1
|
Li S, He X, Zhang X, Kong KW, Xie J, Sun J, Wang Z. Integration of volatile and non-volatile metabolite profile, and in vitro digestion reveals the differences between different preparation methods on physico-chemical and biological properties of Gastrodia elata. Food Chem 2025; 463:141177. [PMID: 39260170 DOI: 10.1016/j.foodchem.2024.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Gastrodia elata Blume (G. elata) is a traditional medicinal and edible plant whose quality is significantly influenced by post-harvest processing. To obtain an optimal post-harvest processing method for G. elata, this study employed sensory evaluation, scanning electron microscopy (SEM), gas chromatography-ion mobility spectrometry (GC-IMS), and non-targeted metabolomics, in conjunction with an in vitro digestion model, to assess the impact of different processing and drying methods on the quality of G. elata. The findings showed that the steam treatment followed by heat pump drying resulted in the highest levels of total phenols, total flavonoids, and polysaccharides in G. elata, and caused more pronounced damage to its microstructure. This treatment also maintained the highest antioxidant activities and optimal acetylcholinesterase (AChE) inhibition capacity throughout in vitro digestion, meanwhile, effectively eliminating the unpleasant odor and achieving the highest sensory scores. Furthermore, non-targeted metabolomic analysis revealed noteworthy alterations in the metabolite profile of G. elata, mainly related to purine metabolism and the biosynthesis of amino acids pathways. This study provides valuable insights into the post-harvest processing of G. elata.
Collapse
Affiliation(s)
- Shi Li
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China.
| | - Xuechun Zhang
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhenxing Wang
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biological Science and Food Engineering, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
2
|
Taesuwan S, Jirarattanarangsri W, Wangtueai S, Hussain MA, Ranadheera S, Ajlouni S, Zubairu IK, Naumovski N, Phimolsiripol Y. Unexplored Opportunities of Utilizing Food Waste in Food Product Development for Cardiovascular Health. Curr Nutr Rep 2024; 13:896-913. [PMID: 39276290 DOI: 10.1007/s13668-024-00571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
PURPOSE OF REVIEW Global food production leads to substantial amounts of agricultural and food waste that contribute to climate change and hinder international efforts to end food insecurity and poverty. Food waste is a rich source of vitamins, minerals, fibers, phenolic compounds, lipids, and bioactive peptides. These compounds can be used to create food products that help reduce heart disease risk and promote sustainability. This review examines the potential cardiovascular benefits of nutrients found in different food waste categories (such as fruits and vegetables, cereal, dairy, meat and poultry, and seafood), focusing on animal and clinical evidence, and giving examples of functional food products in each category. RECENT FINDINGS Current evidence suggests that consuming fruit and vegetable pomace, cereal bran, and whey protein may lower the risk of cardiovascular disease, particularly in individuals who are at risk. This is due to improved lipid profile, reduced blood pressure and increased flow-mediated dilation, enhanced glucose and insulin regulation, decreased inflammation, as well as reduced platelet aggregation and improved endothelial function. However, the intervention studies are limited, including a low number of participants and of short duration. Food waste has great potential to be utilized as cardioprotective products. Longer-term intervention studies are necessary to substantiate the health claims of food by-products. Technological advances are needed to improve the stability and bioavailability of bioactive compounds. Implementing safety assessments and regulatory frameworks for functional food derived from food waste is crucial. This is essential for maximizing the potential of food waste, reducing carbon footprint, and improving human health.
Collapse
Affiliation(s)
- Siraphat Taesuwan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia.
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
| | | | - Sutee Wangtueai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Malik A Hussain
- School of Science, Western Sydney University, Richmond, NSW, 2758, Australia
| | - Senaka Ranadheera
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Said Ajlouni
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Idris Kaida Zubairu
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nenad Naumovski
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Canberra, ACT, 2617, Australia
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, 2601, Australia
- Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | | |
Collapse
|
3
|
Xu Z, Han S, Guan S, Zhang R, Chen H, Zhang L, Han L, Tan Z, Du M, Li T. Preparation, design, identification and application of self-assembly peptides from seafood: A review. Food Chem X 2024; 23:101557. [PMID: 39007120 PMCID: PMC11239460 DOI: 10.1016/j.fochx.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Hydrogels formed by self-assembling peptides with low toxicity and high biocompatibility have been widely used in food and biomedical fields. Seafood contains rich protein resources and is also one of the important sources of natural bioactive peptides. The self-assembled peptides in seafood have good functional activity and are very beneficial to human health. In this review, the sequence of seafood self-assembly peptide was introduced, and the preparation, screening, identification and characterization. The rule of self-assembled peptides was elucidated from amino acid sequence composition, amino acid properties (hydrophilic, hydrophobic and electric), secondary structure, interaction and peptide properties (hydrophilic and hydrophobic). It was introduced that the application of hydrogels formed by self-assembled peptides, which lays a theoretical foundation for the development of seafood self-assembled peptides in functional foods and the application of biological materials.
Collapse
Affiliation(s)
- Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shiying Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Shuang Guan
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Rui Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hongrui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu, Sichuan 611130, China
| | - Lijuan Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Tingting Li
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| |
Collapse
|
4
|
Peng J, Jia W, Zhu J. Advanced functional materials as reliable tools for capturing food-derived peptides to optimize the peptidomics pre-treatment enrichment workflow. Compr Rev Food Sci Food Saf 2024:e13395. [PMID: 39042377 DOI: 10.1111/1541-4337.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024]
Abstract
Peptidomics strategies with high throughput, sensitivity, and reproducibility are key tools for comprehensively analyzing peptide composition and potential functional activities in foods. Nevertheless, complex signal interference, limited ionization efficiency, and low abundance have impeded food-derived peptides' progress in food detection and analysis. As a result, novel functional materials have been born at the right moment that could eliminate interference and perform efficient enrichment. Of note, few studies have focused on developing peptide enrichment materials for food sample analysis. This work summarizes the development of endogenous peptide, phosphopeptide, and glycopeptide enrichment utilizing materials that have been employed extensively recently: organic framework materials, carbon-based nanomaterials, bio-based materials, magnetic materials, and molecularly imprinted polymers. It focuses on the limitations, potential solutions, and future prospects for application in food peptidomics of various advanced functional materials. The size-exclusion effect of adjustable aperture and the modification of magnetic material enhanced the sensitivity and selectivity of endogenous peptide enrichment and aided in streamlining the enrichment process and cutting down on enrichment time. Not only that, the immobilization of metal ions such as Ti4+ and Nb5+ enhanced the capture of phosphopeptides, and the introduction of hydrophilic groups such as arginine, L-cysteine, and glutathione into bio-based materials effectively optimized the hydrophilic enrichment of glycopeptides. Although a portion of the carefully constructed functional materials currently only exhibit promising applications in the field of peptide enrichment for analytical chemistry, there is reason to believe that they will further advance the field of food peptidomics through improved pre-treatment steps.
Collapse
Affiliation(s)
- Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
5
|
Yoon JW, Kim MO, Shin S, Kwon WS, Kim SH, Kwon YJ, Lee SI. Spirobenzofuran Mitigates Ochratoxin A-Mediated Intestinal Adverse Effects in Pigs through Regulation of Beta Defensin 1. TOXICS 2024; 12:487. [PMID: 39058139 PMCID: PMC11281199 DOI: 10.3390/toxics12070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Antimicrobial peptides (AMPs) function to extensively suppress various problematic factors and are considered a new alternative for improving livestock health and enhancing immunomodulation. In this study, we explored whether AMP regulation has positive influences on Ochratoxin A (OTA) exposure using a porcine intestinal epithelial cell line (IPEC-J2 cells). We constructed a beta-defensin 1 (DEFB1) expression vector and used it to transfection IPEC-J2 cells to construct AMP overexpression cell lines. The results showed that OTA induced cytotoxicity, decreased cell migration, and increased inflammatory markers mRNA in IPEC-J2 cells. In DEFB1 overexpressing cell lines, OTA-induced reduced cell migration and increased inflammatory markers mRNA were alleviated. Additionally, a natural product capable of inducing DEFB1 expression, which was selected through high-throughput screening, showed significant alleviation of cytotoxicity, cell migration, and inflammatory markers compared to OTA-treated IPEC-J2 cells. Our finding provides novel insights and clues for the porcine industry, which is affected by OTA exposure.
Collapse
Affiliation(s)
- Jung Woong Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.W.Y.); (M.O.K.); (S.S.); (W.-S.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.W.Y.); (M.O.K.); (S.S.); (W.-S.K.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.W.Y.); (M.O.K.); (S.S.); (W.-S.K.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.W.Y.); (M.O.K.); (S.S.); (W.-S.K.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| | - Soo Hyun Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, North Gyeongsang, Republic of Korea; (S.H.K.); (Y.-J.K.)
| | - Yun-Ju Kwon
- National Institute for Korean Medicine Development, Gyeongsan 38540, North Gyeongsang, Republic of Korea; (S.H.K.); (Y.-J.K.)
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (J.W.Y.); (M.O.K.); (S.S.); (W.-S.K.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
6
|
Zhang P, Chen Z, Zhou L, Gao J, Zheng H, Lin H, Zhu G, Qin X, Cao W. Carboxymethyl cellulose and carboxymethyl chitosan-based composite nanogel as a stable delivery vehicle for oyster peptides: Characterization, absorption and transport mechanism. Food Chem 2024; 442:138464. [PMID: 38245988 DOI: 10.1016/j.foodchem.2024.138464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
An oyster peptide (OPs)-loaded composite nanogel based on carboxymethyl cellulose and carboxymethyl chitosan (CMC@CMCS@OPs) was prepared, and the characterization, absorption and transport mechanism were further investigated. CMC@CMCS@OPs, a dense spherical microstructure with a diameter of ∼64 nm, which enhanced the thermal and digestive stabilities of individual OPs and improved its retention rate of hypoglycemic activity in vitro. The swelling response and in-vitro release profiles showed that CMC@CMCS@OPs could help OPs achieve targeted and controlled release in the intestine. In addition, CMC@CMCS@OPs had no cytotoxicity on Caco-2 cells, and its apparent permeability coefficients increased 4.70-7.45 times compared with OPs, with the absorption rate increased by 129.38 %. Moreover, the transcytosis of CMC@CMCS@OPs nanogel occurred primarily through the macropinocytosis pathway, endocytosis pathway and intestinal efflux transporter-mediated efflux. Altogether, these results suggested that CMC@CMCS@OPs nanogel could be as an effective OPs delivery device for enhancing its stability and absorption.
Collapse
Affiliation(s)
- Pei Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Longjian Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jialong Gao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haisheng Lin
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Guoping Zhu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoming Qin
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhong Cao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Hu YY, Xiao S, Zhou GC, Chen X, Wang B, Wang JH. Bioactive peptides in dry-cured ham: A comprehensive review of preparation methods, metabolic stability, safety, health benefits, and regulatory frameworks. Food Res Int 2024; 186:114367. [PMID: 38729727 DOI: 10.1016/j.foodres.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.
Collapse
Affiliation(s)
- Yao-Yao Hu
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Xiao
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Gui-Cheng Zhou
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuan Chen
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bo Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| | - Ji-Hui Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| |
Collapse
|
8
|
Arslan B, Xiong YL, Soyer A. Antioxidant properties of bovine liver protein hydrolysates and their practical application in biphasic systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2980-2989. [PMID: 38087783 DOI: 10.1002/jsfa.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The influence of protein hydrolysate produced from bovine liver protein hydrolysate (LPH) by enzymatic hydrolysis, using Alcalase/Protamex (1:1), on lipid dispersions was investigated. LPH production was optimized to maximize the antioxidant activity (at 45, 50, and 55 °C for 12, 18, and 24 h). Different concentrations of LPHs (1, 3, and 5 mg/g) were added to emulsions and to liposomes. Lipid oxidation level and particle size of the lipid dispersions were monitored for 14 days of storage at 25 °C. RESULTS Radical scavenging activity and reducing power were the highest at 45 °C after 24 h of hydrolysis. Electrophoresis pattern showed that the antioxidant activity was arising from the peptides with molecular weight around 10 kDa. Lipid oxidation occurred more rapidly in samples without LPH during storage. In emulsions, lower thiobarbituric acid-reactive substance and conjugated diene values were measured with increasing concentrations of LPH at day 14. Accordingly, particle size of the samples containing 5 mg/g of LPH was smaller than those of other groups. Phase separation was observed only in lecithin emulsion without LPH at day 14. The use of LPH in liposome limited the lipid oxidation and maintained the size of the particles independently from the concentration. CONCLUSION This study highlights the potential applications of animal by-products as natural antioxidants in complex food systems. The results demonstrate that LPH, particularly when hydrolyzed at optimized conditions, can effectively inhibit lipid oxidation. The findings suggest that biphasic systems incorporating LPH have promising prospects for enhancing the stability and quality of food products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Betul Arslan
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
- Department of Food Engineering, Faculty of Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Youling L Xiong
- Department of Animal and Food Science, University of Kentucky, Lexington, KY, USA
| | - Ayla Soyer
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Moon SK, Jeong EJ, Tonog G, Jin CM, Lee JS, Kim H. Comprehensive workflow encompassing discovery, verification, and quantification of indicator peptide in snail mucin using LC-quadrupole Orbitrap high-resolution tandem mass spectrometry. Food Res Int 2024; 180:114054. [PMID: 38395548 DOI: 10.1016/j.foodres.2024.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Peptidomics analysis was conducted using high-resolution tandem mass spectrometry (MS2) to determine the peptide profile of snail-derived mucin extract (SM). The study was also aimed to identify an indicator peptide and validate a quantification method for this peptide. The peptide profiling and identification were conducted using discovery-based peptidomics analysis employing data-dependent acquisition, whereas the selected peptides were verified and quantified using parallel reaction monitoring acquisition. Among the 16 identified peptides, the selected octapeptide (TEAPLNPK) was quantified via precursor ion ionization (m/z 435.2400), followed by quantification of the corresponding quantifier ion fragment (m/z 639.3824) using MS2. The quantification method was optimized and validated in terms of specificity, linearity, accuracy, precision, and limit of detection/quantification. The validated method accurately quantified the TEAPLNPK content in the SM as 7.5 ± 0.2 μg/g. Our study not only identifies an indicator peptide from SM but also introduces a novel validation method, involving precursor ion ionization and quantification of specific fragments. Our findings may serve as a comprehensive workflow for the monitoring, selection, and quantification of indicator peptides from diverse food resources.
Collapse
Affiliation(s)
- Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Eun-Jin Jeong
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21 FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Genevieve Tonog
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Cheng-Min Jin
- Analysis and Research Department, NeuroVIS, Inc., 593-8 Dongtangiheung-ro, Hwaseong 18469, South Korea
| | - Jeong-Seok Lee
- Age at Labs Inc., 55, Digital-ro 32-gil, Guro-gu, Seoul 08379, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea.
| |
Collapse
|
10
|
Hong Z, Shi C, Hu X, Chen J, Li T, Zhang L, Bai Y, Dai J, Sheng J, Xie J, Tian Y. Walnut Protein Peptides Ameliorate DSS-Induced Ulcerative Colitis Damage in Mice: An in Silico Analysis and in Vivo Investigation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15604-15619. [PMID: 37815395 DOI: 10.1021/acs.jafc.3c04220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Walnut (Juglans regia L.) is a food with food-medicine homology, whose derived protein peptides have been shown to have anti-inflammatory activity in vitro. However, the effects and mechanisms of walnut protein peptides on ulcerative colitis (UC) in vivo have not been systematically and thoroughly investigated. In this study, we applied virtual screening and network pharmacology screening of bioactive peptides to obtain three novel WPPs (SHTLP, HYNLN, and LGTYP) that may alleviate UC through TLR4-MAPK signaling. In vivo studies have shown that WPPs improve intestinal mucosal barrier dysfunction and reduce inflammation by inhibiting activation of the TLR4-MAPK pathway. In addition, WPPs restore intestinal microbial homeostasis by reducing harmful bacteria (Helicobacter and Bacteroides) and increasing the relative abundance of beneficial bacteria (Candidatus_Saccharimonas). Our study showed that the WPPs obtained by virtual screening were effective in ameliorating colitis, which has important implications for future screening of bioactive peptides from medicinal food homologues as drugs or dietary supplements.
Collapse
Affiliation(s)
- Zishan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jinlian Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Yuying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jingjing Dai
- School of Tea and Coffee, Puer University, Puer 665000, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|
11
|
López-Pedrouso M, Zaky AA, Lorenzo JM, Camiña M, Franco D. A review on bioactive peptides derived from meat and by-products: Extraction methods, biological activities, applications and limitations. Meat Sci 2023; 204:109278. [PMID: 37442015 DOI: 10.1016/j.meatsci.2023.109278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Meat and its by-products offer a rich source of bioactive compounds which have potential applications in both the food and pharmaceutical industries. In this review, we present several extraction methods and report the identification and properties of bioactive peptides. We also examine the challenges and limitations associated with their use in food applications. Enzymatic hydrolysis and fermentation using starts cultures are common methods for generating bioactive peptides from meat proteins. Additionally, natural gastrointestinal digestion can also produce bioactive peptides. However, emerging technologies like high hydrostatic pressure, subcritical extraction and pulsed electric fields can improve hydrolysis and increase the yield of bioactive peptides. Online bioinformatics applications have emerged as an established method for identifying potentially bioactive peptides. These tools reduce the cost and time required for traditional methods of research. Finally, incorporating bioactive peptides into diets for specific purposes such as supporting vulnerable populations like children and the elderly ensures safety and efficacy.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela 15872, Spain
| | - Ahmed A Zaky
- Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mercedes Camiña
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Daniel Franco
- Department of Chemical Engineering, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain.
| |
Collapse
|
12
|
Martin D, Joly C, Dupas-Farrugia C, Adt I, Oulahal N, Degraeve P. Volatilome Analysis and Evolution in the Headspace of Packed Refrigerated Fish. Foods 2023; 12:2657. [PMID: 37509749 PMCID: PMC10378619 DOI: 10.3390/foods12142657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Fresh fish is a perishable food in which chemical (namely oxidation) and microbiological degradation result in undesirable odor. Non-processed fish (i.e., raw fish) is increasingly commercialized in packaging systems which are convenient for its retailing and/or which can promote an extension of its shelf-life. Compared to fish sent to its retail unpackaged, fish packaging results in a modification of the gaseous composition of the atmosphere surrounding it. These modifications of atmosphere composition may affect both chemical and microbiological degradation pathways of fish constituents and thereby the volatile organic compounds produced. In addition to monitoring Total Volatile Basic Nitrogen (TVB-N), which is a common indicator to estimate non-processed fish freshness, analytical techniques such as gas chromatography coupled to mass spectrometry or techniques referred to as "electronic nose" allow either the identification of the entire set of these volatile compounds (the volatilome) and/or to selectively monitor some of them, respectively. Interestingly, monitoring these volatile organic compounds along fish storage might allow the identification of early-stage markers of fish alteration. In this context, to provide relevant information for the identification of volatile markers of non-processed packaged fish quality evolution during its storage, the following items have been successively reviewed: (1) inner atmosphere gaseous composition and evolution as a function of fish packaging systems; (2) fish constituents degradation pathways and analytical methods to monitor fish degradation with a focus on volatilome analysis; and (3) the effect of different factors affecting fish preservation (temperature, inner atmosphere composition, application of hurdle technology) on volatilome composition.
Collapse
Affiliation(s)
- Doriane Martin
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Catherine Joly
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Coralie Dupas-Farrugia
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Isabelle Adt
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Nadia Oulahal
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| | - Pascal Degraeve
- BioDyMIA Research Unit, Université de Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, 155 Rue Henri de Boissieu, F-01000 Bourg en Bresse, France
| |
Collapse
|
13
|
Zhao R, Jiang S, Tang Y, Ding G. Effects of Low Molecular Weight Peptides from Red Shrimp ( Solenocera crassicornis) Head on Immune Response in Immunosuppressed Mice. Int J Mol Sci 2023; 24:10297. [PMID: 37373442 DOI: 10.3390/ijms241210297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the immunoenhancement effects of low molecular weight peptides (SCHPs-F1) from red shrimp (Solenocera crassicornis) head against cyclophosphamide (CTX)-induced immunosuppressed mice. ICR mice were intraperitoneally injected with 80 mg/kg CTX for 5 consecutive days to establish the immunosuppressive model and then intragastrically administered with SCHPs-F1 (100 mg/kg, 200 mg/kg, and 400 mg/kg) to investigate its improving effect on immunosuppressed mice and explore its potential mechanism using Western blot. SCHPs-F1 could effectively improve the spleen and thymus index, promoting serum cytokines and immunoglobulins production and upregulating the proliferative activity of splenic lymphocytes and peritoneal macrophages of the CTX-treated mice. Moreover, SCHPs-F1 could significantly promote the expression levels of related proteins in the NF-κB and MAPK pathways in the spleen tissues. Overall, the results suggested that SCHPs-F1 could effectively ameliorate the immune deficiency caused by CTX and had the potential to explore as an immunomodulator in functional foods or dietary supplements.
Collapse
Affiliation(s)
- Rui Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuoqi Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
14
|
Rodríguez-Jiménez JMDJ, Montalvo-González E, López-García UM, Barros-Castillo JC, Ragazzo-Sánchez JA, García-Magaña MDL. Guamara and Cocuixtle: Source of Proteases for the Transformation of Shrimp By-Products into Hydrolysates with Potential Application. BIOLOGY 2023; 12:biology12050753. [PMID: 37237565 DOI: 10.3390/biology12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.
Collapse
Affiliation(s)
- Juan Miguel de Jesús Rodríguez-Jiménez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Ulises Miguel López-García
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Julio César Barros-Castillo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| |
Collapse
|
15
|
Xu S, Zhao Y, Song W, Zhang C, Wang Q, Li R, Shen Y, Gong S, Li M, Sun L. Improving the Sustainability of Processing By-Products: Extraction and Recent Biological Activities of Collagen Peptides. Foods 2023; 12:foods12101965. [PMID: 37238782 DOI: 10.3390/foods12101965] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Society and consumers are increasingly concerned about food safety and the sustainability of food production systems. A significant amount of by-products and discards are generated during the processing of aquatic animals, which still needs to be fully utilized by the food industry. The management and sustainable use of these resources are essential to avoiding environmental pollution and resource waste. These by-products are rich in biologically active proteins, which can be converted into peptides by enzymatic hydrolysis or fermentation treatment. Therefore, exploring the extraction of collagen peptides from these by-products using an enzymatic hydrolysis technology has attracted a wide range of attention from numerous researchers. Collagen peptides have been found to possess multiple biological activities, including antioxidant, anticancer, antitumor, hypotensive, hypoglycemic, and anti-inflammatory properties. These properties can enhance the physiological functions of organisms and make collagen peptides useful as ingredients in food, pharmaceuticals, or cosmetics. This paper reviews the general methods for extracting collagen peptides from various processing by-products of aquatic animals, including fish skin, scales, bones, and offal. It also summarizes the functional activities of collagen peptides as well as their applications.
Collapse
Affiliation(s)
- Shumin Xu
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Yuping Zhao
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Wenshan Song
- Marine Biomedical Research Institute of Qingdao, No. 23, Hong Kong East Road, Qingdao 266073, China
| | - Chengpeng Zhang
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Qiuting Wang
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Ruimin Li
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Yanyan Shen
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Shunmin Gong
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Mingbo Li
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Leilei Sun
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| |
Collapse
|
16
|
Dey A, Haldar U, Tota R, Faust R, De P. PIB-based block copolymer with a segment having alternating sequence of leucine and alanine side-chain pendants. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2189434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Asmita Dey
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Ujjal Haldar
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Rajasekhar Tota
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Rudolf Faust
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
17
|
Bioactive peptides derived from fermented foods: Preparation and biological activities. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
18
|
Bravo FI, Calvo E, López-Villalba RA, Torres-Fuentes C, Muguerza B, García-Ruiz A, Morales D. Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients 2023; 15:457. [PMID: 36678328 PMCID: PMC9864718 DOI: 10.3390/nu15020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Hypertension (HTN) is the leading cause of premature deaths worldwide and the main preventable risk factor for cardiovascular diseases. Therefore, there is a current need for new therapeutics to manage this condition. In this regard, protein hydrolysates containing antihypertensive bioactive peptides are of increasing interest. Thus, agri-food industry byproducts have emerged as a valuable source to obtain these hydrolysates as they are rich in proteins and inexpensive. Among these, byproducts from animal origin stand out as they are abundantly generated worldwide. Hence, this review is focused on evaluating the potential role of chicken slaughterhouse byproducts as a source of peptides for managing HTN. Several of these byproducts such as blood, bones, skins, and especially, chicken feet have been used to obtain protein hydrolysates with angiotensin-converting enzyme (ACE)-inhibitory activity and blood pressure-lowering effects. An increase in levels of endogenous antioxidant compounds, a reduction in ACE activity, and an improvement of HTN-associated endothelial dysfunction were the mechanisms underlying their effects. However, most of these studies were carried out in animal models, and further clinical studies are needed in order to confirm these antihypertensive properties. This would increase the value of these byproducts, contributing to the circular economy model of slaughterhouses.
Collapse
Affiliation(s)
| | | | | | | | | | - Almudena García-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | |
Collapse
|
19
|
Zhou T, Li Q, Zhao M, Pan Y, Kong X. A Review on Edible Fungi-Derived Bioactive Peptides: Preparation, Purification and Bioactivities. Int J Med Mushrooms 2023; 25:1-11. [PMID: 37585312 DOI: 10.1615/intjmedmushrooms.2023048464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Edible fungi bioactive peptides (BAPs) are extracted from fruiting bodies and the mycelium of edible fungus. They have various physiological functions such as antioxidant activity, antihypertensive activity, and antibacterial activity. In this paper, the preparation and purification methods of edible fungus BAPs were reviewed, their common biological activities and structure-activity relationships were analyzed, and their application prospects were discussed.
Collapse
Affiliation(s)
- Tiantian Zhou
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Qingwei Li
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Ming Zhao
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Yu Pan
- Institute of Microbiology Heilongjiang Academy of Sciences, Harbin, 150010, P.R. China
| | - Xianghui Kong
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China; Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
20
|
ŞEN ARSLAN H, SARIÇOBAN C. Effect of ultrasound and microwave pretreatments on some bioactive properties of beef protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Zhang X, Li X, Zhao Y, Zheng Q, Wu Q, Yu Y. Nanocarrier system: An emerging strategy for bioactive peptide delivery. Front Nutr 2022; 9:1050647. [PMID: 36545472 PMCID: PMC9760884 DOI: 10.3389/fnut.2022.1050647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Compared with small-molecule synthetic drugs, bioactive peptides have desirable advantages in efficiency, selectivity, safety, tolerance, and side effects, which are accepted by attracting extensive attention from researchers in food, medicine, and other fields. However, unacceptable barriers, including mucus barrier, digestive enzyme barrier, and epithelial barrier, cause the weakening or the loss of bioavailability and biostability of bioactive peptides. The nanocarrier system for bioactive peptide delivery needs to be further probed. We provide a comprehensive update on the application of versatile delivery systems for embedding bioactive peptides, including liposomes, polymer nanoparticles, polysaccharides, hydrogels, and self-emulsifying delivery systems, and further clarify their structural characterization, advantages, and disadvantages as delivery systems. It aims to provide a reference for the maximum utilization of bioactive peptides. It is expected to be an effective strategy for improving the bioavailability and biostability of bioactive peptides.
Collapse
|
22
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
23
|
Wang J, Xie Y, Luan Y, Guo T, Xiao S, Zeng X, Zhang S. Identification and dipeptidyl peptidase IV (DPP-IV) inhibitory activity verification of peptides from mouse lymphocytes. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Madhu M, Kumar D, Sirohi R, Tarafdar A, Dhewa T, Aluko RE, Badgujar PC, Awasthi MK. Bioactive peptides from meat: Current status on production, biological activity, safety, and regulatory framework. CHEMOSPHERE 2022; 307:135650. [PMID: 35835242 DOI: 10.1016/j.chemosphere.2022.135650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
By-products of the meat processing industry which are often discarded as waste are excellent protein substrates for producing bioactive peptides through enzymatic hydrolysis. These peptides have tremendous potential for the development of functional food products but there is scanty information about the regulations on bioactive peptides or products in various parts of the world. This review focuses on the diverse bioactive peptides identified from different meat and meat by-products, their bioactivity and challenges associated in their production as well as factors limiting their effective commercialization. Furthermore, this report provides additional information on the possible toxic peptides formed during production of the bioactive peptides, which enables delineation of associated safety and risk. The regulatory framework in place for bioactive peptide-based foods in different jurisdictions and the future research directions are also discussed. Uniform quality, high cost, poor sensory acceptance, lack of toxicological studies and clinical evidence, paltry stability, and lack of bioavailability data are some of the key challenges hindering commercial advancement of bioactive peptide-based functional foods. Absorption, distribution, metabolism and excretion (ADME) studies in rodents, in vitro genotoxicity, and immunogenicity data could be considered as absolute pre-requisites to ensure safety of bioactive peptides. In the absence of ADME and genotoxicity data, long term usage to evaluate safety is highly warranted. Differences in legislations among countries pose challenge in the international trade of bioactive peptides-based functional foods. Harmonization of regulations could be a way out and hence further research in this area is encouraged.
Collapse
Affiliation(s)
- Madhuja Madhu
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat-131, 028, Haryana, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat-131, 028, Haryana, India; Food Science and Technology Section, Department of Nutrition and Dietetics, Manav Rachna International Institute of Research and Studies, Faridabad, 121004, Haryana, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat-131, 028, Haryana, India.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
25
|
Zeng X, Lv B, Zhang K, Zhu Z, Li Q, Sheng B, Zhao D, Li C. Digestion Profiles of Protein in Edible Pork By-Products. Foods 2022. [PMCID: PMC9602065 DOI: 10.3390/foods11203191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Edible pork by-products are widely consumed in many areas, whereas their digestion characteristics have rarely been evaluated. This work compared the digestibility of protein in boiled pork liver, heart, tripe and skin with tenderloin as a control. Cooked skin showed the highest digestibility in the simulated gastric digestion, whereas its gastric digests were less digested in the simulated intestinal stage. In contrast, cooked tripe showed the lowest gastric digestibility but relatively higher intestinal digestibility. All the edible by-products showed lower digestibility than tenderloin, especially for pork liver, in which large undigested fractions (>300 μm) could be observed. Corresponding to these results, larger amount of bigger peptides was found in the digests of pork liver and skin. In addition, peptides in tripe (average bioactive probability = 0.385) and liver digests (average bioactive probability = 0.386) showed higher average bioactive probability than other samples. Tripe digests contained the highest level of free Asp, Gln, Cys, Val, Phe, Pro, Ser, Thr, Ile and Asn, whereas heart digests contained the highest level of free Leu, Met and Arg. These results could help to reveal the nutrition value of pork by-products.
Collapse
Affiliation(s)
- Xianming Zeng
- School of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bowen Lv
- School of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kexin Zhang
- School of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Zhu
- School of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuyue Li
- School of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bulei Sheng
- School of Tea and Food Science & Technology, Hefei 230036, China
| | - Di Zhao
- School of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-025-8439-5018
| | - Chunbao Li
- School of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Exploration of corn distillers solubles from selective milling technology as a novel source of plant-based ACE inhibitory protein hydrolysates. Food Chem 2022; 388:133036. [DOI: 10.1016/j.foodchem.2022.133036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
|
27
|
Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, Kennedy JF, Fayaz U, Khan SA. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int J Biol Macromol 2022; 213:987-1006. [PMID: 35705126 DOI: 10.1016/j.ijbiomac.2022.06.044] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022]
Abstract
Hydrogels are ideal for various food applications because of their softness, elasticity, absorbent nature, flexibility, and hygroscopic nature. Polysaccharide hydrogels are particularly suitable because of the hydrophilic nature, their food compatibility, and their non-immunogenic character. Such hydrogels offer a wide range of successful applications such as food preservation, pharmaceuticals, agriculture, and food packaging. Additionally, polysaccharide hydrogels have proven to play a significant role in the formulation of food flavor carrier systems, thus diversifying the horizons of newer developments in food processing sector. Polysaccharide hydrogels are comprised of natural polymers such as alginate, chitosan, starch, pectin and hyaluronic acid when crosslinked physically or chemically. Hydrogels with interchangeable, antimicrobial and barrier properties are referred to as smart hydrogels. This review brings together the recent and relevant polysaccharide research in these polysaccharide hydrogel applications areas and seeks to point the way forward for future research and interventions. Applications in carrying out the process of flavor carrier system directly through their incorporation in food matrices, broadening the domain for food application innovations. The classification and important features of polysaccharide-based hydrogels in food processing are the topics of the current review study.
Collapse
Affiliation(s)
- Arshied Manzoor
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U., Aligarh, 202002, UP, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India.
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Rafeeya Shams
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology Longowal, 148106, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire WR15 8SG, United Kingdom
| | - Ufaq Fayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir 190025, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India
| |
Collapse
|
28
|
Costa I, Lima M, Medeiros A, Bezerra L, Santos P, Serquiz A, Lima M, Oliveira G, Santos E, Maciel B, Monteiro N, Morais AH. An Insulin Receptor-Binding Multifunctional Protein from Tamarindus indica L. Presents a Hypoglycemic Effect in a Diet-Induced Type 2 Diabetes-Preclinical Study. Foods 2022; 11:foods11152207. [PMID: 35892791 PMCID: PMC9332146 DOI: 10.3390/foods11152207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022] Open
Abstract
The objectives of this study were to evaluate the hypoglycemic effect of the trypsin inhibitor isolated from tamarind seeds (TTI) in an experimental model of T2DM and the in silico interaction between the conformational models of TTI 56/287 and the insulin receptor (IR). After inducing T2DM, 15 male Wistar rats were randomly allocated in three groups (n = 5): 1—T2DM group without treatment; 2—T2DM group treated with adequate diet; and 3—T2DM treated with TTI (25 mg/kg), for 10 days. Insulinemia and fasting glucose were analyzed, and the HOMA-IR and HOMA-β were calculated. The group of animals treated with TTI presented both lower fasting glucose concentrations (p = 0.0031) and lower HOMA-IR indexes (p = 0.0432), along with higher HOMA-β indexes (p = 0.0052), than the animals in the other groups. The in silico analyses showed that there was an interaction between TTIp 56/287 and IR with interaction potential energy (IPE) of −1591.54 kJ mol−1 (±234.90), being lower than that presented by insulin and IR: −894.98 kJ mol−1 (±32.16). In addition, the presence of amino acids, type of binding and place of interaction other than insulin were identified. This study revealed the hypoglycemic effect of a bioactive molecule of protein origin from Tamarind seeds in a preclinical model of T2DM. Furthermore, the in silico analysis allowed the prediction of its binding in the IR, raising a new perspective for explaining TTI’s action on the glycemic response.
Collapse
Affiliation(s)
- Izael Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (I.C.); (M.L.); (A.M.); (E.S.)
| | - Mayara Lima
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (I.C.); (M.L.); (A.M.); (E.S.)
| | - Amanda Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (I.C.); (M.L.); (A.M.); (E.S.)
| | - Lucas Bezerra
- Chemistry Postgraduate Program, Science Center, Federal University of Ceará, Fortaleza 60020-903, Brazil; (L.B.); (N.M.)
| | - Paula Santos
- Federal Institute of Education, Science and Technology of Rio Grande do Norte, Macau 59500-000, Brazil;
| | - Alexandre Serquiz
- Nutrition Course, University Center of Rio Grande do Norte, Natal 59014-545, Brazil;
| | - Maíra Lima
- Veterinary Medicine Course, Potiguar University, Natal 59056-000, Brazil;
| | - Gerciane Oliveira
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (G.O.); (B.M.)
| | - Elizeu Santos
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (I.C.); (M.L.); (A.M.); (E.S.)
- Biochemistry Department, Biosciences Center, Federal University of Rio Grande, Natal 59075-000, Brazil
- Tropical Medicine Institute, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil
| | - Bruna Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (G.O.); (B.M.)
- Nutrition Department, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil
| | - Norberto Monteiro
- Chemistry Postgraduate Program, Science Center, Federal University of Ceará, Fortaleza 60020-903, Brazil; (L.B.); (N.M.)
- Analytical Chemistry and Physical Chemistry Department, Science Center, Federal University of Ceará, Fortaleza 60020-903, Brazil
| | - Ana Heloneida Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (I.C.); (M.L.); (A.M.); (E.S.)
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (G.O.); (B.M.)
- Nutrition Department, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil
- Correspondence: or ; Tel.: +55-8499-106-1887
| |
Collapse
|
29
|
Health-Promoting and Therapeutic Attributes of Milk-Derived Bioactive Peptides. Nutrients 2022; 14:nu14153001. [PMID: 35893855 PMCID: PMC9331789 DOI: 10.3390/nu14153001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
Milk-derived bioactive peptides (BAPs) possess several potential attributes in terms of therapeutic capacity and their nutritional value. BAPs from milk proteins can be liberated by bacterial fermentation, in vitro enzymatic hydrolysis, food processing, and gastrointestinal digestion. Previous evidence suggested that milk protein-derived BAPs have numerous health-beneficial characteristics, including anti-cancerous activity, anti-microbial activity, anti-oxidative, anti-hypertensive, lipid-lowering, anti-diabetic, and anti-osteogenic. In this literature overview, we briefly discussed the production of milk protein-derived BAPs and their mechanisms of action. Milk protein-derived BAPs are gaining much interest worldwide due to their immense potential as health-promoting agents. These BAPs are now used to formulate products sold in the market, which reflects their safety as natural compounds. However, enhanced commercialization of milk protein-derived BAPs depends on knowledge of their particular functions/attributes and safety confirmation using human intervention trials. We have summarized the therapeutic potentials of these BAPs based on data from in vivo and in vitro studies.
Collapse
|
30
|
León Madrazo A, Segura Campos MR. In silico prediction of peptide variants from chia (S. hispanica L.) with antimicrobial, antibiofilm, and antioxidant potential. Comput Biol Chem 2022; 98:107695. [DOI: 10.1016/j.compbiolchem.2022.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
|
31
|
Qin D, Bo W, Zheng X, Hao Y, Li B, Zheng J, Liang G. DFBP: A Comprehensive Database of Food-Derived Bioactive Peptides for Peptidomics Research. Bioinformatics 2022; 38:3275-3280. [PMID: 35552640 DOI: 10.1093/bioinformatics/btac323] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Food-derived bioactive peptides (FBPs) have demonstrated their significance in pharmaceuticals, diets, and nutraceuticals, benefiting public health and global ecology. While significant efforts have been made to discover FBPs and to elucidate the underlying bioactivity mechanisms, there is lack of a systemic study of sequence-structure-activity relationship of FBPs in a large dataset. RESULTS Here, we construct a database of food-derived bioactive peptides (DFBP), containing a total of 6276 peptide entries in 31 types from different sources. Further, we develop a series of analysis tools for function discovery/repurposing, traceability, multifunctional bioactive exploration, and physiochemical property assessment of peptides. Finally, we apply this database and data-mining techniques to discover new FBPs as potential drugs for cardiovascular diseases. The DFBP serves as a useful platform for not only the fundamental understanding of sequence-structure-activity of FBPs, but also the design, discovery, and repurposing of peptide-based drugs, vaccines, materials, and food ingredients. AVAILABILITY AND IMPLEMENTATION DFBP service can be accessed freely via http://www.cqudfbp.net/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dongya Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Weichen Bo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Xin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chingqing, 401331, China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chingqing, 401331, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio, 44325, USA
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
32
|
González-Noriega JA, Valenzuela-Melendres M, Hernández-Mendoza A, Astiazarán-García H, Mazorra-Manzano MÁ, Peña-Ramos EA. Hydrolysates and peptide fractions from pork and chicken skin collagen as pancreatic lipase inhibitors. Food Chem X 2022; 13:100247. [PMID: 35499029 PMCID: PMC9040008 DOI: 10.1016/j.fochx.2022.100247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/11/2022] Open
Abstract
Pork and chicken skin collagen hydrolysates were able to inactivate pancreatic lipase. Hydrolysates had a similar or higher inhibition ability than ultrafiltrated fractions. Fractions >5 and <1 kDa had the highest pancreatic lipase inhibition activity. First report of skin collagen hydrolysates’ ability to inhibit lipase activity. Skin collagen hydrolysates and fractions may act as a novel anti-obesogenic coadjuvant.
The objective of this work was to obtain hydrolysates and peptide fractions from pork (PSC) and chicken (CSC) skin collagen extracts and to evaluate their ability as pancreatic lipase inhibitors. Collagen extracts were hydrolyzed with collagenase or a protease from Bacillus licheniformis (MPRO NX®) at 6, 12, and 24 h. After 24 h incubation, the highest degree of hydrolysis of PSC (p < 0.05) was obtained with collagenase (72.58%), while in CSC was obtained with MPRO NX® (64.45%). Hydrolysates obtained at 24 h had the highest inhibitory activity of lipase (p < 0.05). CSC/collagenase hydrolysates (10 mg/mL) presented the highest inhibitory activity (75.53%) (p < 0.05). Ultrafiltrated fractions >5 kDa from CSC/collagenase and PSC/MPRO NX® hydrolysates were the most bioactive fractions (IC50: 4.33 mg/mL). The highest were obtained by CSC peptides (IC50s: 6.30 and 6.08 mg/mL). These results may be considered as a novel approach to use collagen hydrolysates, or their peptide fractions, as promising natural inhibitors of pancreatic lipase.
Collapse
Affiliation(s)
- Julio Alfonso González-Noriega
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Adrián Hernández-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Humberto Astiazarán-García
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Miguel Ángel Mazorra-Manzano
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Etna Aída Peña-Ramos
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| |
Collapse
|
33
|
Gui M, Gao L, Rao L, Li P, Zhang Y, Han JW, Li J. Bioactive peptides identified from enzymatic hydrolysates of sturgeon skin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1948-1957. [PMID: 34523722 DOI: 10.1002/jsfa.11532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Recent studies demonstrate that fish byproducts can be used as sources of bioactive peptides for functional foods. Sturgeon skin contains abundant proteins but it has commonly been discarded during sturgeon processing. The objective of the present work was to identify and characterize the bioactive peptides from protein hydrolysates of sturgeon skin. RESULTS Sturgeon skin protein extract (SKPE) hydrolyzed by flavourzyme for 60 min exhibited high antioxidant activity, dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE) inhibitory activity. The sequences of peptides from flavourzyme hydrolysates were identified using high-performance liquid chromatography-tandem mass spectrometry. Gly-Asp-Arg-Gly-Glu-Ser-Gly-Pro-Ala (P1) showed the highest DPPH radical scavenging activity (DPPH IC50 = 1.93 mmol L-1 ). Gly-Pro-Ala-Gly-Glu-Arg-Gly-Glu-Gly-Gly-Pro-Arg (P11) (DPP-IV IC50 = 2.14 mmol L-1 ) and Ser-Pro-Gly-Pro-Asp-Gly-Lys-Thr-Gly-Pro-Arg (P12) (DPP-IV IC50 = 2.61 mmol L-1 ) exhibited the strongest DPP-IV inhibitory activity. Gly-Pro-Pro-Gly-Ala-Asp-Gly-Gln-Ala-Gly-Ala-Lys (P6) displayed the highest ACE inhibitory activity (ACE IC50 = 3.77 mmol L-1 ). The molecular docking analysis revealed that DPP-IV inhibition of P11 and P12 are mainly attributed to hydrogen bonds and hydrophobic interactions, whereas ACE inhibition of P6 is mainly attributed to strong hydrogen bonds. CONCLUSIONS These results indicate that SKPE hydrolysates generated by flavourzyme are potential sources of bioactive peptides that could be used in the health food industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meng Gui
- Beijing Fisheries Research Institute, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Liang Gao
- Beijing Fisheries Research Institute, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Pinglan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Zhang
- Beijing Fisheries Research Institute, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jia-Wei Han
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jun Li
- Beijing Fisheries Research Institute, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Ferysiuk K, Wójciak KM, Kęska P. Effect of willow herb ( Epilobium angustifolium L.) extract addition to canned meat with reduced amount of nitrite on the antioxidant and other activities of peptides. Food Funct 2022; 13:3526-3539. [PMID: 35253026 DOI: 10.1039/d1fo01534f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aimed to evaluate the effect of the addition of various amounts (50, 100, 150 and 1000 mg kg-1) of E. angustifolium L. extracts on the biological activity of peptides in canned meat with reduced amount of sodium nitrite and their stability during 180 days of storage (4 °C). The initial peptide data were collected by LC/MS. Antioxidant activities of peptide extracts were detected on the basis of ABTS˙*, FRAP, and iron(II) chelating activity in in vitro tests. A computational study (based on the BIOPEP-UWM database and INNOVAGEN, PeptideRanker and PROTPARAM tools) was also performed to assist in the interpretation of results. The addition of E. angustifolium L. extracts has a positive effect on the peptide profile and various biological activities, the results of which depend on the amount of the extract added to the meat product. However, it should be remembered that the differences between in silico and in vitro experimental environments necessitate further research to confirm the antioxidant behavior of canned meat products supplemented with E. angustifolium L. extract under physiological conditions. Other interactions between the peptide and the food matrix should also be considered as these can lead to chemical and structural modifications that can affect the bioavailability of the bioactive peptides.
Collapse
Affiliation(s)
- Karolina Ferysiuk
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland.
| | - Karolina Maria Wójciak
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland.
| | - Paulina Kęska
- Department of Animal Food Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland.
| |
Collapse
|
35
|
Wang M, Amakye WK, Gong C, Ren Z, Yuan E, Ren J. Effect of oral and intraperitoneal administration of walnut-derived pentapeptide PW5 on cognitive impairments in APP SWE/PS1 ΔE9 mice. Free Radic Biol Med 2022; 180:191-197. [PMID: 35077820 DOI: 10.1016/j.freeradbiomed.2022.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Food-derived bioactive peptides, encrypted in native protein sequence, have attracted enormous research attention due to its potential in the prevention and/or treatment of a broad range of diseases. However, administration route poses a great challenge to their development and commercial applications. Patient-friendly delivery of bioactive peptides which also enhances its efficacy urgently remain to be addressed. Here we compared the effects of oral administration (PO) to intraperitoneal injection (IP) of a walnut-derived bioactive pentapeptide PW5 (Pro-Pro-Lys-Asn-Trp) in cognitive improvement capacity in APPSWE/PS1ΔE9 transgenic mice. Strikingly, we found that only PO administration of PW5 could effectively ameliorate cognitive impairments and reduce the β-amyloid deposits in the brain compared to the IP administration. This may be attributable to alterations in the gut microbiota communities, including alterations in microbial α- and β-diversities after PO treatment, leading to the reversal of the relative abundances of ten differential genera (e.g. Acinetobacter, Lactobacillus, Akkermansia, Allobaculum, Adlercreutzia, Coriobacteriaceae, unclassified_p_ Firmicutes, Desulfovibrionaceae, Oscillospira and Anaeroplasma) which are highly correlated with disease progression. Thus, this study has leveraged on PW5 to proof the superior efficacy of oral delivery to injection delivery in improving cognitive impairments in vivo, suggesting that oral delivery might be highly recommended as a prioritized delivery route in the development of food-derived peptides.
Collapse
Affiliation(s)
- Min Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Congcong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Zhengyu Ren
- College of Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Erdong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China; Research Institute for Food Nutrition and Human Health, Guangzhou, China.
| |
Collapse
|
36
|
Chen H, Cai X, Cheng J, Wang S. Self-assembling peptides: Molecule-nanostructure-function and application on food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Csire G, Dupire F, Canabady-Rochelle L, Selmeczi K, Stefan L. Bio-Inspired Casein-Derived Antioxidant Peptides Exhibiting a Dual Direct/Indirect Mode of Action. Inorg Chem 2022; 61:1941-1948. [PMID: 35034436 DOI: 10.1021/acs.inorgchem.1c03085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antioxidant compounds are chemicals of primary importance, especially for their applications in nutrition and healthcare, thanks to their abilities to prevent oxidation processes and to limit and/or rebalance the oxidative stress, well-known for its impact on a wide variety of diseases. While several biomolecules are well-known for their antioxidant properties (e.g., ascorbic acid, carotenoids, phenolic derivatives), bio-sourced antioxidants have drawn considerable attention in the last decades, especially bioactive peptides, mainly obtained by the hydrolysis process. Antioxidant peptide sequences are mainly identified a posteriori, thanks to fastidious and time-consuming approaches and techniques, limiting the discovery of new efficient peptides. In this context and taking inspiration from nature, we report herein on a new series of three bio-inspired antioxidant peptides derived from the milk protein casein. These phosphopeptides, designed to chelate the redox-active iron(III) and forming highly soluble complexes up to pH 9, act both as indirect (i.e., inhibition of the metal redox activity) and direct (i.e., radical scavenging) antioxidants.
Collapse
Affiliation(s)
- Gizella Csire
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | | | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| |
Collapse
|
38
|
Exogenous Bioactive Peptides Have a Potential Therapeutic Role in Delaying Aging in Rodent Models. Int J Mol Sci 2022; 23:ijms23031421. [PMID: 35163342 PMCID: PMC8835817 DOI: 10.3390/ijms23031421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, some exogenous bioactive peptides have been shown to have promising anti-aging effects. These exogenous peptides may have a mechanism similar to endogenous peptides, and some can even regulate the release of endogenous active peptides and play a synergistic role with endogenous active peptides. Most aging studies use rodents that are easy to maintain in the laboratory and have relatively homogenous genotypes. Moreover, many of the anti-aging studies using bioactive peptides in rodent models only focus on the activity of single endogenous or exogenous active peptides, while the regulatory effects of exogenous active peptides on endogenous active peptides remain largely under-investigated. Furthermore, the anti-aging activity studies only focus on the effects of these bioactive peptides in individual organs or systems. However, the pathological changes of one organ can usually lead to multi-organ complications. Some anti-aging bioactive peptides could be used for rescuing the multi-organ damage associated with aging. In this paper, we review recent reports on the anti-aging effects of bioactive peptides in rodents and summarize the mechanism of action for these peptides, as well as discuss the regulation of exogenous active peptides on endogenous active peptides.
Collapse
|
39
|
Zaky AA, Simal-Gandara J, Eun JB, Shim JH, Abd El-Aty AM. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front Nutr 2022; 8:815640. [PMID: 35127796 PMCID: PMC8810531 DOI: 10.3389/fnut.2021.815640] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Bioactive peptides generated from food proteins have great potential as functional foods and nutraceuticals. Bioactive peptides possess several significant functions, such as antioxidative, anti-inflammatory, anticancer, antimicrobial, immunomodulatory, and antihypertensive effects in the living body. In recent years, numerous reports have been published describing bioactive peptides/hydrolysates produced from various food sources. Herein, we reviewed the bioactive peptides or protein hydrolysates found in the plant, animal, marine, and dairy products, as well as their by-products. This review also emphasizes the health benefits, bioactivities, and utilization of active peptides obtained from the mentioned sources. Their possible application in functional product development, feed, wound healing, pharmaceutical and cosmetic industries, and their use as food additives have all been investigated alongside considerations on their safety.
Collapse
Affiliation(s)
- Ahmed A. Zaky
- National Research Centre, Department of Food Technology, Food Industries and Nutrition Research Institute, Cairo, Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Gwangju, South Korea
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
40
|
SANDATE-FLORES L, MÉNDEZ-ZAMORA G, MORALES-CELAYA MF, LARA-REYES JA, AGUIRRE-ARZOLA VE, GUTIÉRREZ-DIEZ A, TORRES-CASTILLO JA, SINAGAWA-GARCÍA SR. Biofunctional properties of the bioactive peptide from protein isolates of jiotilla (Escontria chiotilla) and pitaya (Stenocereus pruinosus) seeds. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.57922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González ML, Flores-Gallegos AC. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100047. [PMID: 35415659 PMCID: PMC8991988 DOI: 10.1016/j.fochms.2021.100047] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Peptide release methods influence its bioactivity by generating different sequences. The absorption, toxicity and taste of peptides is influenced by the production method. The most used methods are enzymatic hydrolysis and microbial fermentation. The most used methods are biotechnological and differ in their process.
Bioactive peptides are biomolecules derived from proteins. They contain anywhere from 2 to 20 amino acids and have different bioactivities. For example, they have antihypertensive activity, antioxidant activity, antimicrobial activity, etc. However, bioactive peptides are encrypted and inactive in the parental protein, so it is necessary to release them to show their bioactivity. For this, there are different methods, where biotechnological methods are highly favorable, highlighting enzymatic hydrolysis and microbial fermentation. The choice of the method to be used depends on different factors, which is why it is essential to know about the process, its principle, and its advantages and disadvantages. The process of peptide release is critical to generate various peptide sequences, which will produce different biological effects in the hydrolysate. This review focuses on providing extensive information on the enzymatic method and microbial fermentation to facilitate selecting the method that provides the most benefits.
Collapse
Affiliation(s)
- Dora Elisa Cruz-Casas
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Juan A Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Raúl Rodríguez-Herrera
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Mónica L Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| | - Adriana C Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n Col, República, 25280 Saltillo, Coahuila, Mexico
| |
Collapse
|
42
|
Weng Z, Chen Y, Liang T, Lin Y, Cao H, Song H, Xiong L, Wang F, Shen X, Xiao J. A review on processing methods and functions of wheat germ-derived bioactive peptides. Crit Rev Food Sci Nutr 2021; 63:5577-5593. [PMID: 34964419 DOI: 10.1080/10408398.2021.2021139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Wheat germ protein is a potential resource to produce bioactive peptides. As a cheap, safe, and healthy nutritional factor, wheat germ-derived bioactive peptides (WGBPs) provide benefits and great potential for biomedical applications. The objective of this review is to reveal the current research status of WGBPs, including their preparation methods and biological functions, such as antibacterial, anti-tumor, immune regulation, antioxidant, and anti-inflammatory properties, etc. We also reviewed the information in terms of the preventive ability of WGBPs to treat serious infectious diseases, to offer their reference to further research and application. Opinions on future research directions are also discussed. Through the review of previous research, we find that there are still some scientific issues in the basic research and industrialization process of WGBPs that deserve further exploration. Firstly, based on current complex enzymolysis, the preparation and production of WGBPs need to be combined with other advanced technology to achieve efficient and large-scale production. Secondly, studies on the bioavailability, biosafety, and mechanism against different diseases of WGBPs need to be carried out in different in vitro and in vivo models. More human experimental evidence is also required to support its industrial application as a functional food and nutritional supplement.HighlightsThe purification and identification of wheat germ-derived bioactive peptides.The main biological activities and potential mechanisms of wheat germ hydrolysates/peptides.Possible absorption and transport pathways of wheat germ hydrolysate/peptide.Wheat germ peptide shows a variety of health benefits according to its amino acid sequence.Current food applications and future perspectives of wheat germ protein hydrolysates/peptide.
Collapse
Affiliation(s)
- Zebin Weng
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanrong Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Tingting Liang
- Changshu Hospital, Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yajuan Lin
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jianbo Xiao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
43
|
Rossi YE, Vanden Braber NL, Díaz Vergara LI, Montenegro MA. Bioactive Ingredients Obtained from Agro-industrial Byproducts: Recent Advances and Innovation in Micro- and Nanoencapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15066-15075. [PMID: 34878778 DOI: 10.1021/acs.jafc.1c05447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The agro-industry produces numerous byproducts that are currently underused, and its waste contributes to environmental pollution. These byproducts represent an important and economical source of bioactive ingredients, which can promote the sustainable development of high-value-added functional foods. In this context, micro- and nanoencapsulation systems allow for the incorporation and stabilization of the bioactive agents in foods. This perspective will review recent advances in the use of agro-industrial byproducts as a source of bioactive agents. In addition, the latest advances in micro- and nanoencapsulation to improve the stability, solubility, and bioaccessibility of bioactive agents as functional food ingredients are exposed.
Collapse
Affiliation(s)
- Yanina E Rossi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Noelia L Vanden Braber
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Ladislao I Díaz Vergara
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| | - Mariana A Montenegro
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María, Avenida Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina
| |
Collapse
|
44
|
Sypka M, Jodłowska I, Białkowska AM. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules 2021; 11:1900. [PMID: 34944542 PMCID: PMC8699090 DOI: 10.3390/biom11121900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
To reduce anthropological pressure on the environment, the implementation of novel technologies in present and future economies is needed for sustainable development. The food industry, with dairy and meat production in particular, has a significant environmental impact. Global poultry production is one of the fastest-growing meat producing sectors and is connected with the generation of burdensome streams of manure, offal and feather waste. In 2020, the EU alone produced around 3.2 million tonnes of poultry feather waste composed primarily of keratin, a protein biopolymer resistant to conventional proteolytic enzymes. If not managed properly, keratin waste can significantly affect ecosystems, contributing to environmental pollution, and pose a serious hazard to human and livestock health. In this article, the application of keratinolytic enzymes and microorganisms for promising novel keratin waste management methods with generation of new value-added products, such as bioactive peptides, vitamins, prion decontamination agents and biomaterials were reviewed.
Collapse
Affiliation(s)
| | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (M.S.); (I.J.)
| |
Collapse
|
45
|
Polak-Berecka M, Michalak-Tomczyk M, Skrzypczak K, Michalak K, Rachwał K, Waśko A. Potential Biological Activities of Peptides Generated during Casein Proteolysis by Curly Kale ( Brassica oleracea L. var. sabellica L.) Leaf Extract: An In Silico Preliminary Study. Foods 2021; 10:foods10112877. [PMID: 34829159 PMCID: PMC8625700 DOI: 10.3390/foods10112877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
This study is a brief report on the proteolytic activity of curly kale leaf extract against casein. Casein degradation products and an in silico analysis of the biological activity of the peptides obtained was performed. The efficiency of casein hydrolysis by curly kale extract was determined using SDS-PAGE and by peptide concentration determination. The pattern of the enzymatic activity was determined by MALDI-TOF MS analysis. The results showed that α- and β-casein were more resistant to curly kale extract hydrolysis, whereas κ-casein was absent in the protein profile after 8 h of proteolysis, and all casein fractions were completely hydrolyzed after 24 h of incubation. Based on sequence analysis, seven peptides were identified, with molecular mass in the range of 1151-3024 Da. All the peptides were products of β-casein hydrolysis. The identified amino acid sequences were analyzed in BIOPEP, MBPDB, and FeptideDB databases in order to detect the potential activities of the peptides. In silico analysis suggests that the β-casein-derived peptides possess sequences of peptides with ACE inhibitory, antioxidant, dipeptidyl peptidase IV inhibitory, antithrombotic, immunomodulatory, and antiamnesic bioactivity. Our study was first to evaluate the possibility of applying curly kale leaf extract to generate biopeptides through β-casein hydrolysis.
Collapse
Affiliation(s)
- Magdalena Polak-Berecka
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.M.-T.); (K.R.); (A.W.)
- Correspondence:
| | - Magdalena Michalak-Tomczyk
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.M.-T.); (K.R.); (A.W.)
- Department of Animal Physiology and Toxicology, Faculty of Science and Health, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland
| | - Katarzyna Skrzypczak
- Department of Plant Technology and Gastronomy, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.M.-T.); (K.R.); (A.W.)
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.M.-T.); (K.R.); (A.W.)
| |
Collapse
|
46
|
Bilal M, Mehmood T, Nadeem F, Barbosa AM, de Souza RL, Pompeu GB, Meer B, Ferreira LFR, Iqbal HMN. Enzyme-Assisted Transformation of Lignin-Based Food Bio-residues into High-Value Products with a Zero-Waste Theme: A Review. WASTE AND BIOMASS VALORIZATION 2021. [DOI: 10.1007/s12649-021-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Macho-González A, Bastida S, Garcimartín A, López-Oliva ME, González P, Benedí J, González-Muñoz MJ, Sánchez-Muniz FJ. Functional Meat Products as Oxidative Stress Modulators: A Review. Adv Nutr 2021; 12:1514-1539. [PMID: 33578416 PMCID: PMC8321872 DOI: 10.1093/advances/nmaa182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
High meat consumption has been associated with increased oxidative stress mainly due to the generation of oxidized compounds in the body, such as malondialdehyde, 4-hydroxy-nonenal, oxysterols, or protein carbonyls, which can induce oxidative damage. Meat products are excellent matrices for introducing different bioactive compounds, to obtain functional meat products aimed at minimizing the pro-oxidant effects associated with high meat consumption. Therefore, this review aims to summarize the concept and preparation of healthy and functional meat, which could benefit antioxidant status. Likewise, the key strategies regarding meat production and storage as well as ingredients used (e.g., minerals, polyphenols, fatty acids, walnuts) for developing these functional meats are detailed. Although most effort has been made to reduce the oxidation status of meat, newly emerging approaches also aim to improve the oxidation status of consumers of meat products. Thus, we will delve into the relation between functional meats and their health effects on consumers. In this review, animal trials and intervention studies are discussed, ascertaining the extent of functional meat products' properties (e.g., neutralizing reactive oxygen species formation and increasing the antioxidant response). The effects of functional meat products in the frame of diet-gene interactions are analyzed to 1) discover target subjects that would benefit from their consumption, and 2) understand the molecular mechanisms that ensure precision in the prevention and treatment of diseases, where high oxidative stress takes place. Long-term intervention-controlled studies, testing different types and amounts of functional meat, are also necessary to ascertain their positive impact on degenerative diseases.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Pilar González
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María José González-Muñoz
- Biomedical Sciences Department, Toxicology Teaching Unit, Pharmacy School, Alcala University, Alcalá de Henares, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
48
|
Baskaran R, Chauhan SS, Parthasarathi R, Mogili NS. In silico investigation and assessment of plausible novel tyrosinase inhibitory peptides from sesame seeds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Whitaker RD, Altintzoglou T, Lian K, Fernandez EN. Marine Bioactive Peptides in Supplements and Functional Foods - A Commercial Perspective. Curr Pharm Des 2021; 27:1353-1364. [PMID: 33155895 DOI: 10.2174/1381612824999201105164000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
Many bioactive peptides have been described from marine sources and much marine biomass is still not explored or utilized in products. Marine peptides can be developed into a variety of products, and there is a significant interest in the use of bioactive peptides from marine sources for nutraceuticals or functional foods. We present here a mini-review collecting the knowledge about the value chain of bioactive peptides from marine sources used in nutraceuticals and functional foods. Many reports describe bioactive peptides from marine sources, but in order to make these available to the consumers in commercial products, it is important to connect the bioactivities associated with these peptides to commercial opportunities and possibilities. In this mini-review, we present challenges and opportunities for the commercial use of bioactive peptides in nutraceuticals and functional food products. We start the paper by introducing approaches for isolation and identification of bioactive peptides and candidates for functional foods. We further discuss market-driven innovation targeted to ensure that isolated peptides and suggested products are marketable and acceptable by targeted consumers. To increase the commercial potential and ensure the sustainability of the identified bioactive peptides and products, we discuss scalability, regulatory frameworks, production possibilities and the shift towards greener technologies. Finally, we discuss some commercial products from marine peptides within the functional food market. We discuss the placement of these products in the larger picture of the commercial sphere of functional food products from bioactive peptides.
Collapse
|
50
|
Sitanggang AB, Putri JE, Palupi NS, Hatzakis E, Syamsir E, Budijanto S. Enzymatic Preparation of Bioactive Peptides Exhibiting ACE Inhibitory Activity from Soybean and Velvet Bean: A Systematic Review. Molecules 2021; 26:3822. [PMID: 34201554 PMCID: PMC8270263 DOI: 10.3390/molecules26133822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The Angiotensin-I-converting enzyme (ACE) is a peptidase with a significant role in the regulation of blood pressure. Within this work, a systematic review on the enzymatic preparation of Angiotensin-I-Converting Enzyme inhibitory (ACEi) peptides is presented. The systematic review is conducted by following PRISMA guidelines. Soybeans and velvet beans are known to have high protein contents that make them suitable as sources of parent proteins for the production of ACEi peptides. Endopeptidase is commonly used in the preparation of soybean-based ACEi peptides, whereas for velvet bean, a combination of both endo- and exopeptidase is frequently used. Soybean glycinin is the preferred substrate for the preparation of ACEi peptides. It contains proline as one of its major amino acids, which exhibits a potent significance in inhibiting ACE. The best enzymatic treatments for producing ACEi peptides from soybean are as follows: proteolytic activity by Protease P (Amano-P from Aspergillus sp.), a temperature of 37 °C, a reaction time of 18 h, pH 8.2, and an E/S ratio of 2%. On the other hand, the best enzymatic conditions for producing peptide hydrolysates with high ACEi activity are through sequential hydrolytic activity by the combination of pepsin-pancreatic, an E/S ratio for each enzyme is 10%, the temperature and reaction time for each proteolysis are 37 °C and 0.74 h, respectively, pH for pepsin is 2.0, whereas for pancreatin it is 7.0. As an underutilized pulse, the studies on the enzymatic hydrolysis of velvet bean proteins in producing ACEi peptides are limited. Conclusively, the activity of soybean-based ACEi peptides is found to depend on their molecular sizes, the amino acid residues, and positions. Hydrophobic amino acids with nonpolar side chains, positively charged, branched, and cyclic or aromatic residues are generally preferred for ACEi peptides.
Collapse
Affiliation(s)
- Azis Boing Sitanggang
- Department of Food Science and Technology, Kampus IPB Darmaga, IPB University, Bogor 16680, Indonesia; (J.E.P.); (N.S.P.); (E.S.); (S.B.)
| | - Jessica Eka Putri
- Department of Food Science and Technology, Kampus IPB Darmaga, IPB University, Bogor 16680, Indonesia; (J.E.P.); (N.S.P.); (E.S.); (S.B.)
| | - Nurheni Sri Palupi
- Department of Food Science and Technology, Kampus IPB Darmaga, IPB University, Bogor 16680, Indonesia; (J.E.P.); (N.S.P.); (E.S.); (S.B.)
| | - Emmanuel Hatzakis
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210, USA;
| | - Elvira Syamsir
- Department of Food Science and Technology, Kampus IPB Darmaga, IPB University, Bogor 16680, Indonesia; (J.E.P.); (N.S.P.); (E.S.); (S.B.)
| | - Slamet Budijanto
- Department of Food Science and Technology, Kampus IPB Darmaga, IPB University, Bogor 16680, Indonesia; (J.E.P.); (N.S.P.); (E.S.); (S.B.)
| |
Collapse
|