1
|
Huang X, Gan D, Fan Y, Fu Q, He C, Liu W, Li F, Ma L, Wang M, Zhang W. The Associations between Healthy Eating Patterns and Risk of Metabolic Dysfunction-Associated Steatotic Liver Disease: A Case-Control Study. Nutrients 2024; 16:1956. [PMID: 38931312 PMCID: PMC11207114 DOI: 10.3390/nu16121956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although several epidemiological studies have identified an inverse association between healthy dietary patterns and metabolic dysfunction-associated steatotic liver disease (MASLD)/non-alcoholic fatty liver disease (NAFLD), little is known about the contribution of the food component to MASLD risk and the association between dietary patterns and severity of MASLD. This study aimed to investigate the association between healthy eating patterns and MASLD risk and severity of MASLD. METHODS A case-control study including 228 patients diagnosed with MASLD and 228 controls was conducted. The modified Alternate Healthy Eating Index (AHEI), Dietary Approaches to Stop Hypertension (DASH) score, and Alternative Mediterranean Diet (AMED) score were evaluated based on information collected via a validated food-frequency questionnaire. MASLD was confirmed if participants presented with ultrasound-diagnosed fatty liver diseases along with at least one of five cardiometabolic risk factors and no other discernible cause. The logistic regression models were applied to estimate the odds ratio (OR) and 95% confidence interval (95% CI) of MASLD for dietary scores. RESULTS Compared with participants in the lowest tertile, those in the highest tertile of AHEI had a 60% reduced risk of MASLD (OR: 0.40; 95% CI: 0.25-0.66). Similar associations were also observed for DASH and AMED, with ORs comparing extreme tertiles of 0.38 (95% CI: 0.22-0.66) and 0.46 (95% CI: 0.28-0.73), respectively. Further Stratified analysis revealed that the inverse associations between AHEI and DASH with MASLD risks were stronger among women than men, and the inverse associations between AMED and MASLD risks were more pronounced among participants with normal weight (OR: 0.22; 95% CI: 0.09-0.49). For components within the dietary score, every one-point increase in vegetable score and whole grain score within the AHEI was associated with an 11% (95% CI: 5-16%) and a 6% (95% CI: 0-12%) lower MASLD risk, respectively. Similar inverse associations with those scores were observed for the DASH and AMED. CONCLUSION Greater adherence to healthy eating patterns was associated with reduced risk of MASLD, with vegetables and whole grains predominately contributing to these associations. These findings suggested that healthy eating patterns should be recommended for the prevention of MASLD.
Collapse
Affiliation(s)
- Xia Huang
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.F.); (M.W.)
- Jiangxi Medicine Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (D.G.); (Q.F.); (W.L.); (F.L.)
| | - Da Gan
- Jiangxi Medicine Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (D.G.); (Q.F.); (W.L.); (F.L.)
| | - Yahui Fan
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.F.); (M.W.)
| | - Qihui Fu
- Jiangxi Medicine Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (D.G.); (Q.F.); (W.L.); (F.L.)
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Wenjian Liu
- Jiangxi Medicine Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (D.G.); (Q.F.); (W.L.); (F.L.)
| | - Feng Li
- Jiangxi Medicine Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (D.G.); (Q.F.); (W.L.); (F.L.)
| | - Le Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.F.); (M.W.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an 710061, China
| | - Mingxu Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.F.); (M.W.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Wei Zhang
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| |
Collapse
|
2
|
Sun J, Wu K, Wang P, Wang Y, Wang D, Zhao W, Zhao Y, Zhang C, Zhao X. Dietary Tomato Pectin Attenuates Hepatic Insulin Resistance and Inflammation in High-Fat-Diet Mice by Regulating the PI3K/AKT Pathway. Foods 2024; 13:444. [PMID: 38338579 PMCID: PMC10855921 DOI: 10.3390/foods13030444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chronic metabolic disease is a serious global health issue, which is accompanied by impaired insulin resistance. Tomato pectin (TP) is a naturally soluble complex hetero-polysaccharide with various biological functions. However, the impact of TP on hepatic insulin resistance in a high-fat diet (HFD) and its potential mechanism remains largely unknown. The results revealed that TP treatment significantly decreased the liver weight, hepatic fat accumulation and hepatic injury in HFD-fed mice. TP also improved fasting blood glucose levels and glucose tolerance in HFD-fed mice. The underlying mechanisms involved in the inflammation, oxidative stress and insulin signaling in the liver were also investigated by RT-qPCR and western blot, which indicated that TP ameliorated hepatic insulin resistance by regulating the PI3K/AKT/GSK-3β pathway, increasing the expression of GLUT4, decreasing the expression of PECK and G6P as well as restoring antioxidant activities and suppressing the inflammation statues in HFD-fed mice. Our data showed that dietary TP has profound effects on hepatic insulin resistance, inflammation and oxidative stress, demonstrating that TP might be a promising therapeutic agent against insulin resistance and related chronic metabolic disease.
Collapse
Affiliation(s)
- Jing Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (J.S.); (K.W.)
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, No. 50 Zhanghua Street, Haidian District, Beijing 100097, China; (P.W.)
| | - Kongyan Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (J.S.); (K.W.)
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, No. 50 Zhanghua Street, Haidian District, Beijing 100097, China; (P.W.)
| | - Pan Wang
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, No. 50 Zhanghua Street, Haidian District, Beijing 100097, China; (P.W.)
| | - Yubin Wang
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, No. 50 Zhanghua Street, Haidian District, Beijing 100097, China; (P.W.)
| | - Dan Wang
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, No. 50 Zhanghua Street, Haidian District, Beijing 100097, China; (P.W.)
| | - Wenting Zhao
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, No. 50 Zhanghua Street, Haidian District, Beijing 100097, China; (P.W.)
| | - Yuanyuan Zhao
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, No. 50 Zhanghua Street, Haidian District, Beijing 100097, China; (P.W.)
| | - Chunhong Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (J.S.); (K.W.)
| | - Xiaoyan Zhao
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, No. 50 Zhanghua Street, Haidian District, Beijing 100097, China; (P.W.)
| |
Collapse
|
3
|
Wang Y, Fan M, Qian H, Ying H, Li Y, Wang L. Whole grains-derived functional ingredients against hyperglycemia: targeting hepatic glucose metabolism. Crit Rev Food Sci Nutr 2023; 64:7268-7289. [PMID: 36847153 DOI: 10.1080/10408398.2023.2183382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycemia. However, concerns have been raised about the safety and efficacy of current hypoglycemic drugs due to undesirable side effects. Increasing studies have shown that whole grains (WG) consumption is inversely associated with the risk of T2DM and its subsequent complications. Thus, dietary strategies involving functional components from the WG provide an intriguing approach to restoring and maintaining glucose homeostasis. This review provides a comprehensive understanding of the major functional components derived from WG and their positive effects on glucose homeostasis, demonstrates the underlying molecular mechanisms targeting hepatic glucose metabolism, and discusses the unclear aspects according to the latest viewpoints and current research. Improved glycemic response and insulin resistance were observed after consumption of WG-derived bioactive ingredients, which are involved in the integrated, multi-factorial, multi-targeted regulation of hepatic glucose metabolism. Promotion of glucose uptake, glycolysis, and glycogen synthesis pathways, while inhibition of gluconeogenesis, contributes to amelioration of abnormal hepatic glucose metabolism and insulin resistance by bioactive components. Hence, the development of WG-based functional food ingredients with potent hypoglycemic properties is necessary to manage insulin resistance and T2DM.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Ying
- CAS Key laboratory of nutrition, metabolism and food safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Tian S, Zhao H, Song H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit Rev Food Sci Nutr 2022; 64:5039-5056. [PMID: 36397728 DOI: 10.1080/10408398.2022.2148090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological evidence showed that patients suffering from obesity and T2DM are significantly at higher risk for chronic low-grade inflammation, oxidative stress, nonalcoholic fatty liver (NAFLD) and intestinal flora imbalance. Increasing evidence of pathological characteristics illustrates that some common signaling pathways participate in the occurrence, progression, treatment, and prevention of obesity and T2DM. These signaling pathways contain the pivotal players in glucose and lipid metabolism, e.g., AMPK, PI3K/AKT, FGF21, Hedgehog, Notch, and WNT; the inflammation response, for instance, Nrf2, MAPK, NF- kB, and JAK/STAT. Bioactive compounds from plants have emerged as key food components related to healthy status and disease prevention. They can act as signaling molecules to initiate or mediate signaling transduction that regulates cell function and homeostasis to repair and re-functionalize the damaged tissues and organs. Therefore, it is crucial to continuously investigate bioactive compounds as sources of new pharmaceuticals for obesity and T2DM. This review provides comprehensive information of the commonly shared signaling pathways between obesity and T2DM, and we also summarize the therapeutic bioactive compounds that may serve as anti-obesity and/or anti-diabetes therapeutics by regulating these associated pathways, which contribute to improving glucose and lipid metabolism, attenuating inflammation.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
5
|
Kong H, Yu L, Li C, Ban X, Gu Z, Liu L, Li Z. Perspectives on evaluating health effects of starch: Beyond postprandial glycemic response. Carbohydr Polym 2022; 292:119621. [DOI: 10.1016/j.carbpol.2022.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
|
6
|
|
7
|
Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients 2021; 13:nu13103470. [PMID: 34684471 PMCID: PMC8537956 DOI: 10.3390/nu13103470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is due in part to increased consumption of a Western diet that is low in dietary fiber. Conversely, an increase in fiber supplementation to a diet can have various beneficial effects on metabolic homeostasis including weight loss and reduced adiposity. Fibers are extremely diverse in source and composition, such as high-amylose maize, β-glucan, wheat fiber, pectin, inulin-type fructans, and soluble corn fiber. Despite the heterogeneity of dietary fiber, most have been shown to play a role in alleviating obesity-related health issues, mainly by targeting and utilizing the properties of the gut microbiome. Reductions in body weight, adiposity, food intake, and markers of inflammation have all been reported with the consumption of various fibers, making them a promising treatment option for the obesity epidemic. This review will highlight the current findings on different plant-based fibers as a therapeutic dietary supplement to improve energy homeostasis via mechanisms of gut microbiota.
Collapse
|
8
|
Liu J, Wang Y, Xue L, Nie C, Sun J, Fan M, Qian H, Wang L, Li Y. Novel Metabolic Regulation of Bile Acid Responses to Low Cholesterol in Whole-Grain-Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8440-8447. [PMID: 34286573 DOI: 10.1021/acs.jafc.1c02662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hypercholesterolemia is a major risk factor for chronic metabolic diseases. Nevertheless, a whole-grain diet could ameliorate this issue in a number of ways, including by regulating bile acid metabolism. However, the potential mechanism is unclear. The aim of the current study is to explore the effects of whole-grain diets (brown rice diet and whole wheat diet) on bile acid homeostasis. After intervention for 8 weeks in mouse model, whole-grain diets showed reduced feed conversion ratio, and the lipid levels (total cholesterol (TC) and triglycerides (TG)) were also meliorated in the serum and liver of mice. Moreover, whole-grain diets reduced the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) (cholesterol synthesis) in the liver of mice. Interestingly, whole-grain diets not only promoted the mRNA expressions of low-density lipoprotein receptor (LDLR), ATP binding cassette transporter G1 (ABCG1), and scavenger receptor class B type I (SR-BI) (reverse cholesterol transport) but also facilitated the expressions of cytochrome P450, family 7, subfamily a, polypeptide 1 (CYP7a1) and cytochrome P450, family 27, subfamily a, polypeptide 1 (CYP27a1) (bile acid synthesis). Further study found that whole-grain diets promoted intestinal bile acid reabsorption and reduced bile acid excretion. Our study provided a novel metabolic regulation of bile acids in response to reduced cholesterol levels induced by whole-grain diets.
Collapse
Affiliation(s)
- Jinxin Liu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lamei Xue
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Chenzhipeng Nie
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Juan Sun
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
9
|
Qin W, Ying W, Hamaker B, Zhang G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr Rev Food Sci Food Saf 2021; 20:5173-5196. [PMID: 34350681 DOI: 10.1111/1541-4337.12808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Dysregulated glucose metabolism is associated with many chronic diseases such as obesity and type 2 diabetes mellitus (T2DM), and strategies to restore and maintain glucose homeostasis are essential to health. The incretin hormone of glucagon-like peptide-1 (GLP-1) is known to play a critical role in regulating glucose homeostasis and dietary nutrients are the primary stimuli to the release of intestinal GLP-1. However, the GLP-1 producing enteroendocrine L-cells are mainly distributed in the distal region of the gastrointestinal tract where there are almost no nutrients to stimulate the secretion of GLP-1 under normal situations. Thus, a dietary strategy to sustain the release of GLP-1 was proposed, and the slow digestion property and dipeptidyl peptidase IV (DPP-IV) inhibitory activity of food components, approaches to reduce the rate of food digestion, and mechanisms to sustain the release of GLP-1 were reviewed. A slow digestion-oriented dietary approach through encapsulation of nutrients, incorporation of viscous dietary fibers, and enzyme inhibitors of phytochemicals in a designed whole food matrix will be implemented to efficiently reduce the digestion rate of food nutrients, potentiate their distal deposition and a sustained secretion of GLP-1, which will be beneficial to improved glucose homeostasis and health.
Collapse
Affiliation(s)
- Wangyan Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wang Ying
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bruce Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Abstract
As the prevalence of obesity and diabetes has continued to increase rapidly in recent years, dietary approaches to regulating glucose homeostasis have gained more attention. Starch is the major source of glucose in the human diet and can have diverse effects, depending on its rate and extent of digestion in the small intestine, on postprandial glycemic response, which over time is associated with blood glucose abnormalities, insulin sensitivity, and even appetitive response and food intake. The classification of starch bioavailability into rapidly digestible starch, slowly digestible starch, and resistant starch highlights the nutritional values of different starches. As starch is the main structure-building macroconstituent of foods, its bioavailability can be manipulated by selection of food matrices with varying degrees of susceptibility to amylolysis and food processing to retain or develop new matrices. In this review, the food factors that may modulate starch bioavailability, with a focus on food matrices, are assessed for a better understanding of their potential contribution to human health. Aspects affecting starch nutritional properties as well as production strategies for healthy foods are also reviewed, e.g., starch characteristics (different type, structure, and modification), food physical properties (food form, viscosity, and integrity), food matrix interactions (lipid, protein, nonstarch polysaccharide, phytochemicals, organic acid, and enzyme inhibitor), and food processing (milling, cooking, and storage).
Collapse
Affiliation(s)
- Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China;
| | - Bruce R Hamaker
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; .,Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, Indiana 47907-1160, USA;
| |
Collapse
|
11
|
Zhang X, Yao Z, Sun X, Zhang G. Cross-linked arabinoxylan in a Ca 2+-alginate matrix reversed the body weight gain of HFD-fed C57BL/6J mice through modulation of the gut microbiome. Int J Biol Macromol 2021; 176:404-412. [PMID: 33571595 DOI: 10.1016/j.ijbiomac.2021.02.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
Here, we compared the effects of different physical forms of arabinoxylan (AX) - a microsphere of cross-linked arabinoxylan (CAX) in a Ca2+-alginate matrix (MC) and physical mixture of AX and alginate (PM) on gut microbiota and development of obesity in C57BL/6J mice. Supplementation of MC in high fat (HF) diet to mice for 10 weeks significantly reversed the body weight gain induced by the HF diet, along with less fat accumulation in both livers and the epididymal adipose than the PM group. Microbiome analysis showed that MC significantly altered the gut microbiota composition with a noticeable increase of butyrogenic bacteria of Lachnospiraceae. The butyrate produced by MC fermentation and the increased abundance of Lachnospiraceae might be the underlying mechanism of the anti-obesity effect of MC. The results indicated that the physical forms of dietary fiber are closely associated with its health benefits, and MC might be served as a new functional food ingredient to prevent obesity.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zechen Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiangjun Sun
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Yang R, Li Y, Cai J, Ji J, Wang Y, Zhang W, Pan W, Chen Y. Polysaccharides from Armillariella tabescens mycelia ameliorate insulin resistance in type 2 diabetic mice. Food Funct 2020; 11:9675-9685. [PMID: 33057558 DOI: 10.1039/d0fo00728e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia mainly due to insulin resistance. The objective of this study was to investigate the effects of polysaccharides from Armillariella tabescens mycelia (AT) on insulin resistance in mice fed a high-fat diet in combination with streptozotocin to induce T2DM. Following treatment with different doses of AT, hyperglycemia and lipid metabolism dysfunction, insulin resistance, and hepatic function-related indices were markedly ameliorated; the histopathological alterations, oxidative stress, and inflammatory reaction in hepatic tissue were also alleviated; most importantly, AT inhibited the expression of hepatic thioredoxin-interacting protein (TXNIP) to repress the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation and activated the 5'AMP-activated protein kinase (AMPK) pathway in a dose-dependent manner in T2DM mice. In conclusion, these findings revealed that the hypoglycemic and hypolipidemic activities of AT were associated with the alleviation of insulin resistance through repression of the TXNIP/NLRP3 inflammasome pathway and activation of the AMPK pathway.
Collapse
Affiliation(s)
- Rui Yang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu J, Li Y, Xue L, Fan M, Nie C, Wang Y, Zhang H, Qian H, Wang L. Circulating miR-27a-3p as a candidate for a biomarker of whole grain diets for lipid metabolism. Food Funct 2020; 11:8852-8865. [DOI: 10.1039/d0fo00830c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circulating miR-27a-3p was involved in the process of lipid synthesis under the dietary patterns of whole grain diets, and the expression of miR-27a-3p was decreased in serum, while it was elevated both in liver and ileum.
Collapse
Affiliation(s)
- Jinxin Liu
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yan Li
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- State Key Laboratory of Food Science and Technology
| | - Lamei Xue
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Mingcong Fan
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Chenzhipeng Nie
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yu Wang
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Hui Zhang
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Haifeng Qian
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Li Wang
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- State Key Laboratory of Food Science and Technology
| |
Collapse
|