1
|
Tian W, Zhang C, Zheng Q, Hu S, Yan W, Yue L, Chen Z, Zhang C, Kong Q, Sun L. In Silico Screening of Bioactive Peptides in Stout Beer and Analysis of ACE Inhibitory Activity. Foods 2024; 13:1973. [PMID: 38998479 PMCID: PMC11241375 DOI: 10.3390/foods13131973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Stout beer was selected as the research object to screen angiotensin-converting enzyme (ACE) inhibitory peptides. The peptide sequences of stout beer were identified using ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry with de novo, and 41 peptides were identified with high confidence. Peptide Ranker was used to score the biological activity and six peptides with a score ≥ 0.5 were screened to predict their potential ACE inhibitory (ACEI) activity. The toxicity, hydrophilicity, absorption, and excretion of these peptides were predicted. In addition, molecular docking between the peptides and ACE revealed a significant property of the peptide DLGGFFGFQR. Furthermore, molecular docking conformation and molecular dynamics simulation revealed that DLGGFFGFQR could be tightly bound to ACE through hydrogen bonding and hydrophobic interaction. Lastly, the ACEI activity of DLGGFFGFQR was confirmed using in vitro evaluation and the IC50 value was determined to be 24.45 μM.
Collapse
Affiliation(s)
- Wenhui Tian
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Cui Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 266021, China; (C.Z.); (S.H.)
| | - Qi Zheng
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 266021, China; (C.Z.); (S.H.)
| | - Weiqiang Yan
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Ling Yue
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Zhijun Chen
- Shanghai Shuneng Irradiation Technology Co., Ltd., Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Ci Zhang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Qiulian Kong
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.T.); (Q.Z.); (W.Y.); (L.Y.); (C.Z.)
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Shawky E, Bassam SM, Marzouk HS, Ghareeb DA, El Sohafy SM. Exploring the dynamics of bioactive metabolites changes in barley grains (Hordeum vulgare L.) during roasting: Insights from UPLC-QqQ-MS/MS analysis combined to chemometrics. Food Res Int 2024; 178:113961. [PMID: 38309915 DOI: 10.1016/j.foodres.2024.113961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
This investigation delves into the dynamic metabolic shifts within barley grains during the roasting process, employing UPLC-QqQ-MS/MS analysis. The complex spectrum of metabolites before and after roasting is revealed. The resulting data, unveils substantial transformations in chemical composition during roasting. A total of 62 chromatographic peaks spanning phenolic compounds, flavones, Millard Reaction Products, amino acids, lignans, vitamins, folates, and anthocyanins were annotated. Leveraging UPLC-QqQ-MS/MS analysis, we scrutinized the intricate metabolite profile before and after roasting where the roasting process was found to trigger dynamic changes across diverse metabolite classes particularly Millard Reaction Products, produced through the Maillard reaction, with dihydro-5-methyl-5H-cyclopentapyrazine, maltol and hydroxy maltol emerging as discerning markers of roasting progression. Amino acids and sugars showed degradation, while beta-glucan, a signature barley sugar, experienced notable decline. Folate derivatives witnessed pronounced reduction, aligning with the heat sensitivity of folates. Harnessing the power of multivariate data analysis, the consequences of roasting materialize through distinct clusters in PCA and OPLS-DA plots. Noteworthy, roasting duration governs the trajectory of metabolic divergence, culminating in the identification of roasting-specific markers. Epigallocatechin, procyanidin B, 10-HCO-H4 folate, and hordatine A emerge as pivotal discriminators. Orthogonal Projection to Latent Structure (OPLS) analysis linked anti-inflammatory activity with 30-min, 1-hour, and 1.5-hour roasted samples, with hordatine B in addition to some Millard Reaction Products being correlated with pro-inflammatory marker downregulation.. This study encapsulates the intricate metabolic metamorphosis ignited by roasting in barley grains, offering a holistic comprehension of their potential health-enhancing attributes. Key metabolites act as poignant indicators of these transformations, substantiating the complex interplay between roasting and the barley grain metabolome.
Collapse
Affiliation(s)
- Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Samar M Bassam
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University in Alexandria, Egypt
| | - Hanan S Marzouk
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University in Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio‑Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Samah M El Sohafy
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
3
|
Zhuang GD, Gu WT, Xu SH, Cao DM, Deng SM, Chen YS, Wang SM, Tang D. Rapid screening of antioxidant from natural products by AAPH-Incubating HPLC-DAD-HR MS/MS method: A case study of Gardenia jasminoides fruit. Food Chem 2022; 401:134091. [PMID: 36116299 DOI: 10.1016/j.foodchem.2022.134091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
A new AAPH-Incubating HPLC-DAD-HR MS/MS method was developed for the rapid and high-throughput screening of antioxidants directly in natural products and applied to Gardenia jasminoides fruit. This method was assumed that the peak areas of compounds with potential antioxidant activity in HPLC chromatograms would be significantly reduced or disappeared after incubating with the AAPH which can release ROO at physiological conditions (37 °C, pH 7.4). Additionally, the activity of antioxidants can be evaluated by comparing the peak reduction rates and the screened components can be further identified by HRMS/MS. Then, 17 potential natural antioxidants from the crude extract of GJF was screened. Among them, three major components including crocin I, crocin II and crocetin showed excellent ROO scavenging activity, which were further validated by the ORAC assay. In conclusion, our study provided a simple and effective strategy to rapidly screen antioxidants in natural products.
Collapse
Affiliation(s)
- Guo-Dong Zhuang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shu-Hong Xu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dong-Min Cao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Si-Min Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yong-Sheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Olivares-Galván S, Marina M, García M. Extraction of valuable compounds from brewing residues: Malt rootlets, spent hops, and spent yeast. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Lee Y, Lee HJ, Shin HB, Ham JR, Lee MK, Lee MJ, Son YJ. Triphenyl hexene, an active substance of Betaone barley water extract, inhibits RANKL-induced osteoclast differentiation and LPS-induced osteoporosis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Fukui M, Islam MZ, Lai HM, Kitamura Y, Kokawa M. Effects of roasting on storage degradability and processing suitability of brown rice powder. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Polyphenolic HRMS Characterization, Contents and Antioxidant Activity of Curcuma longa Rhizomes from Costa Rica. Antioxidants (Basel) 2022; 11:antiox11040620. [PMID: 35453305 PMCID: PMC9030737 DOI: 10.3390/antiox11040620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 01/30/2023] Open
Abstract
Curcuma longa constitutes an important source of secondary metabolites that have been associated with multiple health benefits. For instance, curcumin, demethoxycurcumin and bisdemethoxycurcumin, have been found to perform important biological activities, such as anti-inflammatory, antioxidant, anticancer, antimicrobial, antihypertensive and anticoagulant. These promising results prompted this research to evaluate the polyphenols of C. longa rhizomes in Costa Rica. The present work reports a comprehensive study on the polyphenolic profile and the contents of the three main curcuminoids as well as the antioxidant activity of extracts from C. longa rhizomes (n = 12) produced in Costa Rica. Through UPLC-QTOF-ESI MS, a total of 33 polyphenols were identified, grouped in eight types of structures. In addition, our findings on the main curcuminoids using UPLC-DAD show all rhizomes complying with total curcuminoids (TC) content established by the United States Pharmacopeia (USP). At an individual level, samples NW-3 and NE-1 show the higher contents (118.7 and 125.0 mg/g dry material), representing more than twice the average values of the lowest samples. These samples also exhibit the highest Folin−Ciocalteu (FC) reducing capacity results as well as the best DPPH (IC50 15.21 and 16.07 µg extract/mL) and NO (IC50 between 52.5 and 54.3 µg extract/mL) antioxidant values. Further, Pearson correlation analysis findings indicated positive correlation (p < 0.05) between TC, CUR with FC results (r = 0.833 and r = 0.867 respectively) and negative correlation (p < 0.05) between CUR, TC and FC with DPPH results (r = −0.898, r = −0.911, and r = −0.890, respectively) and between NO results and DPPH (r = −0.805, p < 0.05). Finally, results for Principal Component Analysis (PCA) showed composition variability associated with their region of origin with products from the Northeastern (NE) region exhibiting higher average values for FC, TC and antioxidant activities. Further, PCA confirmed that two samples, namely NE-1 and NW-3, stand out by presenting the highest PC1 due to their particularly high TC, CUR and antioxidant activities. Consequently, our findings agree with previous results indicating the importance of C. longa extracts to elaborate products with potential benefits for health, while delivering extracts with higher levels of curcuminoids than previous reports and exhibiting high antioxidant activity.
Collapse
|
8
|
Chen X, Sun L, Li D, Lai X, Wen S, Chen R, Zhang Z, Li Q, Sun S. Green tea peptides ameliorate diabetic nephropathy by inhibiting the TGF-β/Smad signaling pathway in mice. Food Funct 2022; 13:3258-3270. [PMID: 35234233 DOI: 10.1039/d1fo03615g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetic nephropathy (DN) is the most important cause of middle and late-stage chronic kidney disease. Green tea polypeptides are extracted from tea pomace, and exhibit various pharmacological effects. In this study, we analyzed the reno-protective effects of green tea peptides in diabetic db/db mice, and explored the underlying mechanisms. Peptide treatment for 5 weeks significantly reduced the blood glucose levels and other indices of diabetes, and alleviated renal injury measured in terms of blood creatinine, urea nitrogen and urinary albumin/urinary creatinine levels. Mechanistically, the green tea peptides downregulated p-Smad2/3, α-SMA, ZO-1 and vimentin proteins in the kidney tissues, and elevated Smad7. Thus, green tea peptides inhibited the deposition of ECM proteins by suppressing excessive activation of the TGF-β/Smad signaling pathway and reducing fibronectin levels. On the other hand, tea peptides ameliorated renal injury by inhibiting the production of inflammatory factors (iNOS and TNF-α) by suppressing the NF-κB signaling pathway. In addition, we confirmed the inhibitory effect of green tea peptides on the TGF-β/Smad signaling pathway in TGF-β1-stimulated HK-2 cells. Therefore, tea peptides can be considered as an effective candidate for alleviating DN.
Collapse
Affiliation(s)
- Xuhui Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China. .,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
9
|
Antioxidant and Cytotoxic Activities of A Novel Isomeric Molecule (PF5) Obtained from Methanolic Extract of Pleurotus Florida Mushroom. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Qin Q, Liu J, Hu S, Dong J, Yu J, Fang L, Huang S, Wang L. Comparative proteomic analysis of different barley cultivars during seed germination. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Meng L, Li K, Li J, Shang Y, Cui F, Hou C, Wang Q, Hang F, Li W, Shi C, Xie C, Doherty WO. Understanding the pathways for irreversible aggregate clusters formation in concentrated sugarcane juice derived from the membrane clarification process. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Kim S, La J, Seo H, Lee Y, Yang SO, Lee J. Chemical changes and antioxidant activities of heated whole barley extracts. Food Sci Biotechnol 2021; 30:1269-1276. [PMID: 34603824 DOI: 10.1007/s10068-021-00952-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Chemical profiles of ethanolic (70%) and aqueous extracts of whole barley heated at 150, 190, and 230 °C were analyzed by GC-MS and their antioxidant properties were studied in vitro, in bulk oil, or in an oil-in-water (O/W) emulsion systems. More chemicals were detected in the ethanolic extract than in the aqueous extract from heated barley; heating decreased the contents of detected chemicals. Organic acids, mono- and di-saccharides, sugar alcohols, and glycerol were the major chemicals detected in both the extracts. Ethanolic extracts possessed higher in vitro antioxidant activities than the aqueous extracts. However, this trend was not clearly observed in the bulk oil and O/W emulsion. For O/W emulsions, ethanolic extracts obtained following heating at 150 °C prevented lipid oxidation better than others. Therefore, heat treatment at 150 °C is recommended to enhance the antioxidant activities of whole barley.
Collapse
Affiliation(s)
- SungHwa Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
| | - JinWook La
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
| | - HeeBin Seo
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
| | - YoonHee Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
| | - Seung-Ok Yang
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, 08826 Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
| |
Collapse
|
13
|
Zhang Z, Zhou X, Wang D, Fang C, Zhang W, Wang C, Huang Z. Lysozyme-based composite membranes and their potential application for active packaging. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Cui Y, Lu H, Tian Z, Deng D, Ma X. Current trends of Chinese herbal medicines on meat quality of pigs. A review. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/138775/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Zhang Y, Yang G, Wang X, Ni G, Cui Z, Yan Z. Sagittaria trifolia tuber: bioconstituents, processing, products, and health benefits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3085-3098. [PMID: 33270242 DOI: 10.1002/jsfa.10977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Sagittaria trifolia is an aquatic plant that is distributed worldwide. The edible tuber part of S. trifolia is a very common and popular vegetable in China. The aim of the present review is to discuss the discovery of nutraceuticals from S. trifolia tuber by reviewing its major constituents, food processing, food products, and health-promoting benefits. Sagittaria trifolia tuber comprises a series of nutritional and bioactive constituents, including dietary fibers, amino acids, minerals, starches, non-starch polysaccharides, diterpenoids, colchicine, phenols, and organic acids. Food processing affects its flavor, biocomponents, and bioactivity. Numerous S. trifolia tuber-based food products and nutraceuticals have been developed, but new categories of products and the anticipated functions still need to be explored. The non-starch polysaccharides could be the central ingredients that contribute to the plant's antioxidant, hepatoprotective, hypoglycemic, lipid-regulating, and immunostimulatory properties. Of these, antioxidant and hepatoprotective effects have been thoroughly investigated. Procedures for the extraction and purification of polysaccharides influence their health-promoting actions. Overall, S. trifolia tuber is an underutilized aquatic vegetable species that is an emerging subject for nutraceutical research. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Guihong Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Xinyu Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Gaoyang Ni
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Zhumei Cui
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Zhaowei Yan
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Ahmed IAM, Uslu N, Al Juhaimi F, Özcan MM, Osman MA, Alqah HAS, Babiker EE, Ghafoor K. Effect of roasting treatments on total phenol, antioxidant activity, fatty acid compositions, and phenolic compounds of teff grains. Cereal Chem 2021. [DOI: 10.1002/cche.10442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Isam A. Mohamed Ahmed
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Nurhan Uslu
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Fahad Al Juhaimi
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Mehmet Musa Özcan
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya Turkey
| | - Magdi A. Osman
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Hesham A. S. Alqah
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Elfadıl E. Babiker
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Kashif Ghafoor
- Department of Food Science & Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| |
Collapse
|
17
|
Hong Q, Geng S, Ji J, Ye Y, Xu D, Zhang Y, Sun X. Separation and identification of antioxidant chemical components in Diaphragma juglandis Fructus and functional evaluation in Caenorhabditis elegans. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
18
|
Li HM, Xu TT, Peng QX, Chen YS, Zhou H, Lu YY, Yan RA. Enzymatic acylation of rutin with benzoic acid ester and lipophilic, antiradical, and antiproliferative properties of the acylated derivatives. J Food Sci 2021; 86:1714-1725. [PMID: 33844282 DOI: 10.1111/1750-3841.15703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/05/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022]
Abstract
Rutin (3',4',5,7-tetrahydroxy-flavone-3-rutinoside) was enzymatically acylated with benzoic acid and its esters (methyl benzoate and vinyl benzoate) using Thermomyces lanuginosus lipase (Lipozyme TLIM). The acylation reaction was optimized by varying the reaction medium, reaction temperature, acyl donor, substrate molar ratio, and reaction time. The highest conversion yield (76%) was obtained in tert-amyl alcohol (60 °C, 72 hr) using vinyl benzoate (molar ratio of 1:10) as acyl donor. The acylation occurred at the 2'''-OH and 4'''-OH of the rhamnose unit and the 2''-OH position of the glucose moieties. Three novel rutin acylated derivatives (compounds 1-3) were purified and characterized by HR-MS and 1D and 2D NMR spectroscopy. We found that acylation significantly improved lipophilicity, capacity to inhibit lipid peroxidation, anticancer capacity and substantially maintained the antioxidant activity of rutin. This research provides important insights in the acylation of flavonoids with different glycosyl moieties. PRACTICAL APPLICATION: In this study, three novel rutin derivatives were successfully synthesized and the highest conversion yield (76%) was obtained by reacting the rutin and vinyl benzoate at molar ratio of 1:10 in tert-amyl alcohol for 72 hr at 60 °C. Introducing a benzoic acid substituent into rutin molecule significantly improved their lipophilicity and inhibition of lipid peroxidation in lipophilic system. Furthermore, this study demonstrated that acylation significantly improved anticancer capacity and substantially maintained the antioxidant activity.
Collapse
Affiliation(s)
- Hai-Mei Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Ting-Ting Xu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Qing-Xia Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Yong-Sheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Yu-Yun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore
| | - Ri-An Yan
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China.,College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Myint KZ, Zhou Z, Xia Y, Fang Y, Wu M, Zhu S, Shen J. Stevia polyphenols: A stable antioxidant that presents a synergistic effect with vitamin C. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Khaing zar Myint
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education) School of Chemical and Materials Engineering Jiangnan University Wuxi China
| | - Zhuoyu Zhou
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education) School of Chemical and Materials Engineering Jiangnan University Wuxi China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education) School of Chemical and Materials Engineering Jiangnan University Wuxi China
| | - Yun Fang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education) School of Chemical and Materials Engineering Jiangnan University Wuxi China
| | - Meina Wu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education) School of Chemical and Materials Engineering Jiangnan University Wuxi China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Jie Shen
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education) School of Chemical and Materials Engineering Jiangnan University Wuxi China
| |
Collapse
|
20
|
Phenolic profiles, bioaccessibility and antioxidant activity of plum (Prunus Salicina Lindl). Food Res Int 2021; 143:110300. [PMID: 33992320 DOI: 10.1016/j.foodres.2021.110300] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Plum (Prunus Salicina Lindl) is a rich source of phenolic compounds. However, the bound phenolics and its bioaccessibility and antioxidant activity remain unclear. Hence, the purpose of this study was to determine: 1) phenolic profiles of plum, including both free and bound phenolic fractions, 2) bioaccessibility of phenolic compounds in plum during simulated gastrointestinal digestions, 3) their antioxidant properties. A total of 17 phenolic compounds were identified by UPLC-Q-Exactive Orbitrap/MS with most epicatechin, neochlorogenic acid and procyanidin B2 in the free phenolics fraction, while catechin and epicatechin was the main compounds in the bound phenolics fraction. After the gastrointestinal digestion phase, the most bioaccessible phenolics were quercetin-pentoside (61.64%), cyanidin-3-O-glucoside (43.26%), and naringenin-7-O-β-D-glucoside (42.04%). The antioxidant capacity of both undigested plum and its digested fractions showed a positive correlation with the total phenolics, and with specific individual phenolic compounds such as neochlorogenic acid, epicatechin and procyanidin B2 in undigested plum whereas catechin, neochlorogenic acid, and epicatechin in digested one. The results confirm that bound fraction of plum contribution to the total phenolic content must be taken into account in the assessment of the improving human health effects of plum.
Collapse
|
21
|
Li C, Wang E, Elshikh MS, Alwahibi MS, Wang W, Wu G, Shen Y, Abbasi AM, Shan S. Extraction and purification of total flavonoids from Gnaphalium affine D. Don and their evaluation for free radicals’ scavenging and oxidative damage inhabitation potential in mice liver. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
22
|
Analysis of Physicochemical Parameters of Congress Worts Prepared from Special Legume Seed Malts, Acquired with and without Use of Enzyme Preparations. Foods 2021; 10:foods10020304. [PMID: 33540842 PMCID: PMC7912961 DOI: 10.3390/foods10020304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022] Open
Abstract
This study was conducted to produce malt from legume seeds (chickpea, lentil, pea, and vetch) and test whether malting with parameters, typically barley grain, will result in well-modified legume seed malt. Analysis of malt was performed by producing congress worts from legume seed malts. Concentration of phenolic compounds, as well as antioxidant activity of legume seed malts was analysed. Acquired worts were characterised with poor technological characteristics (wort extract, wort volume, saccharification time, brewhouse efficiency); however, the malting process increased concentration of phenolic compounds and antioxidant activity of the plant material. Subsequent mashing tests with addition of different external enzymes and/or gelatinisation of legume seed malt were performed. Use of external enzymes improved saccharification time, extract content, wort volume, as well brewhouse efficiency in the case of some legume seed malts. The best brewhouse efficiencies and highest extract values were acquired by the samples prepared with 30% of gelatinised vetch malt or chickpea malt mixed with 70% of Pilsner malt. The study shows that there is possibility of creating legume seed malts, but malting and mashing characteristics need to be customised for these special malts.
Collapse
|
23
|
Sruthi NU, Premjit Y, Pandiselvam R, Kothakota A, Ramesh SV. An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures. Food Chem 2021; 348:129088. [PMID: 33515948 DOI: 10.1016/j.foodchem.2021.129088] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 11/26/2022]
Abstract
Roasting is a food processingtechnique that employs the principle of heating to cook the product evenly and enhance the digestibility, palatability and sensory aspects of foods with desirable structural modifications of the food matrix. With the burgeoning demand for fortified roasted products along with the concern for food hygiene and the effects of harmful compounds, novel roasting techniques, and equipment to overcome the limitations of conventional operations are indispensable. Roasting techniques employing microwave, infrared hot-air, superheated steam, Revtech roaster, and Forced Convection Continuous Tumble (FCCT) roasting have been figuratively emerging to prominence for effectively roasting different foods without compromising the nutritional quality. The present review critically appraises various conventional and emerging roasting techniques, their advantages and limitations, and their effect on different food matrix components, functional properties, structural attributes, and sensory aspects for a wide range of products. It was seen that thermal processing at high temperatures for increased durations affected both the physicochemical and structural properties of food. Nevertheless, novel techniques caused minimum destructive impacts as compared to the traditional processes. However, further studies applying novel roasting techniques with a wide range of operating conditions on different types of products are crucial to establish the potential of these techniques in obtaining safe, quality foods.
Collapse
Affiliation(s)
- N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Yashaswini Premjit
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod 671124, India.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - S V Ramesh
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod 671124, India
| |
Collapse
|
24
|
Li M, Chen X, Deng J, Ouyang D, Wang D, Liang Y, Chen Y, Sun Y. Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chem 2020; 332:127429. [DOI: 10.1016/j.foodchem.2020.127429] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/07/2023]
|
25
|
Lee ES, Lee EY, Yoon J, Hong A, Nam SJ, Ko J. Sarmentosamide, an Anti-Aging Compound from a Marine-Derived Streptomyces sp. APmarine042. Mar Drugs 2020; 18:md18090463. [PMID: 32927886 PMCID: PMC7551700 DOI: 10.3390/md18090463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Many bioactive materials have been isolated from marine microorganisms, including alkaloids, peptides, lipids, mycosporine-like amino acids, glycosides, and isoprenoids. Some of these compounds have great potential in the cosmetic industry due to their photo-protective, anti-aging, and anti-oxidant activities. In this study, sarmentosamide (1) was isolated from marine-derived Streptomyces sp. APmarine042, after which its capacity to decrease skin aging was examined in-vitro. Sarmentosamide (1) was found to significantly reduce UVB-induced matrix metalloproteinase-1 (MMP-1) expression in normal human dermal fibroblasts (NHDFs) by inhibiting the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) phosphorylation, which are regulatory pathways upstream of MMP-1 transcription. Additionally, we confirmed that sarmentosamide (1) decreased tumor necrosis factor-alpha (TNF-α), induced MMP-1 secretion in NHDFs, and exhibited free-radical scavenging activity, as demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Therefore, our study suggests that sarmentosamide (1) could be a promising anti-aging agent that acts via the downregulation of MMP-1 expression.
Collapse
Affiliation(s)
- Eun-Soo Lee
- Amorepacific Corporation R&D Center, Yongin 17074, Korea;
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (J.Y.)
| | - Jisoo Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (J.Y.)
| | - Ahreum Hong
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (J.Y.)
- Correspondence: (S.-J.N.); (J.K.); Tel.: +82-2-3277-6805 (S.-J.N.); +82-31-280-5928 (J.K.)
| | - Jaeyoung Ko
- Amorepacific Corporation R&D Center, Yongin 17074, Korea;
- Correspondence: (S.-J.N.); (J.K.); Tel.: +82-2-3277-6805 (S.-J.N.); +82-31-280-5928 (J.K.)
| |
Collapse
|
26
|
Chen Y, Shan S, Cao D, Tang D. Steam flash explosion pretreatment enhances soybean seed coat phenolic profiles and antioxidant activity. Food Chem 2020; 319:126552. [PMID: 32151898 DOI: 10.1016/j.foodchem.2020.126552] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/08/2020] [Accepted: 03/02/2020] [Indexed: 01/09/2023]
Abstract
The resource utilization of soybean seed coats is currently poor. In this study, steam flash explosion (SFE) pretreatment was performed to extract valuable phytochemicals from soybean seed coats. The total content of phytochemicals and the antioxidant activity of extracts from SFE-treated soybean seed coat were systematically evaluated. On the basis of the application value of antioxidant activity, we optimized the process parameters of SFE-pretreated soybean seed coat to maximize the antioxidant activity. Additionally, the subsequently obtained ethyl acetate fraction with the highest antioxidant activity was analysed using HPLC-DAD-Q-Orbitrap HRMS/MS analysis. The results indicated that SFE could enhance the release of both aglycone and acetylglucoside forms of isoflavones from the cellular structure and enhance the antioxidant activity of soybean seed coats. This study provides evidence that SFE is a novel thermal processing technology with high efficiency and low energy consumption that improves the phytochemical composition and bioactivity of soybean seed coats.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Sharui Shan
- The First Affiliated Hospital of Jinan University (Guangzhou Overseas Chinese Hospital), Guangzhou 510632, China
| | - Dongmin Cao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of SATCM, Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of SATCM, Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3836172. [PMID: 32318238 PMCID: PMC7149453 DOI: 10.1155/2020/3836172] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Barley plays an important role in health and civilization of human migration from Africa to Asia, later to Eurasia. We demonstrated the systematic mechanism of functional ingredients in barley to combat chronic diseases, based on PubMed, CNKI, and ISI Web of Science databases from 2004 to 2020. Barley and its extracts are rich in 30 ingredients to combat more than 20 chronic diseases, which include the 14 similar and 9 different chronic diseases between grains and grass, due to the major molecular mechanism of six functional ingredients of barley grass (GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan) and grains (β-glucans, polyphenols, arabinoxylan, phytosterols, tocols, and resistant starch). The antioxidant activity of barley grass and grain has the same and different functional components. These results support findings that barley grain and its grass are the best functional food, promoting ancient Babylonian and Egyptian civilizations, and further show the depending functional ingredients for diet from Pliocene hominids in Africa and Neanderthals in Europe to modern humans in the world. This review paper not only reveals the formation and action mechanism of barley diet overcoming human chronic diseases, but also provides scientific basis for the development of health products and drugs for the prevention and treatment of human chronic diseases.
Collapse
|
28
|
Wang Z, Li S, Ge S, Lin S. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3330-3343. [PMID: 32092268 DOI: 10.1021/acs.jafc.9b06574] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phenolic compounds are important functional bioactive substances distributed in various food plants. They have gained wide interest from researchers due to their multiple health benefits. There are two forms of phenolic compounds: free form and bound form. The latter is also called bound phenolics (BPs), which are found mainly in the cell wall and distributed in various tissues/organs of the plant body. They can either chemically bind to macromolecules and food matrixes or be physically entrapped in food matrixes and intact cells. Various isolation methods, including chemical, biological, and physical methods, have been employed to extract BPs from plants. BPs have been shown to have strong biological activities, including antioxidant, probiotic, anticancer, anti-inflammation, antiobesity, and antidiabetic effects as well as beneficial effects on central nervous system diseases. This review summarizes research findings on these topics to help in better understanding of BPs and provide comprehensive information on their health effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiyang Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shenghan Ge
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
29
|
Schlörmann W, Zetzmann S, Wiege B, Haase NU, Greiling A, Lorkowski S, Dawczynski C, Glei M. Impact of different roasting conditions on chemical composition, sensory quality and physicochemical properties of waxy-barley products. Food Funct 2019; 10:5436-5445. [DOI: 10.1039/c9fo01429b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Roasting improves sensory properties and differentially modulates health-related compounds of barley products.
Collapse
Affiliation(s)
- W. Schlörmann
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
- Department of Nutritional Toxicology
- 07743 Jena
- Germany
| | - S. Zetzmann
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
- Department of Nutritional Toxicology
- 07743 Jena
- Germany
| | - B. Wiege
- Department of Safety and Quality of Cereals
- Max Rubner-Institut
- 32756 Detmold
- Germany
| | - N. U. Haase
- Department of Safety and Quality of Cereals
- Max Rubner-Institut
- 32756 Detmold
- Germany
| | - A. Greiling
- Thüringer Landesanstalt für Landwirtschaft und Ländlichen Raum
- 07743 Jena
- Germany
| | - S. Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD)
- Halle-Jena-Leipzig
- Germany
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
| | - C. Dawczynski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD)
- Halle-Jena-Leipzig
- Germany
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
| | - M. Glei
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
- Department of Nutritional Toxicology
- 07743 Jena
- Germany
| |
Collapse
|