1
|
Yao Y, Wang J, Zhang H, Peng T, Sun Y, Zhang R, Meng X, Lu X, Gao Y, Jin Y, Zhang Y, Chen L. Ammopiptanthus nanus (M. Pop.) Cheng f. stem ethanolic extract ameliorates rheumatoid arthritis by inhibiting PI3K/AKT/NF-κB pathway-mediated macrophage infiltration. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118974. [PMID: 39490433 DOI: 10.1016/j.jep.2024.118974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ammopiptanthus nanus (M. Pop.) Cheng f. (A. nanus), a traditional Kirgiz medicinal plant, its stem has shown potential in treating rheumatoid arthritis (RA) in China, either through oral medication or by topical application directly to the affected joints, but its underlying mechanism of action remains unexplored. AIM OF THE STUDY The purpose of this study is to elucidate pharmacological mechanism of A. nanus in ameliorating RA using a comprehensive approach that combines network pharmacology, molecular docking and experimental evaluations. MATERIALS AND METHODS Firstly, the major constituents of A. nanus stem ethanolic extract were identified and quantified by High-Performance Liquid Chromatography (HPLC). Disease target data from Gene Cards database was then used to define RA-associated targets. A protein-protein interaction (PPI) network was created via STRING database. The DAVID database powered gene ontology (GO) function and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis to gain functional insights. In vitro, RAW264.7 cells were treated with A. nanus to investigate the roles of target proteins and pathways during lipopolysaccharide (LPS) - induced inflammation. Immunofluorescence assays were performed to assess the effects of A. nanus on macrophage infiltration. The key targets and signalling pathways were validated using enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR), molecular docking, immunohistochemical analysis, western blotting and immunofluorescence. Finally, the therapeutic potential of A. nanus in RA was evaluated in a carrageenan-induced rat model. RESULTS Network analysis identified 31 potential targets of A. nanus associated with RA, including 10 hub targets. KEGG analysis highlighted the involvement of PI3K/AKT signaling pathway. In vivo experiments demonstrated that A. nanus treatment significantly protected against carrageenan-induced inflammatory paw tissue and attenuated macrophage infiltration. Both in vivo and in vitro experiments confirmed that A. nanus significantly downregulated the protein expression of COX-2, iNOS and IL-1β, and inhibited PI3K/AKT/NFκB pathway, which are closely linked to RA. Furthermore, molecular docking and cellular thermal shift assay revealed that licoflavanone showed a strong binding affinity with key targets. CONCLUSION In summary, this study provides the first evidence of the potent anti-inflammatory activity of A. nanus in experimental RA. The mechanism of action appears to involve inactivation of the PI3K/AKT/NF-κB pathway-mediated macrophage infiltration. These findings indicate that A. nanus has significant potential as a therapeutic potential agent for RA treatment and offer novel insights for future research and drug development in this field.
Collapse
Affiliation(s)
- Yuan Yao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiaye Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hongjuan Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Tao Peng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yanpei Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ruili Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiang Meng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xu Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yankun Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
2
|
Sharma P, Sharma RK, Gaur K. Understanding the impact of diabetes on bone health: A clinical review. Metabol Open 2024; 24:100330. [PMID: 39606009 PMCID: PMC11600011 DOI: 10.1016/j.metop.2024.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Diabetic bone disease, a form of secondary osteoporosis, is characterized by weakened bones and an increased risk of fractures, especially in patients with type 2 diabetes (T2D). This review explores the key mechanisms driving this condition, including hyperglycemia, insulin resistance, advanced glycation end products (AGEs), and proinflammatory cytokines, all of which disturb normal bone turnover by disrupting the functions of osteoblasts and osteoclasts. We examine the roles of bone turnover and mineralization, as well as how microvascular complications affect bone microarchitecture. Additionally, the influence of gut hormones, such as GLP-1 and GIP, and gut microbiota, particularly species like Akkermansia muciniphila, on the gut-bone axis is discussed, as these factors play a role in regulating bone density and structure. While T2D patients may show normal or even elevated bone mineral density (BMD), the underlying quality of bone is often compromised, leading to increased fragility. This review integrates current knowledge on the molecular, hormonal, and microbial interactions contributing to diabetic bone disease. By highlighting these pathways, we aim to offer insights into potential therapeutic strategies and inform future research aimed at improving the diagnosis, treatment, and overall management of this condition.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, 209305, Uttar Pradesh, India
| | - Rahul Kumar Sharma
- Aryakul College of Pharmacy & Research Sitapur, Village- Jajjaur, Post- Manawa, (Near Krishi Vigyan Kendra Sitapur) Sidhauli, Dist- Sitapur- 261303 U.P, India
| | - Khushboo Gaur
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, 209305, Uttar Pradesh, India
| |
Collapse
|
3
|
Liang W, Gao Y, Zhao Y, Gao L, Zhao Z, He Z, Li S. Lactiplantibacillus plantarum ELF051 Alleviates Antibiotic-Associated Diarrhea by Regulating Intestinal Inflammation and Gut Microbiota. Probiotics Antimicrob Proteins 2024; 16:1996-2006. [PMID: 37639209 PMCID: PMC11573863 DOI: 10.1007/s12602-023-10150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Probiotics are widely recognized for their ability to prevent and therapy antibiotic-associated diarrhea (AAD). This study was designed to evaluate Lactiplantibacillus plantarum ELF051 ability to prevent colon inflammation and its effect on gut microbial composition in a mouse model of AAD. The mice were intragastrically administered triple antibiotics for 7 days and then subjected to L. plantarum ELF051 for 14 days. The administration of L. plantarum ELF051 ameliorated the pathological changes in the colon tissue, downregulated interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and upregulated IL-10, and increased the intestinal short-chain fatty acids (SCFAs) level. Lactiplantibacillus plantarum ELF051 also regulated the Toll-like receptor/myeloid differentiation primary response 88/nuclear factor kappa light chain enhancer of activated B cells (TLR4/MyD88/NF-κB) and the phosphatidylinositol 3-kinase/protein kinase B/ NF-κB (PI3K/AKT/ NF-κB) inflammatory signaling pathways. 16S rRNA analyses showed that L. plantarum ELF051 increased the abundance and diversity of gut bacteria, restoring gut microbiota imbalance. A Spearman's rank correlation analysis showed that lactobacilli are closely associated with inflammatory markers and SCFAs. This work demonstrated that L. plantarum ELF051 can attenuate antibiotic-induced intestinal inflammation in a mouse AAD model by suppressing the pro-inflammatory response and modulating the gut microbiota.
Collapse
Affiliation(s)
- Wei Liang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, 130118, China
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Yansong Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Yujuan Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China.
| | - Lei Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Zijian Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China
| | - Zhongmei He
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, 130118, China
| | - Shengyu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, 130033, China.
| |
Collapse
|
4
|
Mao Y, Su C, Yang H, Ma X, Zhao F, Qu B, Yang Y, Hou X, Zhao B, Cui Y. PI3K/AKT/mTORC1 signalling pathway regulates MMP9 gene activation via transcription factor NF-κB in mammary epithelial cells of dairy cows. Anim Biotechnol 2024; 35:2314100. [PMID: 38343377 DOI: 10.1080/10495398.2024.2314100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Matrix metalloproteinase 9 (MMP9) plays a pivotal role in mammary ductal morphogenesis, angiogenesis and glandular tissue architecture remodeling. However, the molecular mechanism of MMP9 expression in mammary epithelial cells of dairy cows remains unclear. This study aimed to explore the underlying mechanism of MMP9 expression. In this study, to determine whether the PI3K/AKT/mTORC1/NF-κB signalling pathway participates in the regulation of MMP9 expression, we treated mammary epithelial cells with specific pharmacological inhibitors of PI3K (LY294002), mTORC1 (Rapamycin) or NF-κB (Celastrol), respectively. Western blotting results indicated that LY294002, Rapamycin and Celastrol markedly decreased MMP9 expression and P65 nuclear translocation. Furthermore, we found that NF-κB (P65) overexpression resulted in elevated expression of MMP9 protein and activation of MMP9 promoter. In addition, we observed that Celastrol markedly decreases P65-overexpression-induced MMP9 promoter activity. Moreover, the results of the promoter assay indicated that the core regulation sequence for MMP9 promoter activation may be located at -420 ∼ -80 bp downstream from the transcription start site. These observations indicated that the PI3K/AKT/mTORC1 signalling pathway is involved in MMP9 expression by regulating MMP9 promoter activity via NF-κB in the mammary epithelial cells of dairy cows.
Collapse
Affiliation(s)
- Yongjin Mao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Chen Su
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Huilin Yang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Xiaocong Ma
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Feng Zhao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Bo Qu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| | - Yang Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, PR China
| | - Xiaoming Hou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, PR China
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yingjun Cui
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
5
|
Wang F, Liu J. Regulating the lncRNA DSCR9/RPLP2/PI3K/AKT axis: an important mechanism of Xinfeng capsules in improving rheumatoid arthritis. Front Immunol 2024; 15:1465442. [PMID: 39376558 PMCID: PMC11456487 DOI: 10.3389/fimmu.2024.1465442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic and symmetrical polyarthritis. RA patients often experience inflammatory reaction and hypercoagulable state, which together affect the self-perception of patient (SPP). Currently, inhibiting inflammation and hypercoagulable state are common treatment methods for alleviating RA symptoms. Xinfeng Capsules (XFC) has a long history of treating RA, and can effectively improve the inflammatory response and hypercoagulable state of RA. However, the potential mechanisms have not yet been determined. Purpose and study design This study elucidated the action mechanism of XFC in RA inflammation and hypercoagulability through the lncDSCR9/RPLP2/PI3K/AKT axis. Results Clinical observations indicated that there was a strong link between XFC therapy and improvements in inflammatory and coagulation biomarkers, as well as SPP among RA patients. The subsequent network pharmacology analysis results identified the PI3K/AKT signaling pathway as a potential mediator for XFC treatment of RA. Furthermore, clinical validation and sequencing results revealed that lncRNA DSCR9 expression (a gene implicated in inflammation and coagulation) was negatively correlated with clinical markers of inflammation and coagulation, while positively correlated with SF-36 indicators. Notably, XFC treatment remarkably upregulated lncRNA DSCR9 expression and downregulated PI3K and AKT expressions, showing opposite expression trends to the untreated cases.The regulatory effect of XFC on the lncRNA DSCR9/RPLP2/PI3K/AKT axis in RA was investigated using techniques such as RNA pull-down assay, Western blot analysis, RT-PCR, and EdU assay. Moreover, the administration of the PI3K/AKT agonist RMH can counteract the effects of XFC on p-PI3K, p-AKT, inflammation, and hypercoagulability, reinforcing the role of pathway. Finally, animal studies utilizing HE staining and transmission electron microscopy (TEM) demonstrated that XFC notably decreased PI3K and AKT expressions in adjuvant-induced arthritis (AA) rats, mitigated inflammation and hypercoagulability, and enhanced the ultrastructure of synovial cells. These findings underscored the potential mechanisms of XFC in the treatment of RA. Conclusion Regulating the lncRNA DSCR9/RPLP2/PI3K/AKT axis may be an important mechanism by which XFC improved RA inflammatory response and hypercoagulable state.
Collapse
Affiliation(s)
- Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, First Clinical Medical College, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
6
|
Shi Q, He J, Chen G, Xu J, Zeng Z, Zhao X, Zhao B, Gao X, Ye Z, Xiao M, Li H. The chemical composition of Diwu YangGan capsule and its potential inhibitory roles on hepatocellular carcinoma by microarray-based transcriptomics. J Tradit Complement Med 2024; 14:381-390. [PMID: 39035694 PMCID: PMC11259662 DOI: 10.1016/j.jtcme.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 12/24/2023] [Indexed: 07/23/2024] Open
Abstract
The Traditional Chinese Medicine compound preparation known as Diwu Yanggan capsule (DWYG) can effectively hinder the onset and progression of hepatocellular carcinoma (HCC), which is recognized worldwide as a significant contributor to fatalities associated with cancer. Nevertheless, the precise mechanisms implicated have remained ambiguous. In present study, the model of HCC was set up by the 2-acetylaminofluorene (2-AAF)/partial hepatectomy (PH) in rats. To confirm the differentially expressed genes (DEGs) identified in the microarray analysis, real-time quantitative reverse transcription PCR (qRT-PCR) was conducted. In the meantime, the liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS) was employed to characterize the component profile of DWYG. Consequently, the DWYG treatment exhibited the ability to reverse 51 variation genes induced by 2-AAF/PH. Additionally, there was an overlap of 54 variation genes between the normal and model groups. Upon conducting RT-qPCR analysis, it was observed that the expression levels of all genes were increased by 2-AAF/PH and subsequently reversed after DWYG treatment. Notably, the fold change of expression levels for all genes was below 0.5, with 3 genes falling below 0.25. Moreover, an investigation was conducted to determine the signaling pathway that was activated/inhibited in the HCC group and subsequently reversed in the DWYG group. Moreover, the component profile of DWYG encompassed a comprehensive compilation of 206 compounds that were identified or characterized. The findings of this study elucidated the potential alleviative mechanisms of DWYG in the context of HCC, thereby holding significant implications for its future clinical utilization and widespread adoption.
Collapse
Affiliation(s)
- Qingxin Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jiangcheng He
- Wuhan Integrated Traditional Chinese and Western Medicine Orthopedic Hospital, Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - Guangya Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhaoxiang Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xueyan Zhao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Binbin Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiang Gao
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Zhihua Ye
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Mingzhong Xiao
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Hanmin Li
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
7
|
Ye Z, Ge Z, Yang S, Hu T, Ye Q, Chen H. Scutellarein alleviates osteoarthritis progression through the PI3K/Akt/NF-kappaB signaling pathway: In vitro and in vivo studies. Phytother Res 2024; 38:3509-3524. [PMID: 38695125 DOI: 10.1002/ptr.8232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 07/12/2024]
Abstract
Osteoarthritis (OA), a joint disease that is associated with inflammatory processes is involved in joint destruction. Scutellarein (Scu), a component of the medicinal herbs Scutellaria barbata D. Don and Erigeron breviscapus (vant) Hand Mass, has anti-inflammatory effects. We explored the role of Scu in the development of OA and the underlying mechanisms. CCK-8 assays, Calcein-AM/PI and EdU staining were used to determine chondrocyte viability after Scu exposure. Western blot, qPCR, as well as ELISA were utilized to measure extracellular matrix (ECM) degradation and inflammation. Immunofluorescence (IF), western blot and luciferase assays were used to examine the NF-kappaB (NF-κB) pathway. Scu interacting proteins were predicted using network pharmacology analysis and molecular docking. X-ray, H&E, Safranin O-Fast Green(S-O), toluidine blue, and immunohistochemistry analysis were used to examine the therapeutic effects of Scu in OA using destabilization of medial meniscus (DMM) models. Scu demonstrated inhibitory effects on ECM degradation and pro-inflammatory factor levels in chondrocytes treated with IL-1β. Mechanistically, Scu inhibited the IL-1β-induced activation of the PI3K/Akt/ NF-κB signaling pathway cascades. Furthermore, Scu has been shown to have significant binding capacities to PI3K. Additionally, Scu ameliorated the OA progression in DMM models. Our findings suggest that Scu may contribute to the amelioration of OA progression by targeting the PI3K/Akt/NF-κB signaling pathway, implying Scu possesses promising therapeutic potential for the treatment of OA.
Collapse
Affiliation(s)
- Ziyang Ye
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Zhihan Ge
- Department of Rehabilitation, Wenzhou People's Hospital, Wenzhou, China
| | - Shu Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting Hu
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Qiong Ye
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Hui Chen
- Department of Orthopedics, Wenzhou Central Hospital, Wenzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| |
Collapse
|
8
|
Fang Y, Lou C, Lv J, Zhang C, Zhu Z, Hu W, Chen H, Sun L, Zheng W. Sipeimine ameliorates osteoarthritis progression by suppression of NLRP3 inflammasome-mediated pyroptosis through inhibition of PI3K/AKT/NF-κB pathway: An in vitro and in vivo study. J Orthop Translat 2024; 46:1-17. [PMID: 38765604 PMCID: PMC11099199 DOI: 10.1016/j.jot.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Background Osteoarthritis (OA) is a chronic and degenerative condition that persists and progresses over time. Sipeimine (Sip), a steroidal alkaloid derived from Fritillariae Cirrhosae Bulbus, has attracted considerable attention due to its exceptional anti-inflammatory, analgesic, antioxidant, and anti-cancer characteristics. However, Sip's effects on OA and its mechanism still need further research. Methods This study utilized network pharmacology to identify initial targets for Sip. Functional associations of Sip in OA were clarified through Gene Ontology (GO) enrichment analysis, bioinformatically analyzing a list of targets. Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis assessed pathways linked to Sip's therapeutic efficacy in OA. Molecular docking techniques explored Sip's binding affinity with key targets. In vitro experiments assessed Sip's impact on lipopolysaccharide (LPS)-induced pro-inflammatory factors and its protective effects on collagen-II and aggrecan degradation within the extracellular matrix (ECM). Western blotting and fluorescence analyses were conducted to determine Sip-mediated signaling pathways. Moreover, in vivo experiments using a mouse OA model validated Sip's therapeutic efficacy. Results The results from network pharmacology revealed a total of 57 candidate targets for Sip in OA treatment. GO enrichment analysis demonstrated a robust correlation between Sip and inflammatory response, response to LPS and NF-κB-inducing kinase activity in OA. KEGG enrichment analysis highlighted the significance of NF-κB and PI3K-AKT pathways in Sip's therapeutic potential for OA. Furthermore, molecular docking results demonstrated Sip's robust binding affinity with p65 and PI3K. In vitro experiments demonstrated Sip's effectively suppressed the expression of pro-inflammatory factors induced by LPS, such as COX-2, iNOS, IL-1β, and IL-18. Besides, Sip counteracted the degradation of collagen-II and aggrecan within the ECM and the expression of MMP-13 and ADAMTS-5 mediated by LPS. The safeguarding effects of Sip were ascribed to its inhibition of PI3K/AKT/NF-κB pathway and NLRP3 inflammasome mediated pyroptosis. Additionally, in vivo experiments revealed that Sip could alleviate the subchondral remodeling, cartilage degeneration, synovitis as well as ECM degradation a mouse model of OA. Conclusion Sip exhibited potential in attenuating OA progression by suppressing the PI3K/AKT/NF-κB pathway, consequently inhibiting the activation of NLRP3 inflammasome and pyroptosis. The translational potential statement The translational potential of this articleThis study provides a biological rationale for the use of Sip as a potential candidate for OA treatment, provide a new concept for the cartilage targeted application of natural compounds.
Collapse
Affiliation(s)
- Yuqin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaoyang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ziteng Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hua Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenhao Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
- The Second School of Medicine of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
9
|
Zhu K, Fan R, Cao Y, Yang W, Zhang Z, Zhou Q, Ren J, Shi X, Gao Y, Guo X. Glycyrrhizin attenuates myocardial ischemia reperfusion injury by suppressing Inflammation, oxidative stress, and ferroptosis via the HMGB1-TLR4-GPX4 pathway. Exp Cell Res 2024; 435:113912. [PMID: 38176464 DOI: 10.1016/j.yexcr.2024.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Ferroptosis, a form of regulated cell death process, play an important role in myocardial ischemia‒reperfusion (I/R) injury. Glycyrrhizin (GL), a natural glycoconjugate triterpene, has the property to improve growth rate, immune regulation, antioxidant, anti-inflammatory. However, whether GL can attenuate myocardial I/R injury by modulating ferroptosis or other mechanisms are still unclear. In this study, SD rats underwent in vivo myocardial ischemia/reperfusion (I/R) surgery, while H9C2 cells were subjected to the hypoxia/reoxygenation (H/R) model for in vitro experiments. In addition, TAK-242, a TLR4-specific antagonist, and GL were also used to evaluate the effect and mechanisms of GL on the cardiac function and expression of ferroptosis-related gene and protein in vivo and vitro. The results show that GL decreased not only the expression of the inflammation-related factors (HMGB1, TNF-α, IL-6, IL-18 and IL-1β), but also reduced the number of TUNEL-positive cardiomyocytes, and mitigated pathological alterations in I/R injury. In addition, GL decreased the levels of MDA, promoted antioxidant capacity such as GSH, CAT, Cu/Zn-SOD, Mn-SOD, and SOD in vivo and vitro. More importantly, GL and TAK-242 regulate ferroptosis-related protein and gene expression in I/R and H/R model. Surprisingly, GL may ameliorate cardiomyocyte ferroptosis and ultimately improves cardiac function induced by H/R via the HMGB1-TLR4-GPX4 axis. Therefore, we have highlighted a novel mechanism by which GL regulates inflammation, oxidative stress, and ferroptosis via the HMGB1-TLR4-GPX4 pathway to prevent myocardial I/R injury. GL appears to be a potentially applicable drug for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| | - Rong Fan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Cao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Zhe Zhang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China; Department of Pulmonary and Critical Care Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Qiang Zhou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Ren
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiushan Shi
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cellular Physiology, Shanxi Province, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China.
| | - Xiang Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Upadhyay P, Kalra D, Nilakhe AS, Aggrawal V, Gupta S. Polyherbal formulation PL02 alleviates pain, inflammation, and subchondral bone deterioration in an osteoarthritis rodent model. Front Nutr 2023; 10:1217051. [PMID: 38045809 PMCID: PMC10693428 DOI: 10.3389/fnut.2023.1217051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a debilitating disease with significant personal and socioeconomic burdens worldwide. Methods To address this, we developed a multitargeted formulation called PL02, which includes standardized extracts of Rosa canina L, Hippophae rhamnoides, and collagen peptide. We tested the pharmacological efficacy of PL02 in a rodent model of OA induced by Monosodium iodoacetate (MIA). Results Our results demonstrate that oral administration of PL02 has antioxidant effects by down-regulating NOS, reduces pain-related behavior, and mitigates inflammation by inhibiting IL-1b and TNF-α production, as well as downregulating CGRP1 and COX-II. PL02 also exhibits anti-catabolic and chondroprotective activity by significantly downregulating MMP13 and upregulating BCL2. Additionally, PL02 demonstrates chondrogenic activity by significantly upregulating SOX-9 (a master regulator of chondrogenesis), Coll-I, and aggrecan, which are major components of articular cartilage. Furthermore, PL02 prevents microarchitectural deterioration of subchondral bone. Conclusion Overall, PL02 is an orally active, multi-targeted therapy that not only alleviates pain and inflammation but also effectively halts cartilage and subchondral bone deterioration. It represents a safe and promising candidate for the treatment and management of OA.
Collapse
Affiliation(s)
- Prabhat Upadhyay
- Molecular Science Lab, National Institute of Immunology (NII), New Delhi, India
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Diya Kalra
- Molecular Science Lab, National Institute of Immunology (NII), New Delhi, India
| | | | - Vijay Aggrawal
- M/s Purobien Lifesciences Ltd, Baddi, Himachal Pradesh, India
| | - Sarika Gupta
- Molecular Science Lab, National Institute of Immunology (NII), New Delhi, India
| |
Collapse
|
11
|
Iijima H, Wang K, D'Amico E, Tang WY, Rogers RJ, Jakicic JM, Ambrosio F. Exercise-primed extracellular vesicles improve cell-matrix adhesion and chondrocyte health. RESEARCH SQUARE 2023:rs.3.rs-2958821. [PMID: 37333349 PMCID: PMC10274961 DOI: 10.21203/rs.3.rs-2958821/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Extracellular vesicles (EVs) have been suggested to transmit the health-promoting effects of exercise throughout the body. Yet, the mechanisms by which beneficial information is transmitted from extracellular vesicles to recipient cells are poorly understood, precluding a holistic understanding of how exercise promotes cellular and tissue health. In this study, using articular cartilage as a model, we introduced a network medicine paradigm to simulate how exercise facilitates communication between circulating EVs and chondrocytes, the cells resident in articular cartilage. Using the archived small RNA-seq data of EV before and after aerobic exercise, microRNA regulatory network analysis based on network propagation inferred that circulating EVs activated by aerobic exercise perturb chondrocyte-matrix interactions and downstream cellular aging processes. Building on the mechanistic framework identified through computational analyses, follow up experimental studies interrogated the direct influence of exercise on EV-mediated chondrocyte-matrix interactions. We found that pathogenic matrix signaling in chondrocytes was abrogated in the presence of exercise-primed EVs, restoring a more youthful phenotype, as determined by chondrocyte morphological profiling and evaluation of chondrogenicity. Epigenetic reprograming of the gene encoding the longevity protein, α-Klotho, mediated these effects. These studies provide mechanistic evidence that exercise transduces rejuvenation signals to circulating EVs, endowing EVs with the capacity to ameliorate cellular health even in the presence of an unfavorable microenvironmental signals.
Collapse
Affiliation(s)
- Hirotaka Iijima
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Biomedical and Health Informatics Unit, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Kai Wang
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA
| | - Ella D'Amico
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Wan-Yee Tang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - Renee J Rogers
- Department of Internal Medicine, Division of Physical Activity and Weight Management, University of Kansas Medical Center, Kansas City, KS
| | - John M Jakicic
- Department of Internal Medicine, Division of Physical Activity and Weight Management, University of Kansas Medical Center, Kansas City, KS
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Zheng S, Zhou B, Yang L, Hou A, Zhang J, Yu H, Kuang H, Jiang H, Yang L. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from Duhuo Jisheng decoction on osteoarthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023:116679. [PMID: 37257711 DOI: 10.1016/j.jep.2023.116679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Duhuo Jisheng decoction is a traditional Chinese formula that has been widely used in clinical practice to treat osteoarthritis, which has the effects of removing invaded cold and dampness, relieving joint pain. However, it is difficult to determine the effective substances and mechanisms due to assorted herbs and components, and further research is needed. AIM OF THE STUDY This study was designed to explore and verify the mechanism and targets of DHJSD in the treatment of OA via network analysis and experiments. METHOD In this study, the active ingredients of DHJSD were qualitatively analyzed by UPLC-QDA. Network analysis was used to identify common targets and pathways. Next, we explored the therapeutic mechanism of DHJSD through a rat model of knee osteoarthritis. HE staining was used to judge the establishment of the animal model. ELISA and Western blotting were used to verify the expression of key pathway proteins. CONCLUSION In this study, seventeen chemical constituents in DHJSD were identified. According to the network analysis, we obtained the potential associated pathways of action. Then, molecular docking and SPR experiments showed that the sixteen identified components had high binding energies to IL-6. HE staining showed that the high-dose group of DHJSD had an obvious therapeutic effect on model rats. Compared with the model group, the levels of IL-1β, TNF-α, IL-6, MMP3, MMP13, ADAMTS4 and ADAMTS5 in serum and the expression of STAT3 and p-STAT3 protein in administration groups were significantly decreased. This result indicated that the IL-6/STAT3 signaling pathway was one of the important pathways regulated by DHJSD to improve OA.
Collapse
Affiliation(s)
- Senwang Zheng
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Bo Zhou
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Lin Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China; Higher College, Jiangxi University of Traditional Chinese Medicine, NanChang, 330000, PR China
| | - Ajiao Hou
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Jiaxu Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Huan Yu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China
| | - Hai Jiang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China.
| | - Liu Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, PR China.
| |
Collapse
|
13
|
Qi X, Lu X, Han Y, Xing Y, Zheng Y, Cui C. Ginseng polysaccharide reduces autoimmune hepatitis inflammatory response by inhibiting PI3K/AKT and TLRs/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154859. [PMID: 37209603 DOI: 10.1016/j.phymed.2023.154859] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ginseng polysaccharides (GP) have been found to exhibit significant immune regulatory effects, making them a promising candidate for treating immune-related diseases. However, their mechanism of action in immune liver injury is not yet clear. The innovation of this study lies in exploring the mechanism of action of ginseng polysaccharides (GP) in immune liver injury. While GP has been previously identified for its immune regulatory effects, this study aims to provide a clearer understanding of its therapeutic potential for immune-related liver diseases. PURPOSE The purpose of this study is to characterize low molecular weight gingeng polysaccharides (LGP), investigate their effect on ConA-induced autoimmune hepatitis (AIH), and identify their potential molecular mechanisms. METHODS LGP was extracted and purified using water-alcohol precipitation, DEAE-52 cellulose column, and Sephadex G200. And its structure was analyzed. It was then evaluated for anti-inflammatory and hepatoprotective effects in ConA-induced cells and mice, assessing cellular viability and inflammation with Cell Counting Kit-8 (CCK-8), Reverse Transcription-polymerase Chain Reaction (RT-PCR), and Western Blot, and hepatic injury, inflammation, and apoptosis with various biochemical and staining methods. RESULTS LGP is a polysaccharide composed of glucose (Glu), galactose (Gal), and arabinose (Ara), with a molar ratio of 12.9:1.6:1.0. LGP has a low crystallinity amorphous powder structure and is free from impurities. LGP enhances cell viability and reduces inflammatory factors in ConA-induced RAW264.7 cells and inhibits inflammation and hepatocyte apoptosis in ConA-induced mice. LGP inhibits Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Toll-like receptors/Nuclear factor kappa B (TLRs/NF-κB) signaling pathways in vitro and in vivo to treat AIH. CONCLUSIONS LGP was successfully extracted and purified, exhibiting potential as a treatment for ConA-induced autoimmune hepatitis due to its ability to inhibit the PI3K/AKT and TLRs/NF-κB signaling pathways and protect liver cells from damage.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, School of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xintong Lu
- Department of Food Processing and Safety, College of Agricultural, Yanbian University, Yanji 133002, Jilin, China
| | - Yudi Han
- Food Science and Engineering, Convergence College, Yanbian University, Yanji 133002, Jilin, China
| | - Yibin Xing
- Department of Food Processing and Safety, College of Agricultural, Yanbian University, Yanji 133002, Jilin, China
| | - Yan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, School of Pharmacy, Yanbian University, Yanji 133002, Jilin, China.
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, School of Pharmacy, Yanbian University, Yanji 133002, Jilin, China; Department of Food Processing and Safety, College of Agricultural, Yanbian University, Yanji 133002, Jilin, China; Food Science and Engineering, Convergence College, Yanbian University, Yanji 133002, Jilin, China.
| |
Collapse
|
14
|
Li J, Zhang X, Guo D, Shi Y, Zhang S, Yang R, Cheng J. The mechanism of action of paeoniae radix rubra-angelicae sinensis radix drug pair in the treatment of rheumatoid arthritis through PI3K/AKT/NF-κB signaling pathway. Front Pharmacol 2023; 14:1113810. [PMID: 36992829 PMCID: PMC10040578 DOI: 10.3389/fphar.2023.1113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Objective: To investigate the effects and mechanisms of Paeoniae radix rubra-Angelicae sinensis radix (P-A) drug pair in the treatment of rheumatoid arthritis (RA). Methods: Mass spectrometry was employed to accurately characterize the main components of the P-A drug pair. Network pharmacology was used to analyze the main components and pathways of the P-A drug pair in the treatment of RA, and Discovery Studio software was used to molecularly dock the key proteins on the pathway with their corresponding compounds. The levels of serum TNF-a, IL-1β, and IL-6 were measured by enzyme linked immunosorbent assay (ELISA). The histopathology of the ankle joint was observed by hematoxylin-eosin (HE) staining, and the positive expression of p-PI3K, p-IKK, p-NF-κB, and p-AKT in the synovial tissue of the ankle joint was detected by immunohistochemical analysis. Finally, the expression of PI3K, IKK, and AKT and their phosphorylation levels were determined by western blot in each group of rats. Results: Network pharmacology combined with molecular docking analysis revealed that the pharmacodynamic mechanism of the P-A drug pair for the treatment of RA may be related to the contents of caffeic acid, quercetin, paeoniflorin, and baicalein in the regulation of the expression of the PI3K/AKT/NF-κB signaling pathway and the targets of PIK3CA, PIK3R1, AKT1, HSP90AA1 and IKBKB in the pathway. Compared with the model group, the P-A drug pair significantly improved the pathological changes of the synovial tissue and reduced feet swelling in RA model rats. Moreover, it regulated the levels of TNF-α, IL-1β, and IL-6 in serum (p < 0.05). The results of the immunohistochemical analysis and western blot showed that the expression of PI3K, IKK, NF-κB, and AKT decreased after phosphorylation in the synovial tissue (p < 0.05). Conclusion: The P-A drug pair exhibited an inhibitory effect on the hyperactivation of the PI3K/AKT/NF-κB signaling pathway in the synovial membrane of RA rats. The mechanism may be related to the downregulation of the phosphorylation levels PI3K, IKK, NF-κB, and AKT, which in turn decreased inflammatory cell infiltration and synovial membrane proliferation.
Collapse
Affiliation(s)
- Jia Li
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaofei Zhang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Pharmaceutics, The Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dongyan Guo
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yajun Shi
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shihao Zhang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ruiying Yang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiangxue Cheng
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
15
|
Xu H, Fang L, Zeng Q, Chen J, Ling H, Xia H, Ge Q, Wu C, Zou K, Wang X, Wang P, Yuan W, Dong R, Hu S, Xiao L, He B, Tong P, Jin H. Glycyrrhizic acid alters the hyperoxidative stress-induced differentiation commitment of MSCs by activating the Wnt/β-catenin pathway to prevent SONFH. Food Funct 2023; 14:946-960. [PMID: 36541285 DOI: 10.1039/d2fo02337g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aimed to examine the in vivo and in vitro therapeutic effects of glycyrrhizic acid (GA) on steroid-induced osteonecrosis of the femoral head (SONFH), which is caused by the overuse of glucocorticoids (GCs). Clinically, we identified elevated oxidative stress (OS) levels and an imbalance in osteolipogenic homeostasis in SONFH patients compared to femoral neck fracture (FNF) patients. In vivo, we established experimental SONFH in rats via lipopolysaccharides (LPSs) combined with methylprednisolone (MPS). We showed that GA and Wnt agonist-S8320 alleviated SONFH, as evidenced by the reduced microstructural and histopathological alterations in the subchondral bone of the femoral head and the decreased levels of OS in rat models. In vitro, GA reduced dexamethasone (Dex)-induced excessive NOX4 and OS levels by activating the Wnt/β-catenin pathway, thereby promoting the osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibiting lipogenic differentiation. In addition, GA regulated the expression levels of the key transcription factors downstream of this pathway, Runx2 and PPARγ, thus maintaining osteolipogenic homeostasis. In summary, we demonstrated for the first time that GA modulates the osteolipogenic differentiation commitment of MSCs induced by excessive OS through activating the Wnt/β-catenin pathway, thereby ameliorating SONFH.
Collapse
Affiliation(s)
- Huihui Xu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Liang Fang
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Qinghe Zeng
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Jiali Chen
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Houfu Ling
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Hanting Xia
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Qinwen Ge
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Congzi Wu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Kaiao Zou
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Xu Wang
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Pinger Wang
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Wenhua Yuan
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Rui Dong
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Songfeng Hu
- Department of Orthopaedics and Traumatology, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, 312000, China
| | - Luwei Xiao
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Bangjian He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Peijian Tong
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Hongting Jin
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang, 310053, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
16
|
Zhang T, Dong Z, Liu F, Pan E, He N, Ma F, Wang G, Wang Y, Dong J. Avermectin induces carp neurotoxicity by mediating blood-brain barrier dysfunction, oxidative stress, inflammation, and apoptosis through PI3K/Akt and NF-κB pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113961. [PMID: 35969982 DOI: 10.1016/j.ecoenv.2022.113961] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Avermectin, a "low toxicity insecticide", has been widely used in recent years, but its non-target toxicity, especially to aquatic organisms, has been neglected. In this study, we evaluated the neurotoxic effects of avermectin on carp by establishing a 96 h avermectin acute toxicity test, and its possible mechanism was discussed. The 96 h LC50 of avermectin in carp was found to be 24.04 μg/L. Therefore, 3.005 μg/L and 12.02 μg/L were used as the low-dose and high-dose groups, respectively, to investigate the neurotoxic effects of avermectin on carp. The results of high-performance liquid chromatography (HPLC) analysis showed that avermectin accumulated in the carp brain. Histopathological observation and immunohistochemical analysis (IHC) of TNF-α and Bax showed that avermectin exposure led to inflammatory cell infiltration and neuronal necrosis. The mRNA levels of tight junction genes and the IHC results of ZO-1 and Occludin showed that the structure of the blood-brain barrier (BBB) was destroyed. Biochemical analysis showed that avermectin induced the accumulation of MDA in the brain and decreased the activity of antioxidant enzymes CAT and SOD, leading to oxidative stress. In addition, avermectin induces brain inflammation by activating NF-κB pathway and releasing inflammatory factors IL-1β, IL-6, TNF-α and iNOS. TEM and TUNEL assays showed that exposure to avermectin induced apoptosis in brain. what is more, the expression of apoptosis-related genes and proteins suggested that avermectin-induced apoptosis may be associated with inhibition of the PI3K/Akt signaling pathway. This study also showed that avermectin-induced NF-κB signaling activation was partially dependent on its upstream PI3K/Akt signaling pathway. Therefore, this study concludes that avermectin can induce neurotoxicity in carp by disrupting the blood-brain barrier structure and generating oxidative stress, inflammation, and apoptosis and that NF-κB and PI3K/Akt signaling pathways are involved in this process.
Collapse
Affiliation(s)
- Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Zhuhua Dong
- Deapartment of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fenfen Ma
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Guanglu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
17
|
Chen R, Li X, Sun Z, Yin J, Hu X, Deng J, Liu X. Intra-bone marrow injection of magnesium isoglyrrhizinate inhibits inflammation and delays osteoarthritis progression through the NF-κB pathway. J Orthop Surg Res 2022; 17:400. [PMID: 36045373 PMCID: PMC9429748 DOI: 10.1186/s13018-022-03294-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Osteoarthritis (OA) presents cartilage damage in addition to chronic inflammation. However, self-recovery of damaged cartilage in an inflammatory environment is not possible. Mesenchymal stem cells (MSCs) in the bone marrow are a source of regenerative repair of damaged cartilage. To date, whether intra-luminal administration of the bone marrow can delay the progression of OA is still unknown. This study, therefore, aimed to explore the role of intra-bone marrow injection of Magnesium isoglycyrrhizinate (MgIG) in delaying the OA progression and to investigate the underlying mechanism. Methods Rabbit OA models were established using the anterior cruciate ligament transection method while a catheter was implanted into the bone marrow cavity. 1 week after surgery, MgIG treatment was started once a week for 4 weeks. The cartilage degradation was analyzed using hematoxylin–eosin staining, Masson’s trichrome staining and Alcian blue staining. Additionally, the pro-inflammatory factors and cartilage regeneration genes involved in the cartilage degeneration and the underlying mechanisms in OA were detected using enzyme-linked immunosorbent assay, quantitative real-time PCR (qRT-PCR) and Western blotting. Results The results of histological staining revealed that intra-bone marrow injection of MgIG reduced degeneration and erosion of articular cartilage, substantially reducing the Osteoarthritis Research Society International scores. Furthermore, the productions of inflammatory cytokines in the bone marrow cavity and articular cavity such as interleukin-1β(IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were inhibited upon the treatment of MgIG. At the same time, the expression of alkaline phosphate, tartrate-resistant acid phosphatase-5b (TRAP-5b) and C-telopeptides of type II collagen (CTX-II) in the blood also decreased and was positively correlated. On the contrary, cartilage-related genes in the bone marrow cavity such as type II collagen (Col II), Aggrecan (AGN), and SRY-box 9 (SOX9) were up-regulated, while matrix metalloproteinase-3 (MMP-3) was down-regulated. Mechanistically, MgIG was found to exert an anti-inflammatory effect and impart protection to the cartilage by inhibiting the NF-κB pathway. Conclusion Intra-bone marrow injection of MgIG might inhibit the activation of the NF-κB pathway in the progression of OA to exert an anti-inflammatory effect in the bone marrow cavity and articular cavity, thereby promoting cartilage regeneration of MSCs in the bone marrow, making it a potential new therapeutic intervention for the treatment of OA.
Collapse
Affiliation(s)
- Rong Chen
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiangwei Li
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhibo Sun
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Junyi Yin
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Xiaowei Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Jingwen Deng
- Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China
| | - Xinghui Liu
- Department of Traumatic Orthopedics, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,Hubei Key Laboratory of Embryonic Stem Cell Research, Department of Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, No. 30 Renmin South Road, Maojian District, Shiyan, 442000, Hubei, China.
| |
Collapse
|
18
|
Xiao J, Zhang G, Mai J, He Q, Chen W, Li J, Ma Y, Pan Z, Yang J, Li S, Li M, Chen B, Wang H. Bioinformatics analysis combined with experimental validation to explore the mechanism of XianLing GuBao capsule against osteoarthritis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115292. [PMID: 35447200 DOI: 10.1016/j.jep.2022.115292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE XianLing GuBao Capsule (XLGB) is often used to treat osteoarthritis (OA), osteoporosis, fractures, and other musculoskeleton disorders. However, the molecular mechanism of XLGB for treating OA is still unclear. AIM OF THE STUDY This study set out to uncover the molecular mechanism underlying the treatment of osteoarthritis with XLGB. MATERIALS AND METHODS Disease genes were obtained from CTD, DisGeNET, and GeneCards databases, and XLGB drug targets were obtained from ETCM and target genes predicted by XLGB metabolic components reported in the literature. Then we used the Venn diagram viewer to extract disease and drug intersection genes as potential therapeutic genes for Protein-protein interaction (PPI), GO terminology, and KEGG pathway analysis. Subsequently, we performed qRT-PCR, Western blot and histological analysis to validate the therapeutic effect of XLGB against OA and its molecular mechanism. RESULTS A total of 1039 OA genes and 949 XLGB target genes were collected, and finally 188 potential therapeutic target genes were obtained. PPI network analysis indicated that the main target genes for XLGB to treat OA include Akt1, Mapk3, Il-6, Il-1β, Ptgs2, Mmp9, etc. The results of KEGG and GO enrichment analysis suggested that XLGB may treat OA by anti-inflammatory and reducing extracellular matrix degradation. In vitro, XLGB down-regulated the expressions of Mmp3, Mmp9, Mmp12, Mmp13, Cox-2, Il-6, increased the expression of Collagen II and Sox9. Mechanistically, XLGB inhibits the activation of PI3K/AKT/NF-κB and MAPK pathways. Moreover, the results of animal experiments indicated that XLGB reduced cartilage destruction, bone resorption, and synovitis in osteoarthritic rats. CONCLUSIONS XLGB has a protective effect against OA by suppressing PI3K/AKT/NF-κB and MAPK signaling. Our study provides a theoretical basis for XLGB in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jiacong Xiao
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Gangyu Zhang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jiale Mai
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Qi He
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Weijian Chen
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jianliang Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yanhuai Ma
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Zhaofeng Pan
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Junzheng Yang
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Shaocong Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Miao Li
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Bohao Chen
- 1st School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China; The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Haibin Wang
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, PR China.
| |
Collapse
|
19
|
Guo X, Pan X, Wu J, Li Y, Nie N. Calycosin prevents IL-1β-induced articular chondrocyte damage in osteoarthritis through regulating the PI3K/AKT/FoxO1 pathway. In Vitro Cell Dev Biol Anim 2022; 58:491-502. [PMID: 35705795 DOI: 10.1007/s11626-022-00694-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
Osteoarthritis (OA) is a joint disorder that is associated with chondrocyte damage under inflammatory environment. Calycosin is an astragalus extract with potential anti-inflammatory and anti-tumor activities. The purpose of this research is to explore the activity and mechanism of calycosin in interleukin-1beta (IL-1β)-induced chondrocyte injury. In the present study, the targets of calycosin and OA were analyzed according to HERB, DisGeNet, String, GO terms, and KEGG pathway enrichment assays. Human primary chondrocytes were treated with calycosin, and stimulated with IL-1β. Cell viability was detected by CCK-8 assay. Cell apoptosis was investigated by flow cytometry, and caspase-3 activity analyses. Inflammation was analyzed according to inflammatory cytokines levels by enzyme-linked immunosorbent assay (ELISA). The proteins associated with extracellular matrix (ECM) degradation and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box O1 (FoxO1) signaling pathways were measured using Western blotting. The results showed that total of 25 overlapping targets of calycosin against OA were predicted. These targets might drive the FoxO pathway. Calycosin alone induced little cytotoxicity to chondrocytes, and it alleviated IL-1β-induced viability inhibition, cell apoptosis, inflammatory cytokine secretion, and ECM degradation in chondrocytes. Calycosin repressed IL-1β-induced activation of the PI3K/AKT/FoxO1 signaling. Activation of the PI3K/AKT/FoxO1 signaling mitigated the suppressive effect of calycosin on chondrocyte apoptosis, inflammation, and ECM degradation induced by IL-1β. As a conclusion, calycosin prevents IL-1β-induced chondrocyte apoptosis, inflammation, and ECM degradation through inactivating the PI3K/AKT/FoxO1 pathway.
Collapse
Affiliation(s)
- Xiang Guo
- School of medicine, Shaoxing University, Zhejiang, 312000, Shaoxing, China.
| | - Xiaoyu Pan
- Department of Clinical Medicine, The Medical College of Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Jianhong Wu
- School of medicine, Shaoxing University, Zhejiang, 312000, Shaoxing, China
| | - Yuanzhou Li
- Shaoxing Geke Biological Technology Co. Ltd, Shaoxing, 312000, Zhejiang, China
| | - Na Nie
- Trauma Joint Surgery, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, 404100, China
| |
Collapse
|
20
|
Xu W, Li F, Zhang X, Wu C, Wang Y, Yao Y, Xia D. The Protective Effects of Neoastilbin on Monosodium Urate Stimulated THP-1-Derived Macrophages and Gouty Arthritis in Mice through NF-κB and NLRP3 Inflammasome Pathways. Molecules 2022; 27:molecules27113477. [PMID: 35684415 PMCID: PMC9181946 DOI: 10.3390/molecules27113477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Gouty arthritis (GA) is a frequent inflammatory disease characterized by pain, swelling, and stiffness of joints. Neoastilbin is a flavonoid isolated from the rhizome of Smilax glabra, which possesses various anti-inflammatory effects. However, the mechanism of neoastilbin in treating GA has not yet been clarified. Thus, this study was to investigate the protective effects of neoastilbin in both monosodium urate (MSU) stimulated THP-1-derived macrophages and the animal model of GA by injecting MSU into the ankle joints of mice. The levels of key inflammatory cytokines in MSU stimulated THP-1-derived macrophages were detected by enzyme-linked immunosorbent assay (ELISA) kits. Protein expressions of nuclear factor kappa B (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome pathways were further detected by Western blotting. In addition, swelling degree of ankle joints, the levels of inflammatory factors, infiltration of inflammatory cells and the expressions of related proteins were determined. Swelling degree and histopathological injury in ankle joints of MSU-injected mice were significantly decreased after being treated with neoastilbin. Moreover, neoastilbin significantly diminished the secretion of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), suppressing the activation of NF-κB and NLRP3 inflammasome pathways in both MSU stimulated THP-1-derived macrophages and the mouse model of GA. In summary, neoastilbin could alleviate GA by inhibiting the NF-κB and NLRP3 inflammasome pathways, which provided some evidence for neoastilbin as a promising therapeutic agent for GA treatment.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
| | - Xiaoxi Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
| | - Yan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
| | - Yanjing Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (W.X.); (F.L.); (C.W.); (Y.W.); (Y.Y.)
- Correspondence: ; Tel./Fax: +86-571-86633361
| |
Collapse
|
21
|
Song L, Li X, Sun Q, Zhao Y. Fxyd5 activates the NF‑κB pathway and is involved in chondrocytes inflammation and extracellular matrix degradation. Mol Med Rep 2022; 25:134. [PMID: 35191523 PMCID: PMC8908309 DOI: 10.3892/mmr.2022.12650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
It is known that increased inflammation and extracellular matrix (ECM) degradation in chondrocytes can promote the development of osteoarthritis (OA). The FXYD domain containing ion transport regulator 5 (Fxyd5) has been found to promote chronic inflammatory responses. The present study aimed to investigate the role of Fxyd5 in OA. Murine ATDC5 chondrocytes were transfected with short hairpin RNAs specifically targeting Fxyd5 to silence its expression. Subsequently, cells were induced with lipopolysaccharide (LPS). The protein expression levels of Fxyd5, MMPs and proteins related to ECM, apoptosis and NF-κB signaling were detected using western blot analysis. In addition, cell viability was assessed using a Cell Counting Kit-8 assay, while the secretion of the proinflammatory factors and those of the oxidative stress-related markers were measured using the corresponding kits. Finally, cells were treated with the NF-κB activator, betulinic acid (BA) and the above experiments were repeated. The results demonstrated that Fxyd5 was significantly upregulated in ATDC5 cells treated with LPS. Additionally, Fxyd5 knockdown increased cell viability, enhanced the protein expression of Bcl-2, Aggrecan and collagen II, while reduced the expression of Bax, cleaved caspase-3/caspase-3, MMP3 and MMP13 in LPS-induced ATDC5 cells. The production of IL-1β, IL-6 and IL-18 as well as reactive oxygen species and malondialdehyde, and the reduction of superoxide dismutase caused by LPS in ATDC5 cells, were also reversed by Fxyd5 silencing. Fxyd5 silencing inhibited the phosphorylation of p65 and IκBα induced by LPS. Finally, BA reversed the protective effect of Fxyd5 silencing on LPS induced chondrocytes injury. In conclusion, Fxyd5 could enhance chondrocyte inflammation and ECM degradation via activating the NF-κB signaling.
Collapse
Affiliation(s)
- Lulu Song
- Capital University of Physical Education and Sports, Haidian, Beijing 100191, P.R. China
| | - Xingxing Li
- Capital University of Physical Education and Sports, Haidian, Beijing 100191, P.R. China
| | - Qingwan Sun
- University of Derby, Derby DE1 3PF, United Kingdom
| | - Yifeng Zhao
- Faculty of Education, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
22
|
Zhao L, Chen X, Shao X, Wang Z, Du Y, Zhu C, Du W, Tang D, Ji S. Prenylated phenolic compounds from licorice ( Glycyrrhiza uralensis) and their anti-inflammatory activity against osteoarthritis. Food Funct 2022; 13:795-805. [PMID: 34984422 DOI: 10.1039/d1fo03659a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis is a significant driver of disability in the elderly with increasing prevalence, and inflammation plays a vital role on its etiology. Licorice is commonly used as a traditional Chinese medicine or food additive, and its prenylated phenolic compounds were recently reported to be able to inhibit osteoarthritis with anti-inflammatory activity. In order to explore more anti-osteoarthritic prenylated phenolic compounds from licorice, we isolated ten compounds (1-10), with three new ones (1-3), from the ethyl acetate extract of Glycyrrhiza uralensis. Compound 2 (glycyuralin R) was a racemic 3-phenoxy-chromanone, and we achieved its chiral separation for the first time. Compounds 1, 2, 7 and 8 showed significant NO inhibitory ability in IL-1β-stimulated mouse primary chondrocytes, and we further confirmed the anti-inflammatory activity of 1 (glycyuralin Q) by evaluating its effect on osteoarthritis-related iNOS, COX-2, TNF-α, IL-6, MMP3, MMP13 and NF-κB based on various experimental methods. These results clarified the potential of several prenylated phenolic compounds, especially 1 in licorice, as the lead compounds for osteoarthritis.
Collapse
Affiliation(s)
- Lu Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xiaofei Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xian Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Ziyu Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Cuicui Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Wei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
23
|
In Vitro Study of Licorice on IL-1β-Induced Chondrocytes and In Silico Approach for Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14121337. [PMID: 34959737 PMCID: PMC8709290 DOI: 10.3390/ph14121337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disorder that affects joint function, mobility, and pain. The release of proinflammatory cytokines stimulates matrix metalloproteinases (MMPs) and aggrecanase production which further induces articular cartilage degradation. Hypertrophy-like changes in chondrocytes are considered to be an important feature of OA pathogenesis. A Glycyrrhiza new variety, Wongam (WG), was developed by the Korea Rural Development Administration to enhance the cultivation and quality of Glycyrrhizae Radix et Rhizoma (licorice). This study examined the regulatory effect of WG against hypertrophy-like changes such as RUNX2, Collagen X, VEGFA, MMP-13 induction, and Collagen II reduction induced by IL-1β in SW1353 human chondrocytes. Additionally, in silico methods were performed to identify active compounds in licorice to target chondrocyte hypertrophy-related proteins. WG showed inhibitory effects against IL-1β-induced chondrocyte hypertrophy by regulating both HDAC4 activation via the PTH1R/PKA/PP2A pathway and the SOX9/β-catenin signaling pathway. In silico analysis demonstrated that 21 active compounds from licorice have binding potential with 11 targets related to chondrocyte hypertrophy. Further molecular docking analysis and in vivo studies elicited four compounds. Based on HPLC, isoliquiritigenin and its precursors were identified and quantified. Taken together, WG is a potential therapeutic agent for chondrocyte hypertrophy-like changes in OA.
Collapse
|
24
|
Nuciferine attenuates the progression of osteoarthritis by targeting PI3K/Akt/NF-κB signaling pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Chen L, Pang Y, Luo Y, Cheng X, Lv B, Li C. Separation and purification of plant terpenoids from biotransformation. Eng Life Sci 2021; 21:724-738. [PMID: 34764825 PMCID: PMC8576074 DOI: 10.1002/elsc.202100014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022] Open
Abstract
The production of plant terpenoids through biotransformation has undoubtedly become one of the research hotspots, and the continuous upgrading of the corresponding downstream technology is also particularly important. Downstream technology is the indispensable technical channel for the industrialization of plant terpenoids. How to efficiently separate high-purity products from complex microbial fermentation broths or enzyme-catalyzed reactions to achieve high separation rates, high returns and environmental friendliness has become the focus of research in recent years. This review mainly introduces the common separation methods of plant terpenoids based on biotransformation from the perspectives of engineering strain construction, unit separation technology, product properties and added value. Then, further attention was paid to the application prospects of intelligent cell factories and control in the separation of plant terpenoids. Finally, some current challenges and prospects are proposed, which provide possible directions and guidance for the separation and purification of terpenoids and even industrialization.
Collapse
Affiliation(s)
- Linhao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Yaru Pang
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Yan Luo
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Xu Cheng
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics EngineeringMinistry of Industry and Information TechnologyInstitute of Biochemical EngineeringSchool of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingP. R. China
- Key Lab for Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijingP. R. China
| |
Collapse
|
26
|
Lo WC, Chiou CS, Tsai FC, Chan CH, Mao S, Deng YH, Wu CY, Peng BY, Deng WP. Platelet-Derived Biomaterials Inhibit Nicotine-Induced Intervertebral Disc Degeneration Through Regulating IGF-1/AKT/IRS-1 Signaling Axis. Cell Transplant 2021; 30:9636897211045319. [PMID: 34586895 PMCID: PMC8485278 DOI: 10.1177/09636897211045319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apart from aging process, adult intervertebral disc (IVD) undergoes various degenerative processes. However, the nicotine has not been well identified as a contributing etiology. According to a few studies, nicotine ingestion through smoking, air or clothing may significantly accumulate in active as well as passive smokers. Since nicotine has been demonstrated to adversely impact various physiological processes, such as sympathetic nervous system, leading to impaired vasculature and cellular apoptosis, we aimed to investigate whether nicotine could induce IVD degeneration. In particular, we evaluated dose-dependent impact of nicotine in vitro to simulate its chronic accumulation, which was later treated by platelet-derived biomaterials (PDB). Further, during in vivo studies, mice were subcutaneously administered with nicotine to examine IVD-associated pathologic changes. The results revealed that nicotine could significantly reduce chondrocytes and chondrogenic indicators (Sox, Col II and aggrecan). Mice with nicotine treatment also exhibited malformed IVD structure with decreased Col II as well as proteoglycans, which was significantly increased after PDB administration for 4 weeks. Mechanistically, PDB significantly restored the levels of IGF-1 signaling proteins, particularly pIGF-1 R, pAKT, and IRS-1, modulating ECM synthesis by chondrocytes. Conclusively, the PDB impart reparative and tissue regenerative processes by inhibiting nicotine-initiated IVD degeneration, through regulating IGF-1/AKT/IRS-1 signaling axis.
Collapse
Affiliation(s)
- Wen-Cheng Lo
- School of Medicine, College of Medicine, Taipei Medical University, Taipei.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei
| | - Chi-Sheng Chiou
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei
| | - Feng-Chou Tsai
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301.,Division of Plastic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City
| | - Chun-Hao Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei
| | - Samantha Mao
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei
| | - Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei
| | - Chia-Yu Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei.,Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei.,Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City.,Department of Life Science, Tunghai University, Taichung
| |
Collapse
|
27
|
Liang SB, Hou WB, Zheng RX, Liang CH, Yan LJ, Wang HN, Cao HJ, Han M, Robinson N, Liu JP. Compound glycyrrhizin injection for improving liver function in children with acute icteric hepatitis: A systematic review and meta-analysis. Integr Med Res 2021; 11:100772. [PMID: 34522606 PMCID: PMC8426202 DOI: 10.1016/j.imr.2021.100772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background Compound glycyrrhizin injection (CGI) is a preparation with glycyrrhizin as the main active ingredient extracted from licorice. As clinical trials suggest that CGI is effective in improving liver function for acute icteric hepatitis in children (AIHC), this systematic review aimed to evaluate and verify its therapeutic effects and safety. Methods Six electronic databases were searched from their inception to 15 May 2021. Randomized controlled trials (RCTs) assessing therapeutic effects and safety of CGI for AIHC were included. The risk of bias for each trial was assessed using the Cochrane Risk of Bias Tool 2.0. Primary outcomes were indexes related to liver function, including total bilirubin (TBiL), alanine aminotransferase (ALT) and aspartate transaminase (AST). RevMan 5.4 software was used for data analyses. The certainty of the evidence was assessed using the online GRADEpro tool. Results Six RCTs involving 608 children were included. The overall bias was assessed as having “high risk of bias” in all trials. All trials compared the combination of CGI and conventional western medicine (CWM) with CWM alone. Regarding the effects of CGI for AIHC, results showed that CGI plus CWM was superior to CWM alone in reducing the levels of TBiL (mean difference (MD) = -8.19 mmol/L, 95% CI -9.86 to -6.53), ALT (MD = -24.09 U/L, 95% CI -30.83 to -17.34) and AST (MD = -18.67 U/L, 95% CI -21.88 to -15.45). No trial reported adverse events. The certainty of the evidence for outcomes were all evaluated as low or very low. Conclusion CGI may have adjuvant therapeutic effects on improving the liver function of children with AIHC. There is no evidence to determine the safety of CGI for AIHC. As current evidence is weak, further well-designed RCTs are required for verification of the therapeutic effects of CGI.
Collapse
Affiliation(s)
- Shi-Bing Liang
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wen-Bin Hou
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruo-Xiang Zheng
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chang-Hao Liang
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Jiao Yan
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hao-Nan Wang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Juan Cao
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mei Han
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nicola Robinson
- Institute of Health and Social Care, London South Bank University, London, UK.,Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-Ping Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Effect of Yijin-Tang, an Oriental Traditional Formula, on Allergic Responses Using an Ovalbumin-Induced Murine Asthma Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5585692. [PMID: 34055011 PMCID: PMC8133850 DOI: 10.1155/2021/5585692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Yijin-tang is an oriental traditional herb used to treat inflammatory diseases. In the present study, we investigated the protective effects of Yijin-tang water extract (YTE) using an ovalbumin- (OVA-) induced asthma model, focusing on the antioxidant and anti-inflammatory properties of the herb. BALB/c mice were intraperitoneally injected with OVA on days 0 and 14 and then challenged with OVA on days 21, 22, and 23. The animals were orally administered YTE (200 and 400 mg/kg) from days 18 to 23, and this was found to significantly decrease airway hyperresponsiveness and release of inflammatory cells, cytokines, and OVA-specific immunoglobulin E in mice with asthma. In addition, YTE was associated with a marked reduction in airway inflammation and mucus production in lung tissue of mice with asthma. Furthermore, YTE suppressed the expression of matrix metalloproteinase-9 and phosphorylation of ERK in the lungs, which in turn led to a reduction in inducible nitric oxide synthases and an elevation in reduced glutathione and heme oxygenase-1. In conclusion, YTE effectively suppressed allergic responses in mice with asthma and the effect was closely related to antioxidant and anti-inflammatory properties of the herb. Our results indicate that YTE may be a potential agent for the treatment of allergic asthma.
Collapse
|
29
|
Zhou S, Wen H, Han X, Li H. Phillygenin protects against osteoarthritis by repressing inflammation via PI3K/Akt/NF-κB signaling: In vitro and vivo studies. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Decursin alleviates the aggravation of osteoarthritis via inhibiting PI3K-Akt and NF-kB signal pathway. Int Immunopharmacol 2021; 97:107657. [PMID: 33878544 DOI: 10.1016/j.intimp.2021.107657] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/13/2021] [Accepted: 04/03/2021] [Indexed: 01/08/2023]
Abstract
Osteoarthritis (OA) is a common joint disease that takes joint degeneration or aging as its pathological basis, and joint swelling, pain or dysfunction as its main clinical manifestations. Decursin (DE), the major active component isolated from Angelica gigas Nakai, has been demonstrated to possess anti-inflammatory effect in many diseases. But, the specific physiological mechanism of DE on OA is not clear yet. Therefore, the object of this study was to assess the therapeutic effect of DE on OA, and to explore its potential anti-inflammatory mechanisms. In vitro cell experiments, the inflammatory response in chondrocytes is mediated via interleukin-1β (IL-1β), which led to abnormal secretion of pro-inflammatory factors, such as prostaglandin E2 (PGE2), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), nitric oxide (NO) and inducible nitric oxide synthase (iNOS). These cytokines were all decreased by the preconditioning of DE in a dose-dependent form of 1, 5, and 10 µM. Moreover, DE could restrain IL-1β-mediated inflammatory reaction and the collapse of extracellular matrix (ECM) via reducing the secretion of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) and MMPs (matrix metalloproteinases). In short, DE restrained IL-1β-mediated abnormal excitation of PI3K/AKT/NF-κB axis. Furthermore, molecular docking analysis showed that DE has a strong binding affinity with the inhibitory targets of PI3K. In vivo animal studies, DE treatment could helped to improve destruction of articular cartilage and decreased the serum inflammatory factor levels in an operationally induced mouse OA model. To sum up, these data obtained from the experiment indicate that DE has good prospects for the treatment of osteoarthritis.
Collapse
|
31
|
Hou Y, Xin M, Li Q, Wu X. Glycyrrhizin micelle as a genistein nanocarrier: Synergistically promoting corneal epithelial wound healing through blockage of the HMGB1 signaling pathway in diabetic mice. Exp Eye Res 2021; 204:108454. [PMID: 33497689 DOI: 10.1016/j.exer.2021.108454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to explore the feasibility of targeting the HMGB1 signaling pathway to treat diabetic keratopathy with a dipotassium glycyrrhizinate-based micelle ophthalmic solution encapsulating genistein (DG-Gen), and to evaluate whether these dipotassium glycyrrhizinate (DG) micelles could synergistically enhance the therapeutic effect of encapsulated genistein (Gen). An optimized DG-Gen ophthalmic solution was fabricated with a Gen/DG weight of ratio 1:15, and this formulation featured an encapsulation efficiency of 98.96 ± 0.82%, and an average particle size of 29.50 ± 2.05 nm. The DG-Gen ophthalmic solution was observed to have good in vivo ocular tolerance and excellent in vivo corneal permeation, and to remarkably improve in vitro antioxidant activity. Ocular topical application of the DG-Gen ophthalmic solution significantly prompted corneal re-epithelialization and nerve regeneration in diabetic mice, and this efficacy might be due to the inhibition of HMGB1 signaling through down-regulation of HMGB1 and its receptors RAGE and TLR4, as well as inflammatory factor interleukin (IL)-6 and IL-1β. In conclusion, these data showed that HMGB1 signaling is a potential regulation target for the treatment of diabetic keratopathy, and novel DG-micelle formulation encapsulating active agents such as Gen could synergistically cause blockage of HMGB1 signaling to prompt diabetic corneal and nerve wound healing.
Collapse
Affiliation(s)
- Yuzhen Hou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meng Xin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Qiqi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
32
|
Kim MH, Choi LY, Ahn KS, Um JY, Lee SG, Hahm DH, Yang WM. Gumiganghwal-tang ameliorates cartilage destruction via inhibition of matrix metalloproteinase. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113074. [PMID: 32534115 DOI: 10.1016/j.jep.2020.113074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kyung-Bang Gumiganghwal-tang tablet (GMGHT) is a standardized Korean Medicine that could treat a cold, headache, arthralgia and fever. Although GMGHT has been used for arthritis-related diseases including a sprain, arthralgia, unspecified arthritis and knee arthritis, there is no pre-clinical evidence to treat osteoarthritis (OA). This study determined the drug dosage and the mechanisms of GMGHT for OA. METHODS OA was induced by intra-articular monoiodoacetic acid (MIA) injection in Sprague-Dawley rats. As calculated from the human equivalent dose formula, GMGHT was orally administered at the doses of 9.86, 98.6 and 986 mg/kg for 4 weeks. The arthritis score was performed by a blind test, and histological changes in articular cartilage were indicated by hematoxylin and eosin, Safranin O and toluidine blue staining. SW1353 chondrocytes were stimulated by interleukin (IL)-1β recombinant to analyze the expressions of Type II collagen, matrix metalloproteinases (MMPs) and nuclear factor (NF)-κB. RESULTS Rough and punctate surfaces of the femoral condyle induced by MIA, were recovered by the GMGHT treatment. The arthritis score was significantly improved in the 968 mg/kg of GMGHT-treated cartilage. Loss of chondrocytes and proteoglycan were ameliorated at the deep zone of the subchondral bone plate by the GMGHT administration in OA rats. The expression of Type II collagen was increased, while MMP-1, -3 and -13 levels were decreased in the GMGHT-treated SW1353 chondrocytes. In addition, the GMGHT treatment regulated NF-κB activation along with IL-6, transforming growth factor-β and IL-12 production. CONCLUSIONS GMGHT promoted the recovery of articular cartilage damage by inhibiting MMPs, accompanied with its anti-inflammatory effects in OA. GMGHT might be an alternative therapeutic treatment for OA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Cartilage, Articular/drug effects
- Cartilage, Articular/enzymology
- Cartilage, Articular/pathology
- Cell Line, Tumor
- Chondrocytes/drug effects
- Chondrocytes/enzymology
- Chondrocytes/pathology
- Collagen Type II/metabolism
- Cytokines/metabolism
- Humans
- Inflammation Mediators/metabolism
- Iodoacetic Acid
- Joints/drug effects
- Joints/enzymology
- Joints/pathology
- Male
- Matrix Metalloproteinase 1/metabolism
- Matrix Metalloproteinase 13/metabolism
- Matrix Metalloproteinase 3/metabolism
- Matrix Metalloproteinase Inhibitors/pharmacology
- Matrix Metalloproteinases, Secreted/antagonists & inhibitors
- Matrix Metalloproteinases, Secreted/genetics
- Matrix Metalloproteinases, Secreted/metabolism
- Osteoarthritis/chemically induced
- Osteoarthritis/enzymology
- Osteoarthritis/pathology
- Osteoarthritis/prevention & control
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - La Yoon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Seok-Geun Lee
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Dae-Hyun Hahm
- College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Comorbidity Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|