of Sciences, Autonomous University of San Luis Potosí, SLP, 78000, San Luis Potosí, Mexico
| | - Salvador Castillo
- Product Technology, Mexican Institute of Petroleum, 07730, Mexico City, Mexico
- Department of Chemical Engineering, ESIQIE-IPN, 75876, Mexico City, Mexico
| | - Noel Nava
- Product Technology, Mexican Institute of Petroleum, 07730, Mexico City, Mexico
| | - Rodolfo Zanella
- Instituto de Ciencias Aplicadas y Tecnología, ICAT, Universidad Nacional Autónoma de México, UNAM, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico.
| |
Collapse
|