1
|
Chen X, Tu Q, Zhao W, Lin X, Chen Z, Li B, Zhang Y. 5-Hydroxymethylfurfural mediated developmental toxicity in Drosophila melanogaster. Food Chem Toxicol 2024; 189:114738. [PMID: 38754806 DOI: 10.1016/j.fct.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
5-hydroxymethylfurfural is a common byproduct in food. However, its effect on growth and development remains incompletely understood. This study investigated the developmental toxicity of 5-HMF to Drosophila larvae. The growth and development of Drosophila melanogaster fed with 5-50 mM 5-HMF was monitored, and its possible mechanism was explored. It was found that 5-HMF prolonged the developmental cycle of Drosophila melanogaster (25 mM and 50 mM). After 5-HMF intake, the level of reactive oxygen species in the third instar larvae increased by 1.23-1.40 fold, which increased the level of malondialdehyde and caused changes in antioxidant enzymes. Moreover, the nuclear factor erythroid-2 related factor 2 antioxidant signaling pathway and the expression of heat shock protein genes were affected. At the same time, 5-HMF disrupted the glucose and lipid metabolism in the third instar larvae, influencing the expression level of key genes in the insulin signal pathway. Furthermore, 5-HMF led to intestinal oxidative stress, and up-regulated the expression of the pro-apoptotic gene, consequently impacting intestinal health. In short, 5-HMF causes oxidative stress, disturbs glucose and lipid metabolism and induces intestinal damage, damaging related signaling pathways, and ultimately affecting the development of Drosophila melanogaster.
Collapse
Affiliation(s)
- Xunlin Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qinghui Tu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzheng Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaorong Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhongzheng Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Tavoletta I, Arcadio F, Renzullo LP, Oliva G, Del Prete D, Verolla D, Marzano C, Alberti G, Pesavento M, Zeni L, Cennamo N. Splitter-Based Sensors Realized via POFs Coupled by a Micro-Trench Filled with a Molecularly Imprinted Polymer. SENSORS (BASEL, SWITZERLAND) 2024; 24:3928. [PMID: 38931712 PMCID: PMC11207874 DOI: 10.3390/s24123928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
An optical-chemical sensor based on two modified plastic optical fibers (POFs) and a molecularly imprinted polymer (MIP) is realized and tested for the detection of 2-furaldehyde (2-FAL). The 2-FAL measurement is a scientific topic of great interest in different application fields, such as human health and life status monitoring in power transformers. The proposed sensor is realized by using two POFs as segmented waveguides (SW) coupled through a micro-trench milled between the fibers and then filled with a specific MIP for the 2-FAL detection. The experimental results show that the developed intensity-based sensor system is highly selective and sensitive to 2-FAL detection in aqueous solutions, with a limit of detection of about 0.04 mg L-1. The proposed sensing approach is simple and low-cost, and it shows performance comparable to that of plasmonic MIP-based sensors present in the literature for 2-FAL detection.
Collapse
Affiliation(s)
- Ines Tavoletta
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Luca Pasquale Renzullo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Giuseppe Oliva
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Domenico Del Prete
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Debora Verolla
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Chiara Marzano
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.A.); (M.P.)
| | - Maria Pesavento
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.A.); (M.P.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (I.T.); (F.A.); (L.P.R.); (G.O.); (D.D.P.); (D.V.); (C.M.); (L.Z.)
| |
Collapse
|
3
|
Ehelepola NDB, Ranathunga RMDC, Abeysundara AB, Jayawardana HMRP, Nanayakkara PSK. Super-refractory status epilepticus, rhabdomyolysis, central hyperthermia and cardiomyopathy attributable to spinal anesthesia: a case report and review of literature. BMC Anesthesiol 2024; 24:132. [PMID: 38582882 PMCID: PMC10998312 DOI: 10.1186/s12871-024-02485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND There are only six past reports of super-refractory status epilepticus induced by spinal anesthesia. None of those patients have died. Only < 15 mg of bupivacaine was administered to all six of them and to our case. Pathophysiology ensuing such cases remains unclear. CASE PRESENTATION A 27 year old gravida 2, para 1, mother at 37 weeks of gestation came to the operating theater for an elective cesarean section. She had no significant medical history other than controlled hypothyroidism and one episode of food allergy. Her current pregnancy was uneventful. Her American Society of Anesthesiologists (ASA) grade was 2. She underwent spinal anesthesia and adequate anesthesia was achieved. After 5-7 min she developed a progressive myoclonus. After delivery of a healthy baby, she developed generalized tonic clonic seizures that continued despite the induction of general anesthesia. She had rhabdomyolysis, one brief cardiac arrest and resuscitation, followed by stress cardiomyopathy and central hyperthermia. She died on day four. There were no significant macroscopic or histopathological changes in her brain that explain her super refractory status epilepticus. Heavy bupivacaine samples of the same batch used for this patient were analyzed by two specialized laboratories. National Medicines Quality Assurance Laboratory of Sri Lanka reported that samples failed to confirm United States Pharmacopeia (USP) dextrose specifications and passed other tests. Subsequently, Therapeutic Goods Administration of Australia reported that the drug passed all standard USP quality tests applied to it. Nonetheless, they have detected an unidentified impurity in the medicine. CONCLUSIONS After reviewing relevant literature, we believe that direct neurotoxicity by bupivacaine is the most probable cause of super-refractory status epilepticus. Super-refractory status epilepticus would have led to her other complications and death. We discuss probable patient factors that would have made her susceptible to neurotoxicity. The impurity in the drug detected by one laboratory also would have contributed to her status epilepticus. We propose several possible mechanisms that would have led to status epilepticus and her death. We discuss the factors that shall guide investigators on future such cases. We suggest ways to minimize similar future incidents. This is an idiosyncratic reaction as well.
Collapse
Affiliation(s)
- N D B Ehelepola
- Teaching (General) Hospital - Peradeniya, Peradeniya, Sri Lanka.
| | | | - A B Abeysundara
- Teaching (General) Hospital - Peradeniya, Peradeniya, Sri Lanka
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - P S K Nanayakkara
- Teaching (General) Hospital - Peradeniya, Peradeniya, Sri Lanka
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
4
|
Lu J, Hou Y, Si M, Zhu Q, Jia X, Lv Y, Wang C, He H. 5-Hydroxymethylfurfural multimers induce pseudo-allergic reaction through FcεRI at high doses. J Appl Toxicol 2023; 43:1130-1138. [PMID: 36807361 DOI: 10.1002/jat.4448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Under acidic and high temperature conditions, 5-hydroxymethylfurfural (5-HMF) converted from sugar further produces dimers (Compound II) and trimers (Compound III). The polymers were less reported, and sensitization effect of them was reported in this study. Compounds II and III induced the local and systemic anaphylaxis effect in passive cutaneous anaphylaxis mice model and activated RBL-2H3 cell inducing [Ca2+ ] mobilization, resulting in the release of β-hexosaminidase and histamine in vitro. The gene knockdown assay figured out that Compounds II and III induced degranulation through FcεRI. Further, Compounds II and III had a certain affinity with FcεRI by cell membrane chromatography and may combine on the "proline sandwich" structure indicated by molecular docking. All above suggested Compounds II and III can induce pseudo-allergic reaction through FcεRI in vivo and in vitro. Our work provides basic research to prove that the newly discovered 5-HMF transformants, Compounds II and III, induce pseudo-allergic reaction in vitro and in vivo through FcεRI, which is different pathway from 5-HMF. In foods with high sugar content, the sensitization of Compounds II and III needs more attention. In high-sugar foods and medicines, especially traditional Chinese medicine injections, the content of transformants needs to be detected.
Collapse
Affiliation(s)
- Jiayu Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yajing Hou
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Min Si
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiumei Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin Jia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuexin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cheng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huaizhen He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Wu Y, Wu S, Sun M, Nie L, Zhang Y, Wang S. Reduction of the levels of 5-hydroxymethylfurfural and advanced glycation end products in milk by the combination of high pressure and moderate heat pre-incubation. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Liu X, Cai H, Niu M, Yu H, Wang M, Zhu H, Cao G, Pei K, Duan Y, Song J. An integrated strategy of secondary metabolomics and glycomics to investigate multi-component variations in wine-processing of medicinal herbs and functional foods: A case study on Fructus Corni. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
7
|
Hou Y, Zhang X, Liu X, Wu Q, Hou J, Su P, Guo Q. Comparison of the Effects of 5-Hydroxymethylfurfural in Milk Powder Matrix and Standard Water on Oxidative Stress System of Zebrafish. Foods 2022; 11:foods11121814. [PMID: 35742011 PMCID: PMC9223135 DOI: 10.3390/foods11121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
5-Hydroxymethylfurfural (5-HMF) and furfural (FF) are products of the maillard reaction (MR) in milk powder and their safety is controversial. The concentration changes of 5-HMF and FF after a period of cold storage were determined by high-performance liquid chromatography (HPLC). Then, we compared the toxicity effects of 5-HMF (2, 20, or 200 μM) in milk powder matrix and standard water on the oxidative stress system of zebrafish embryos. The results showed that the concentration of 5-HMF was stable, and the concentration of FF degraded over time. 5-HMF-exposed zebrafish embryos had a LC50 value of 961 μM for 120 h. High-concentration of 5-HMF exposure resulted in developmental toxicity and induced oxidative stress. 5-HMF exposure resulted in low expression of gstr gene at 200 μM in both matrices. Moreover, sod, cat, gstr, and gpxla genes were differentially highly expressed in other groups or showed no significant difference. Residual levels in all groups were well below the exposed dose, with a maximum value of only 0.4‱. These results provided a theoretical basis for understanding the effects of 5-HMF exposure in milk powder matrix on the oxidative stress system and suggested that the presence of 5-HMF in our daily consumption of milk powder does not produce significant toxic effects and need not be overstressed.
Collapse
Affiliation(s)
- Yingyu Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China; (Y.H.); (X.Z.); (Q.W.); (J.H.); (P.S.); (Q.G.)
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
| | - Xinyue Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China; (Y.H.); (X.Z.); (Q.W.); (J.H.); (P.S.); (Q.G.)
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China; (Y.H.); (X.Z.); (Q.W.); (J.H.); (P.S.); (Q.G.)
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
- Correspondence: ; Tel.: +86-0714-6511-613
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China; (Y.H.); (X.Z.); (Q.W.); (J.H.); (P.S.); (Q.G.)
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China; (Y.H.); (X.Z.); (Q.W.); (J.H.); (P.S.); (Q.G.)
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
| | - Ping Su
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China; (Y.H.); (X.Z.); (Q.W.); (J.H.); (P.S.); (Q.G.)
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
| | - Qian Guo
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China; (Y.H.); (X.Z.); (Q.W.); (J.H.); (P.S.); (Q.G.)
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
8
|
Qiu Y, Lin X, Chen Z, Li B, Zhang Y. 5-Hydroxymethylfurfural Exerts Negative Effects on Gastric Mucosal Epithelial Cells by Inducing Oxidative Stress, Apoptosis, and Tight Junction Disruption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3852-3861. [PMID: 35311281 DOI: 10.1021/acs.jafc.2c00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF) is a processing byproduct present in foods that are consumed daily by humans, and the diet is the principal route for human exposure to it. However, its adverse effects on gastric epithelial cells are not fully understood. Based on the half inhibitory concentration value, concentrations of HMF of 2, 4, 8, and 16 mM were selected for this study. After 5-HMF treatment for 24 h, the number of living cells decreased to 89.61 ± 0.48, 77.30 ± 0.57, 58.75 ± 0.36, and 19.61 ± 0.40% of the control, respectively. Apoptosis activated through both the death receptor and mitochondrial pathways was confirmed to be the primary mode of HMF-induced cell death. Further analysis revealed that the reactive oxygen species (ROS) levels in GES-1 cells increased 1.7-6.5 fold after exposure to 5-HMF. Moreover, the inhibition of ROS by N-acetylcysteine blocked HMF-induced apoptosis and cell proliferation suppression, indicating that oxidative stress was important in HMF-induced apoptosis. Besides, after 5-HMF treatment, the gene expressions of occludin and ZO-1 were reduced by 1.1-3.4 fold and 2.0-9.4 fold, respectively. The cell surface morphology and tight junction-related protein expression analysis also revealed the destructive effect of 5-HMF on tight junction integrity. Our research highlights a potential mechanism of HMF-induced toxicity in GES-1 cells and provides additional information on the health risks of 5-HMF exposure to the human gastric epithelium.
Collapse
Affiliation(s)
- Yanting Qiu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Yang S, Zhang Z, Li J, Niu Y, Yu LL. Inhibition Mechanism of L-Cysteine on Maillard Reaction by Trapping 5-Hydroxymethylfurfural. Foods 2021; 10:foods10061391. [PMID: 34208512 PMCID: PMC8234683 DOI: 10.3390/foods10061391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022] Open
Abstract
The Maillard reaction (MR) can affect the color, flavor, organoleptic properties, and nutritional value of food. Sometimes, MR is undesirable due to lowering the nutrient utilization, producing harmful neo-formed compounds, etc. In this case, it is necessary to control MR. Some chemical substances, such as phenolic acid, vitamins, aminoguanidine, and thiols extracted from garlic or onion, can effectively prevent MR. In this study, L-cysteine (L-cys) was found to inhibit MR after screening 10 sulfhydryl compounds by comparing their ability to mitigate browning. The inhibition mechanism was speculated to be related to the removal of 5-hydroxymethylfurfural (HMF), a key mid-product of MR. The reaction product of HMF and L-cys was identified and named as 1-dicysteinethioacetal-5-hydroxymethylfurfural (DCH) according to the mass spectrum and nuclear magnetic resonance spectrum of the main product. Furthermore, DCH was detected in the glutamic-fructose mixture after L-cys was added. In addition, the production of DCH also increased with the addition of L-cys. It also was worth noting that DCH showed no cell toxicity to RAW 264.7 cells. Moreover, the in vitro assays indicated that DCH had anti-inflammatory and antioxidant activities. In conclusion, L-cys inhibits MR by converting HMF into another adduct DCH with higher safety and health benefits. L-cys has the potential to be applied as an inhibitor to prevent MR during food processing and storage.
Collapse
Affiliation(s)
- Shiqiang Yang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Y.); (J.L.)
| | - Zhongfei Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Jiaoyong Li
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Y.); (J.L.)
| | - Yuge Niu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Y.); (J.L.)
- Correspondence:
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|