1
|
Kaden T, Alonso-Román R, Stallhofer J, Gresnigt MS, Hube B, Mosig AS. Leveraging Organ-on-Chip Models to Investigate Host-Microbiota Dynamics and Targeted Therapies for Inflammatory Bowel Disease. Adv Healthc Mater 2024:e2402756. [PMID: 39491534 DOI: 10.1002/adhm.202402756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Indexed: 11/05/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic gastrointestinal disease with drastically increasing incidence rates. Due to its multifactorial etiology, a precise investigation of the pathogenesis is extremely difficult. Although reductionist cell culture models and more complex disease models in animals have clarified the understanding of individual disease mechanisms and contributing factors of IBD in the past, it remains challenging to bridge research and clinical practice. Conventional 2D cell culture models cannot replicate complex host-microbiota interactions and stable long-term microbial culture. Further, extrapolating data from animal models to patients remains challenging due to genetic and environmental diversity leading to differences in immune responses. Human intestine organ-on-chip (OoC) models have emerged as an alternative in vitro model approach to investigate IBD. OoC models not only recapitulate the human intestinal microenvironment more accurately than 2D cultures yet may also be advantageous for the identification of important disease-driving factors and pharmacological interventions targets due to the possibility of emulating different complexities. The predispositions and biological hallmarks of IBD focusing on host-microbiota interactions at the intestinal mucosal barrier are elucidated here. Additionally, the potential of OoCs to explore microbiota-related therapies and personalized medicine for IBD treatment is discussed.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, 07745, Jena, Germany
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Raquel Alonso-Román
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV, Jena University Hospital, 07747, Jena, Germany
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07745, Jena, Germany
| |
Collapse
|
2
|
Pike CM, Levi JA, Boone LA, Peddibhotla S, Johnson J, Zwarycz B, Bunger MK, Thelin W, Boazak EM. High-Throughput Assay for Predicting Diarrhea Risk Using a 2D Human Intestinal Stem Cell-Derived Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610072. [PMID: 39257790 PMCID: PMC11383669 DOI: 10.1101/2024.08.28.610072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gastrointestinal toxicities (GITs) are the most prevalent adverse events (AE) reported in clinical trials, often resulting in dose-limitations that reduce drug efficacy and delay development and treatment optimization. Preclinical animal models do not accurately replicate human GI physiology, leaving few options for early detection of GI side effects prior to human studies. Development of an accurate model that predicts GIT earlier in drug discovery programs would better support successful clinical trial outcomes. Chemotherapeutics, which exhibit high rates of clinical GIT, frequently target mitotic cells. Therefore, we hypothesized that a model utilizing proliferative cell populations derived from human intestinal crypts would predict the occurrence of clinical GITs with high accuracy. Here, we describe the development of a multiparametric assay utilizing the RepliGut® Planar system, an intestinal stem cell-derived platform cultured in an accessible high throughput Transwell™ format. This assay addresses key physiological elements of GIT by assessing cell proliferation (EdU incorporation), cell abundance (DAPI quantification), and barrier function (TEER). Using this approach, we demonstrate that primary proliferative cell populations reproducibly respond to marketed chemotherapeutics at physiologic concentrations. To determine the ability of this model to predict clinical diarrhea risk, we evaluated a set of 30 drugs with known clinical diarrhea incidence in three human donors, comparing results to known plasma drug concentrations. This resulted in highly accurate predictions of diarrhea potential for each endpoint (balanced accuracy of 91% for DAPI, 90% for EdU, 88% for TEER) with minimal variation across human donors. In vitro toxicity screening using primary proliferative cells may enable improved safety evaluations, reducing the risk of AEs in clinical trials and ultimately lead to safer and more effective treatments for patients.
Collapse
|
3
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
4
|
Tomlinson L, Ramsden D, Leite SB, Beken S, Bonzo JA, Brown P, Candarlioglu PL, Chan TS, Chen E, Choi CK, David R, Delrue N, Devine PJ, Ford K, Garcia MI, Gosset JR, Hewitt P, Homan K, Irrechukwu O, Kopec AK, Liras JL, Mandlekar S, Raczynski A, Sadrieh N, Sakatis MZ, Siegel J, Sung K, Sunyovszki I, Van Vleet TR, Ekert JE, Hardwick RN. Considerations from an International Regulatory and Pharmaceutical Industry (IQ MPS Affiliate) Workshop on the Standardization of Complex In Vitro Models in Drug Development. Adv Biol (Weinh) 2024; 8:e2300131. [PMID: 37814378 DOI: 10.1002/adbi.202300131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
In May 2022, there is an International Regulatory and Pharmaceutical Industry (Innovation and Quality [IQ] Microphysiological Systems [MPS] Affiliate) Workshop on the standardization of complex in vitro models (CIVMs) in drug development. This manuscript summarizes the discussions and conclusions of this joint workshop organized and executed by the IQ MPS Affiliate and the United States Food and Drug Administration (FDA). A key objective of the workshop is to facilitate discussions around opportunities and/or needs for standardization of MPS and chart potential pathways to increase model utilization in the context of regulatory decision making. Participation in the workshop included 200 attendees from the FDA, IQ MPS Affiliate, and 26 global regulatory organizations and affiliated parties representing Europe, Japan, and Canada. It is agreed that understanding global perspectives regarding the readiness of CIVM/MPS models for regulatory decision making and potential pathways to gaining acceptance is useful to align on globally. The obstacles are currently too great to develop standards for every context of use (COU). Instead, it is suggested that a more tractable approach may be to think of broadly applicable standards that can be applied regardless of COU and/or organ system. Considerations and next steps for this effort are described.
Collapse
Affiliation(s)
| | | | | | - Sonja Beken
- Federal Agency for Medicines and Health Products, Brussels, 1210, Belgium
| | - Jessica A Bonzo
- Center for Drug Evaluation and Research, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Paul Brown
- Center for Drug Evaluation and Research, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Tom S Chan
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, 06877, USA
| | - Eugene Chen
- DMPK, Genentech, South San Francisco, CA, 94080, USA
| | - Colin K Choi
- Preclinical Safety, Biogen, Cambridge, MA, 02142, USA
| | - Rhiannon David
- Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Nathalie Delrue
- Organisation for Economic Co-operation and Development, Paris, 75016, France
| | - Patrick J Devine
- Discovery Toxicology, Bristol Myers Squibb, San Diego, CA, 09130, USA
| | - Kevin Ford
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Martha Iveth Garcia
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Kimberly Homan
- Complex in Vitro Systems Group, Genentech, South San Francisco, CA, 94080, USA
| | - Onyi Irrechukwu
- Preclinical Sciences and Translational Safety, Johnson and Johnson Innovation Medicine, Spring House, PA, 19002, USA
| | - Anna K Kopec
- Drug Safety Research & Development, Pfizer Inc., Groton, CT, 06340, USA
| | - Jennifer L Liras
- Pharmacokinetics, Dynamics & Metabolism-Medicine Design, Pfizer, Cambridge, MA, 02139, USA
| | - Sandhya Mandlekar
- Clinical Pharmacology, Genentech, South San Francisco, CA, 94080, USA
| | - Arek Raczynski
- Preclinical Safety Assessment, Vertex Pharmaceuticals Inc., Boston, MA, 02210, USA
| | - Nakissa Sadrieh
- Center for Drug Evaluation and Research, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Melanie Z Sakatis
- Non-Clinical Safety, In Vitro/In Vivo Translation, GSK R&D, Ware, SG12 9TJ, UK
| | - Jeffrey Siegel
- Center for Drug Evaluation and Research, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kyung Sung
- Center for Biologics Evaluation and Research, Office of Cellular Therapy and Human Tissue, Cellular and Tissue Therapy Branch, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ilona Sunyovszki
- Translational Cellular Sciences, Biogen, Cambridge, MA, 02142, USA
| | | | | | | |
Collapse
|
5
|
Stresser DM, Kopec AK, Hewitt P, Hardwick RN, Van Vleet TR, Mahalingaiah PKS, O'Connell D, Jenkins GJ, David R, Graham J, Lee D, Ekert J, Fullerton A, Villenave R, Bajaj P, Gosset JR, Ralston SL, Guha M, Amador-Arjona A, Khan K, Agarwal S, Hasselgren C, Wang X, Adams K, Kaushik G, Raczynski A, Homan KA. Towards in vitro models for reducing or replacing the use of animals in drug testing. Nat Biomed Eng 2024; 8:930-935. [PMID: 38151640 DOI: 10.1038/s41551-023-01154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Affiliation(s)
- David M Stresser
- Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, IL, USA.
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), .
- IQ Microphysiological Systems Affiliate (IQ-), .
| | - Anna K Kopec
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Drug Safety Research & Development, Pfizer, Inc., Groton, CT, USA
| | - Philip Hewitt
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Chemical and Preclinical Safety, Merck KGaA, Darmstadt, Germany
| | - Rhiannon N Hardwick
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Discovery Toxicology, Pharmaceutical Candidate Optimization, Bristol Myers Squibb, San Diego, CA, USA
| | - Terry R Van Vleet
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology and Pathology, AbbVie, North Chicago, IL, USA
| | - Prathap Kumar S Mahalingaiah
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology and Pathology, AbbVie, North Chicago, IL, USA
| | - Denice O'Connell
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- Global Animal Welfare, AbbVie, North Chicago, IL, USA
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
| | - Gary J Jenkins
- Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, IL, USA
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Translational and ADME Sciences Leadership Group (TALG)
| | - Rhiannon David
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, UK
| | - Jessica Graham
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- Product Quality & Occupational Toxicology, Genentech, Inc., South San Francisco, CA, USA
- IQ DruSafe
- Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Donna Lee
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
- Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Jason Ekert
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- UCB Pharma, Cambridge, MA, USA
| | - Aaron Fullerton
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology, Genentech, Inc., South San Francisco, CA, USA
| | - Remi Villenave
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Piyush Bajaj
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA, USA
| | - James R Gosset
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc, Cambridge, MA, USA
| | - Sherry L Ralston
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
- Preclinical Safety, AbbVie, North Chicago, IL, USA
| | - Manti Guha
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Discovery Biology, Incyte, Wilmington, DE, USA
| | - Alejandro Amador-Arjona
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Discovery Biology, Incyte, Wilmington, DE, USA
| | - Kainat Khan
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Clinical Pharmacology & Safety Sciences, AstraZeneca, Cambridge, UK
| | - Saket Agarwal
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Investigative Toxicology, Early Development, Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Catrin Hasselgren
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ DruSafe
- Predictive Toxicology, Genentech, Inc., South San Francisco, CA, USA
| | - Xiaoting Wang
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Khary Adams
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ 3Rs (Replacement, Reduction, Refinement) Translational and Predictive Sciences Leadership Group
- Laboratory Animal Resources, Incyte, Wilmington, DE, USA
| | - Gaurav Kaushik
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Arkadiusz Raczynski
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ)
- IQ Microphysiological Systems Affiliate (IQ-)
- Preclinical Safety Assessment, Vertex Pharmaceuticals, Inc, Boston, MA, USA
| | - Kimberly A Homan
- International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), .
- IQ Microphysiological Systems Affiliate (IQ-), .
- Complex in vitro Systems Group, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
6
|
Shin YC, Than N, Park SJ, Kim HJ. Bioengineered human gut-on-a-chip for advancing non-clinical pharmaco-toxicology. Expert Opin Drug Metab Toxicol 2024; 20:593-606. [PMID: 38849312 DOI: 10.1080/17425255.2024.2365254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION There is a growing need for alternative models to advance current non-clinical experimental models because they often fail to accurately predict drug responses in human clinical trials. Human organ-on-a-chip models have emerged as promising approaches for advancing the predictability of drug behaviors and responses. AREAS COVERED We summarize up-to-date human gut-on-a-chip models designed to demonstrate intricate interactions involving the host, microbiome, and pharmaceutical compounds since these models have been reported a decade ago. This overview covers recent advances in gut-on-a-chip models as a bridge technology between non-clinical and clinical assessments of drug toxicity and metabolism. We highlight the promising potential of gut-on-a-chip platforms, offering a reliable and valid framework for investigating reciprocal crosstalk between the host, gut microbiome, and drug compounds. EXPERT OPINION Gut-on-a-chip platforms can attract multiple end users as predictive, human-relevant, and non-clinical model. Notably, gut-on-a-chip platforms provide a unique opportunity to recreate a human intestinal microenvironment, including dynamic bowel movement, luminal flow, oxygen gradient, host-microbiome interactions, and disease-specific manipulations restricted in animal and in vitro cell culture models. Additionally, given the profound impact of the gut microbiome on pharmacological bioprocess, it is critical to leverage breakthroughs of gut-on-a-chip technology to address knowledge gaps and drive innovations in predictive drug toxicology and metabolism.
Collapse
Affiliation(s)
- Yong Cheol Shin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nam Than
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Inflammation and Immunity, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Ugodnikov A, Persson H, Simmons CA. Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems. LAB ON A CHIP 2024; 24:3199-3225. [PMID: 38689569 DOI: 10.1039/d3lc01027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Biological barriers such as the blood-brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery - as such, it is important to create representative in vitro models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through in vitro barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.
Collapse
Affiliation(s)
- Alisa Ugodnikov
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Henrik Persson
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Craig A Simmons
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
8
|
Piraino F, Costa M, Meyer M, Cornish G, Ceroni C, Garnier V, Hoehnel-Ka S, Brandenberg N. Organoid models: the future companions of personalized drug development. Biofabrication 2024; 16:032009. [PMID: 38608454 DOI: 10.1088/1758-5090/ad3e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
High failure rates of the current drug development process are driving exemplary changes toward methodologies centered on human diseasein-vitromodeling. Organoids are self-organized tissue sub-units resembling their organ of origin and are widely acknowledged for their unique potential in recapitulating human physio-pathological mechanisms. They are transformative for human health by becoming the platform of choice to probe disease mechanisms and advance new therapies. Furthermore, the compounds' validation as therapeutics represents another point of the drug development pipeline where organoids may provide key understandings and help pharma organizations replace or reduce animal research. In this review, we focus on gastrointestinal organoid models, which are currently the most advanced organoid models in drug development. We focus on experimental validations of their value, and we propose avenues to enhance their use in drug discovery and development, as well as precision medicine and diagnostics.
Collapse
Affiliation(s)
| | - Mariana Costa
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Marine Meyer
- Doppl SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
van den Brink NW, Elliott JE, Power B, Kilgour C, Johnson MS. Integrating emerging science to improve estimates of risk to wildlife from chemical exposure: What are the challenges? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:645-657. [PMID: 38411383 DOI: 10.1002/ieam.4897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
Many jurisdictions require ecological risk assessments for terrestrial wildlife (i.e., terrestrial vertebrates) to assess potential adverse effects from exposure to anthropogenic chemicals. This occurs, for example, at contaminated sites and when new pesticides are proposed, and it occurs for chemicals that are in production and/or proposed for wide-scale use. However, guidance to evaluate such risks has not changed markedly in decades, despite the availability of new scientific tools to do so. In 2019, the Wildlife Toxicology World Interest Group of the Society of Environmental Toxicology and Chemistry (SETAC) initiated a virtual workshop that included a special session coincident with the annual SETAC North America meeting and which focused on the prospect of improving risk assessments for wildlife and improving their use in implementing chemical regulations. Work groups continued the work and investigated the utility of integrating emerging science and novel methods for improving problem formulation (WG1), exposure (WG2), toxicology (WG3), and risk characterization (WG4). Here we provide a summary of that workshop and the follow-up work, the regulations that drive risk assessment, and the key focus areas identified to advance the ability to predict risks of chemicals to wildlife. Integr Environ Assess Manag 2024;20:645-657. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Nico W van den Brink
- Sub-Department of Toxicology, Wageningen University, Wageningen, The Netherlands
| | - John E Elliott
- Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Beth Power
- Azimuth Consulting Group Inc., Vancouver, British Columbia, Canada
| | - Clare Kilgour
- Azimuth Consulting Group Inc., Vancouver, British Columbia, Canada
- University of British Columbia, Vancouver, Canada
| | - Mark S Johnson
- US Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, Maryland, USA
| |
Collapse
|
10
|
Baker TK, Van Vleet TR, Mahalingaiah PK, Grandhi TSP, Evers R, Ekert J, Gosset JR, Chacko SA, Kopec AK. The Current Status and Use of Microphysiological Systems by the Pharmaceutical Industry: The International Consortium for Innovation and Quality Microphysiological Systems Affiliate Survey and Commentary. Drug Metab Dispos 2024; 52:198-209. [PMID: 38123948 DOI: 10.1124/dmd.123.001510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Microphysiological systems (MPS) are comprised of one or multiple cell types of human or animal origins that mimic the biochemical/electrical/mechanical responses and blood-tissue barrier properties of the cells observed within a complex organ. The goal of incorporating these in vitro systems is to expedite and advance the drug discovery and development paradigm with improved predictive and translational capabilities. Considering the industry need for improved efficiency and the broad challenges of model qualification and acceptance, the International Consortium for Innovation and Quality (IQ) founded an IQ MPS working group in 2014 and Affiliate in 2018. This group connects thought leaders and end users, provides a forum for crosspharma collaboration, and engages with regulators to qualify translationally relevant MPS models. To understand how pharmaceutical companies are using MPS, the IQ MPS Affiliate conducted two surveys in 2019, survey 1, and 2021, survey 2, which differed slightly in the scope of definition of the complex in vitro models under question. The surveys captured demographics, resourcing, rank order for organs of interest, compound modalities tested, and MPS organ-specific questions, including nonclinical species needs and cell types. The major focus of this manuscript is on results from survey 2, where we specifically highlight the context of use for MPS within safety, pharmacology, or absorption, disposition, metabolism, and excretion and discuss considerations for including MPS data in regulatory submissions. In summary, these data provide valuable insights for developers, regulators, and pharma, offering a view into current industry practices and future considerations while highlighting key challenges impacting MPS adoption. SIGNIFICANCE STATEMENT: The application of microphysiological systems (MPS) represents a growing area of interest in the drug discovery and development framework. This study surveyed 20+ pharma companies to understand resourcing, current areas of application, and the key challenges and barriers to internal MPS adoption. These results will provide regulators, tech providers, and pharma industry leaders a starting point to assess the current state of MPS applications along with key learnings to effectively realize the potential of MPS as an emerging technology.
Collapse
Affiliation(s)
- Thomas K Baker
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.) baker_thomas_k@lilly
| | - Terry R Van Vleet
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Prathap Kumar Mahalingaiah
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Taraka Sai Pavan Grandhi
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Raymond Evers
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Jason Ekert
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - James R Gosset
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Silvi A Chacko
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| | - Anna K Kopec
- Investigative Toxicology, Eli Lilly, Indianapolis, Indiana (T.K.B.); Investigative Toxicology and Pathology, AbbVie, Inc., Chicago, Illinois (T.R.V.F., P.K.M.); Complex In Vitro Models Group, GSK, Collegeville, Pennsylvania (T.S.P.G.); Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania (R.E.); UCB Pharma, Cambridge, Massachusetts (J.E.); Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer, Inc., Cambridge, Massachusetts (J.R.G.); Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey (S.A.C.); and Drug Safety Research & Development, Pfizer, Inc., Groton, Connecticut (A.K.K.)
| |
Collapse
|
11
|
Li J, Liu J, Xia W, Yang H, Sha W, Chen H. Deciphering the Tumor Microenvironment of Colorectal Cancer and Guiding Clinical Treatment With Patient-Derived Organoid Technology: Progress and Challenges. Technol Cancer Res Treat 2024; 23:15330338231221856. [PMID: 38225190 PMCID: PMC10793199 DOI: 10.1177/15330338231221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors of the digestive tract worldwide. Despite notable advancements in CRC treatment, there is an urgent requirement for preclinical model systems capable of accurately predicting drug efficacy in CRC patients, to identify more effective therapeutic options. In recent years, substantial strides have been made in the field of organoid technology, patient-derived organoid models can phenotypically replicate the original intra-tumor and inter-tumor heterogeneity of CRC, reflecting cellular interactions of the tumor microenvironment. Patient-derived organoid models have become an indispensable tool for investigating the pathogenesis of CRC and facilitating translational research. This review focuses on the application of organoid technology in CRC modeling, tumor microenvironment, and guiding clinical treatment, particularly in drug screening and personalized medicine. It also examines the existing challenges encountered in clinical organoid research and provides a prospective outlook on the future development directions of clinical organoid research, encompassing the standardization of organoid culture technology and the application of tissue engineering technology.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianhua Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wuzheng Xia
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Co JY, Klein JA, Kang S, Homan KA. Toward Inclusivity in Preclinical Drug Development: A Proposition to Start with Intestinal Organoids. Adv Biol (Weinh) 2023; 7:e2200333. [PMID: 36932900 DOI: 10.1002/adbi.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Indexed: 03/19/2023]
Abstract
Representation of humans from diverse backgrounds in the drug development process is key to advancing health equity, and while clinical trial design has recently made strides toward greater inclusivity, preclinical drug development has struggled to make those same gains. One barrier to inclusion is the current lack of robust and established in vitro model systems that simultaneously capture the complexity of human tissues while representing patient diversity. Here, the use of primary human intestinal organoids as a mechanism to advance inclusive preclinical research is proposed. This in vitro model system not only recapitulates tissue functions and disease states, but also retains the genetic identity and epigenetic signatures of the donors from which they are derived. Thus, intestinal organoids are an ideal in vitro prototype for capturing human diversity. In this perspective, the authors call for an industry-wide effort to leverage intestinal organoids as a starting point to actively and intentionally incorporate diversity into preclinical drug programs.
Collapse
Affiliation(s)
- Julia Y Co
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jessica A Klein
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Serah Kang
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kimberly A Homan
- Complex in vitro Systems, Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
13
|
Yadav A, Ahlawat S, Sharma KK. Culturing the unculturables: strategies, challenges, and opportunities for gut microbiome study. J Appl Microbiol 2023; 134:lxad280. [PMID: 38006234 DOI: 10.1093/jambio/lxad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023]
Abstract
Metagenome sequencing techniques revolutionized the field of gut microbiome study. However, it is equipped with experimental and computational biases, which affect the downstream analysis results. Also, live microbial strains are needed for a better understanding of host-microbial crosstalks and for designing next-generation treatment therapies based on probiotic strains and postbiotic molecules. Conventional culturing methodologies are insufficient to get the dark gut matter on the plate; therefore, there is an urgent need to propose novel culturing methods that can fill the limitations of metagenomics. The current work aims to provide a consolidated evaluation of the available methods for host-microbe interaction with an emphasis on in vitro culturing of gut microbes using organoids, gut on a chip, and gut bioreactor. Further, the knowledge of microbial crosstalk in the gut helps us to identify core microbiota, and key metabolites that will aid in designing culturing media and co-culturing systems for gut microbiome study. After the deeper mining of the current culturing methods, we recommend that 3D-printed intestinal cells in a multistage continuous flow reactor equipped with an extended organoid system might be a good practical choice for gut microbiota-based studies.
Collapse
Affiliation(s)
- Asha Yadav
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shruti Ahlawat
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurugram 122505, Haryana, India
| | - Krishna K Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| |
Collapse
|
14
|
Hashimoto Y, Maeda K, Shimomura O, Miyazaki Y, Hashimoto S, Moriyama A, Oda T, Kusuhara H. Evaluation of the risk of diarrhea induced by epidermal growth factor receptor tyrosine kinase inhibitors with cultured intestinal stem cells originated from crypts in humans and monkeys. Toxicol In Vitro 2023; 93:105691. [PMID: 37660997 DOI: 10.1016/j.tiv.2023.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/13/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Severe diarrhea is a common side effect of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). We aimed to evaluate the risk of EGFR-TKI-induced diarrhea using spheroids of human and monkey crypt-derived intestinal stem cells. Intestinal spheroids exhibited higher toxic susceptibility to EGFR-TKIs than Caco-2 cells. As concentration of EGFR-TKIs increased, cellular ATP first decreased relative to the control condition, followed by an increase in LDH release, in contrast with their simultaneous changes with traditional cytotoxic anticancer drugs. The toxic sensitivity of spheroids to various EGFR-TKIs corresponded to clinical diarrhea incidence. Afatinib, a second-generation EGFR-TKI, exhibited higher toxic sensitivity compared with the first-generation ones, corresponding to the clinical evidence that afatinib-induced diarrhea is almost inevitable and severe. By contrast, the third-generation osimertinib, which reduces the risk of diarrhea, showed mitigated cytotoxicity compared with afatinib. For irreversible EGFR-TKIs, the decreased ATP level persisted or its recovery was delayed even after drug removal compared with reversible ones. Furthermore, the highest drug accumulation in spheroids (TKIspheroids) and inhibition potency against EGFR (TKIspheroids/Ki) were observed for afatinib. This system would be useful for predicting the risk of EGFR-TKI-induced diarrhea; moreover, on-target cytotoxicity against intestinal stem cells might contribute to clinically observed diarrhea.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan.
| | - Osamu Shimomura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shinji Hashimoto
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akiko Moriyama
- Pathology Department, Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
15
|
Kourula S, Derksen M, Jardi F, Jonkers S, van Heerden M, Verboven P, Theuns V, Van Asten S, Huybrechts T, Kunze A, Frazer-Mendelewska E, Lai KW, Overmeer R, Roos JL, Vries RGJ, Boj SF, Monshouwer M, Pourfarzad F, Snoeys J. Intestinal organoids as an in vitro platform to characterize disposition, metabolism, and safety profile of small molecules. Eur J Pharm Sci 2023; 188:106481. [PMID: 37244450 DOI: 10.1016/j.ejps.2023.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Intestinal organoids derived from LGR5+ adult stem cells allow for long-term culturing, more closely resemble human physiology than traditional intestinal models, like Caco-2, and have been established for several species. Here we evaluated intestinal organoids for drug disposition, metabolism, and safety applications. Enterocyte-enriched human duodenal organoids were cultured as monolayers to enable bidirectional transport studies. 3D enterocyte-enriched human duodenal and colonic organoids were incubated with probe substrates of major intestinal drug metabolizing enzymes (DMEs). To distinguish human intestinal toxic (high incidence of diarrhea in clinical trials and/or black box warning related to intestinal side effects) from non-intestinal toxic compounds, ATP-based cell viability was used as a readout, and compounds were ranked based on their IC50 values in relation to their 30-times maximal total plasma concentration (Cmax). To assess if rat and dog organoids reproduced the respective in vivo intestinal safety profiles, ATP-based viability was assessed in rat and dog organoids and compared to in vivo intestinal findings when available. Human duodenal monolayers discriminated high and low permeable compounds and demonstrated functional activity for the main efflux transporters Multi drug resistant protein 1 (MDR1, P-glycoprotein P-gp) and Breast cancer resistant protein (BCRP). Human 3D duodenal and colonic organoids also showed metabolic activity for the main intestinal phase I and II DMEs. Organoids derived from specific intestinal segments showed activity differences in line with reported DMEs expression. Undifferentiated human organoids accurately distinguished all but one compound from the test set of non-toxic and toxic drugs. Cytotoxicity in rat and dog organoids correlated with preclinical toxicity findings and observed species sensitivity differences between human, rat, and dog organoids. In conclusion, the data suggest intestinal organoids are suitable in vitro tools for drug disposition, metabolism, and intestinal toxicity endpoints. The possibility to use organoids from different species, and intestinal segment holds great potential for cross-species and regional comparisons.
Collapse
Affiliation(s)
- Stephanie Kourula
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Merel Derksen
- HUB Organoids, Yalelaan 62, 3584 CM Utrecht, The Netherlands
| | - Ferran Jardi
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sophie Jonkers
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Marjolein van Heerden
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Peter Verboven
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Veronique Theuns
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Stijn Van Asten
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Tinne Huybrechts
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Annett Kunze
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Ka Wai Lai
- HUB Organoids, Yalelaan 62, 3584 CM Utrecht, The Netherlands
| | - René Overmeer
- HUB Organoids, Yalelaan 62, 3584 CM Utrecht, The Netherlands
| | - Jamie Lee Roos
- HUB Organoids, Yalelaan 62, 3584 CM Utrecht, The Netherlands
| | | | - Sylvia F Boj
- HUB Organoids, Yalelaan 62, 3584 CM Utrecht, The Netherlands
| | - Mario Monshouwer
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Jan Snoeys
- Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
16
|
Cliffe FE, Madden C, Costello P, Devitt S, Mukkunda SR, Keshava BB, Fearnhead HO, Vitkauskaite A, Dehkordi MH, Chingwaru W, Przyjalgowski M, Rebrova N, Lyons M. Mera: A scalable high throughput automated micro-physiological system. SLAS Technol 2023; 28:230-242. [PMID: 36708805 DOI: 10.1016/j.slast.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
There is an urgent need for scalable Microphysiological Systems (MPS's)1 that can better predict drug efficacy and toxicity at the preclinical screening stage. Here we present Mera, an automated, modular and scalable system for culturing and assaying microtissues with interconnected fluidics, inbuilt environmental control and automated image capture. The system presented has multiple possible fluidics modes. Of these the primary mode is designed so that cells may be matured into a desired microtissue type and in the secondary mode the fluid flow can be re-orientated to create a recirculating circuit composed of inter-connected channels to allow drugging or staining. We present data demonstrating the prototype system Mera using an Acetaminophen/HepG2 liver microtissue toxicity assay with Calcein AM and Ethidium Homodimer (EtHD1) viability assays. We demonstrate the functionality of the automated image capture system. The prototype microtissue culture plate wells are laid out in a 3 × 3 or 4 × 10 grid format with viability and toxicity assays demonstrated in both formats. In this paper we set the groundwork for the Mera system as a viable option for scalable microtissue culture and assay development.
Collapse
Affiliation(s)
- Finola E Cliffe
- Hooke Bio Ltd, L4A Smithstown Industrial Estate, Shannon, Co. Clare V14 XH92, Ireland
| | - Conor Madden
- Hooke Bio Ltd, L4A Smithstown Industrial Estate, Shannon, Co. Clare V14 XH92, Ireland
| | - Patrick Costello
- Hooke Bio Ltd, L4A Smithstown Industrial Estate, Shannon, Co. Clare V14 XH92, Ireland
| | - Shane Devitt
- Hooke Bio Ltd, L4A Smithstown Industrial Estate, Shannon, Co. Clare V14 XH92, Ireland
| | - Sumir Ramesh Mukkunda
- Hooke Bio Ltd, L4A Smithstown Industrial Estate, Shannon, Co. Clare V14 XH92, Ireland
| | | | - Howard O Fearnhead
- Pharmacology and Therapeutics, Biomedical Sciences, Dangan, NUI Galway, Galway, Ireland
| | - Aiste Vitkauskaite
- Pharmacology and Therapeutics, Biomedical Sciences, Dangan, NUI Galway, Galway, Ireland
| | - Mahshid H Dehkordi
- Pharmacology and Therapeutics, Biomedical Sciences, Dangan, NUI Galway, Galway, Ireland
| | - Walter Chingwaru
- Pharmacology and Therapeutics, Biomedical Sciences, Dangan, NUI Galway, Galway, Ireland
| | - Milosz Przyjalgowski
- Centre for Advanced Photonics and Process Analysis, Munster Technological University, Cork T12 P928, Ireland
| | - Natalia Rebrova
- Centre for Advanced Photonics and Process Analysis, Munster Technological University, Cork T12 P928, Ireland
| | - Mark Lyons
- Hooke Bio Ltd, L4A Smithstown Industrial Estate, Shannon, Co. Clare V14 XH92, Ireland.
| |
Collapse
|
17
|
Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, Mow T, Oinonen T, Roth A, Steger-Hartmann T, Valentin JP, Van Goethem F, Weaver RJ, Newham P. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov 2023; 22:317-335. [PMID: 36781957 PMCID: PMC9924869 DOI: 10.1038/s41573-022-00633-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.
Collapse
Affiliation(s)
- Francois Pognan
- Discovery and Investigative Safety, Novartis Pharma AG, Basel, Switzerland.
| | - Mario Beilmann
- Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Harrie C M Boonen
- Drug Safety, Dept of Exploratory Toxicology, Lundbeck A/S, Valby, Denmark
| | | | - Gordon Dear
- In Vitro In Vivo Translation, GlaxoSmithKline David Jack Centre for Research, Ware, UK
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Tomas Mow
- Safety Pharmacology and Early Toxicology, Novo Nordisk A/S, Maaloev, Denmark
| | - Teija Oinonen
- Preclinical Safety, Orion Corporation, Espoo, Finland
| | - Adrian Roth
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Freddy Van Goethem
- Predictive, Investigative & Translational Toxicology, Nonclinical Safety, Janssen Research & Development, Beerse, Belgium
| | - Richard J Weaver
- Innovation Life Cycle Management, Institut de Recherches Internationales Servier, Suresnes, France
| | - Peter Newham
- Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Cambridge, UK.
| |
Collapse
|
18
|
Wang Z, Chen S, Pang Y, Ye L, Zhang Q, Jiang X, Zhang R, Li M, Guo Z, Jiang Y, Li D, Xing X, Chen L, Aschner M, Chen W. Morphological alterations in C57BL/6 mouse intestinal organoids as a tool for predicting chemical-induced toxicity. Arch Toxicol 2023; 97:1133-1146. [PMID: 36806895 PMCID: PMC10045874 DOI: 10.1007/s00204-023-03451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 02/23/2023]
Abstract
Intestinal organoid may serve as an alternative model for toxicity testing. However, the linkage between specific morphological alterations in organoids and chemical-induced toxicity has yet to be defined. Here, we generated C57BL/6 mouse intestinal organoids and conducted a morphology-based analysis on chemical-induced toxicity. Alterations in morphology were characterized by large spheroids, hyperplastic organoids, small spheroids, and protrusion-loss organoids, which responded in a concentration-dependent manner to the treatment of four metal(loid)s including cadmium (Cd), lead (Pb), hexavalent chromium (Cr-VI), and inorganic trivalent arsenic (iAs-III). Notably, alterations in organoid morphology characterized by abnormal morphology rate were correlated with specific intestinal toxic effects, including reduction in cell viability and differentiation, induction of apoptosis, dysfunction of mucus production, and damage to epithelial barrier upon repeated administration. The benchmark dose (BMDL10) values of morphological alterations (0.007-0.195 μM) were lower than those of conventional bioassays (0.010-0.907 μM). We also established that the morphologic features of organoids upon Cd, Pb, Cr-VI, or iAs-III treatment were metal specific, and mediated by Wnt, bone morphogenetic protein, apoptosis induction, and Notch signaling pathways, respectively. Collectively, these findings provide novel insights into the relevance of morphological alterations in organoids to specific toxic endpoints and identify specific morphological alterations as potential indicators of enterotoxicity.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yaqin Pang
- Faculty of Toxicology, School of Public Health, Youjiang Medical College for Nationalities, Guangxi, China
| | - Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Qi Zhang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xinhang Jiang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Miao Li
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhanyu Guo
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yue Jiang
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
19
|
Soto Veliz D, Lin K, Sahlgren C. Organ-on-a-chip technologies for biomedical research and drug development: A focus on the vasculature. SMART MEDICINE 2023; 2:e20220030. [PMID: 37089706 PMCID: PMC7614466 DOI: 10.1002/smmd.20220030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 04/25/2023]
Abstract
Current biomedical models fail to replicate the complexity of human biology. Consequently, almost 90% of drug candidates fail during clinical trials after decades of research and billions of investments in drug development. Despite their physiological similarities, animal models often misrepresent human responses, and instead, trigger ethical and societal debates regarding their use. The overall aim across regulatory entities worldwide is to replace, reduce, and refine the use of animal experimentation, a concept known as the Three Rs principle. In response, researchers develop experimental alternatives to improve the biological relevance of in vitro models through interdisciplinary approaches. This article highlights the emerging organ-on-a-chip technologies, also known as microphysiological systems, with a focus on models of the vasculature. The cardiovascular system transports all necessary substances, including drugs, throughout the body while in charge of thermal regulation and communication between other organ systems. In addition, we discuss the benefits, limitations, and challenges in the widespread use of new biomedical models. Coupled with patient-derived induced pluripotent stem cells, organ-on-a-chip technologies are the future of drug discovery, development, and personalized medicine.
Collapse
Affiliation(s)
- Diosangeles Soto Veliz
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
| | - Kai‐Lan Lin
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
| | - Cecilia Sahlgren
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
20
|
Mouse organoids as an in vitro tool to study the in vivo intestinal response to cytotoxicants. Arch Toxicol 2023; 97:235-254. [PMID: 36203040 DOI: 10.1007/s00204-022-03374-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 01/19/2023]
Abstract
Cross-species comparison of drug responses at the organoid level could help to determine the human relevance of findings from animal studies. To this end, we first need to evaluate the in vitro to in vivo translatability of preclinical organoids. Here, we used 5-fluorouracil (5-FU) as an exemplar drug to test whether the in vivo gut response to this cytotoxicant was preserved in murine intestinal organoids. Mice treated with 5-FU at 20 or 50 mg/kg IV (low and high dose, respectively) displayed diarrhea at clinically relevant exposures. 5-FU also induced intestinal lesions, increased epithelial apoptosis, and decreased proliferation in a dose-dependent manner. To enable comparison between the in vitro and in vivo response, top nominal in vitro drug concentrations that caused significant cytotoxicity were chosen (dose range 1-1000 µM). The inferred intracellular concentration in organoids at 1000 µM was within the tissue exposure range related to intestinal toxicity in vivo. 5-FU at ≥ 100 µM decreased ATP levels and increased Caspase-3 activity in intestinal organoids. In keeping with the in vivo findings, 5-FU increased the percentage of Caspase-3-positive cells and reduced Ki67 staining. At the transcriptome level, there was an overlap in the activity of pathways related to 5-FU's mode of action, lipid and cholesterol metabolism and integrin signaling across in vivo gut and organoids. The predicted activity state of upstream regulators was generally well preserved between setups. Collectively, our results suggest that despite their inherent limitations, organoids represent an adequate tool to explore the intestinal response to cytotoxicants.
Collapse
|
21
|
Su T, Liang L, Zhang L, Wang J, Chen L, Su C, Cao J, Yu Q, Deng S, Chan HF, Tang S, Guo Y, Chen J. Retinal organoids and microfluidic chip-based approaches to explore the retinitis pigmentosa with USH2A mutations. Front Bioeng Biotechnol 2022; 10:939774. [PMID: 36185441 PMCID: PMC9524156 DOI: 10.3389/fbioe.2022.939774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a leading cause of vision impairment and blindness worldwide, with limited medical treatment options. USH2A mutations are one of the most common causes of non-syndromic RP. In this study, we developed retinal organoids (ROs) and retinal pigment epithelium (RPE) cells from induced pluripotent stem cells (iPSCs) of RP patient to establish a sustainable in vitro RP disease model. RT-qPCR, western blot, and immunofluorescent staining assessments showed that USH2A mutations induced apoptosis of iPSCs and ROs, and deficiency of the extracellular matrix (ECM) components. Transcriptomics and proteomics findings suggested that abnormal ECM-receptor interactions could result in apoptosis of ROs with USH2A mutations via the PI3K-Akt pathway. To optimize the culture conditions of ROs, we fabricated a microfluidic chip to co-culture the ROs with RPE cells. Our results showed that this perfusion system could efficiently improve the survival rate of ROs. Further, ECM components such as laminin and collagen IV of ROs in the RP group were upregulated compared with those maintained in static culture. These findings illustrate the potential of microfluidic chip combined with ROs technology in disease modelling for RP.
Collapse
Affiliation(s)
- Ting Su
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Liying Liang
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lan Zhang
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jianing Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Luyin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Caiying Su
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jixing Cao
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | | | - Yonglong Guo
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Jiansu Chen, ; Yonglong Guo,
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Aier Eye Institute, Changsha, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
- *Correspondence: Jiansu Chen, ; Yonglong Guo,
| |
Collapse
|
22
|
Singh VK, Seed TM. Acute radiation syndrome drug discovery using organ-on-chip platforms. Expert Opin Drug Discov 2022; 17:865-878. [PMID: 35838021 DOI: 10.1080/17460441.2022.2099833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION : The high attrition rate during drug development remains a challenge that costs a significant amount of time and money. Improving the probabilities of success during the early stages of radiation medical countermeasure (MCM) development for approval by the United States Food and Drug Administration (US FDA) following the Animal Rule will reduce this burden. For optimal development of MCMs, we need suitable and efficient radiation injury models with high biological relevance for evaluating drug efficacy as well as biomarker discovery and validation. AREA COVERED This article focuses on new technologies involving various organs-on-chip platforms. Of late, there have been rapid development of these technologies, especially in terms of mimicking both normal and abnormal physiological conditions. Here, we suggest possible applications of these novel systems for the discovery and development of radiation MCMs for the acute radiation syndrome (ARS). We offer preliminary information on the utility of one such system for MCM research and discovery for the ARS condition. EXPERT OPINION : Each organ-on-a-chip system has its own strengths and shortcomings. As such, the system selected for MCM discovery, development, and regulatory approval should be carefully considered and optimized to the fullest extent in order to augment successful drug testing and the minimization of attrition rates of candidate agents. The recent encouraging progress with organ-on-a-chip technology will likely lead to additional radiation MCMs for ARS approved by the US FDA. The acceptance of organ-on-a-chip technology may be a promising step toward improving the success rate of pharmaceuticals in MCM development.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, USA
| |
Collapse
|
23
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
24
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
25
|
Hargrove-Grimes P, Low LA, Tagle DA. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development. Cells Tissues Organs 2022; 211:269-281. [PMID: 34380142 PMCID: PMC8831652 DOI: 10.1159/000517422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023] Open
Abstract
Microphysiological systems (MPS) or tissue chips/organs-on-chips are novel in vitro models that emulate human physiology at the most basic functional level. In this review, we discuss various hurdles to widespread adoption of MPS technology focusing on issues from multiple stakeholder sectors, e.g., academic MPS developers, commercial suppliers of platforms, the pharmaceutical and biotechnology industries, and regulatory organizations. Broad adoption of MPS technology has thus far been limited by a gap in translation between platform developers, end-users, regulatory agencies, and the pharmaceutical industry. In this brief review, we offer a perspective on the existing barriers and how end-users may help surmount these obstacles to achieve broader adoption of MPS technology.
Collapse
Affiliation(s)
- Passley Hargrove-Grimes
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Lucie A. Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Danilo A. Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Cherne MD, Sidar B, Sebrell TA, Sanchez HS, Heaton K, Kassama FJ, Roe MM, Gentry AB, Chang CB, Walk ST, Jutila M, Wilking JN, Bimczok D. A Synthetic Hydrogel, VitroGel ® ORGANOID-3, Improves Immune Cell-Epithelial Interactions in a Tissue Chip Co-Culture Model of Human Gastric Organoids and Dendritic Cells. Front Pharmacol 2021; 12:707891. [PMID: 34552484 PMCID: PMC8450338 DOI: 10.3389/fphar.2021.707891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Immunosurveillance of the gastrointestinal epithelium by mononuclear phagocytes (MNPs) is essential for maintaining gut health. However, studying the complex interplay between the human gastrointestinal epithelium and MNPs such as dendritic cells (DCs) is difficult, since traditional cell culture systems lack complexity, and animal models may not adequately represent human tissues. Microphysiological systems, or tissue chips, are an attractive alternative for these investigations, because they model functional features of specific tissues or organs using microscale culture platforms that recreate physiological tissue microenvironments. However, successful integration of multiple of tissue types on a tissue chip platform to reproduce physiological cell-cell interactions remains a challenge. We previously developed a tissue chip system, the gut organoid flow chip (GOFlowChip), for long term culture of 3-D pluripotent stem cell-derived human intestinal organoids. Here, we optimized the GOFlowChip platform to build a complex microphysiological immune-cell-epithelial cell co-culture model in order to study DC-epithelial interactions in human stomach. We first tested different tubing materials and chip configurations to optimize DC loading onto the GOFlowChip and demonstrated that DC culture on the GOFlowChip for up to 20 h did not impact DC activation status or viability. However, Transwell chemotaxis assays and live confocal imaging revealed that Matrigel, the extracellular matrix (ECM) material commonly used for organoid culture, prevented DC migration towards the organoids and the establishment of direct MNP-epithelial contacts. Therefore, we next evaluated DC chemotaxis through alternative ECM materials including Matrigel-collagen mixtures and synthetic hydrogels. A polysaccharide-based synthetic hydrogel, VitroGel®-ORGANOID-3 (V-ORG-3), enabled significantly increased DC chemotaxis through the matrix, supported organoid survival and growth, and did not significantly alter DC activation or viability. On the GOFlowChip, DCs that were flowed into the chip migrated rapidly through the V-ORG matrix and reached organoids embedded deep within the chip, with increased interactions between DCs and gastric organoids. The successful integration of DCs and V-ORG-3 embedded gastric organoids into the GOFlowChip platform now permits real-time imaging of MNP-epithelial interactions and other investigations of the complex interplay between gastrointestinal MNPs and epithelial cells in their response to pathogens, candidate drugs and mucosal vaccines.
Collapse
Affiliation(s)
- Michelle D. Cherne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Barkan Sidar
- Chemical and Biological Engineering Department and Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - T. Andrew Sebrell
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Humberto S. Sanchez
- Chemical and Biological Engineering Department and Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Kody Heaton
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Francis J. Kassama
- Department of Chemistry and Biochemistry, Bowdoin College, Brunswick, ME, United States
| | - Mandi M. Roe
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Andrew B. Gentry
- Bozeman GI Clinic, Deaconess Hospital, Bozeman, MT, United States
| | - Connie B. Chang
- Chemical and Biological Engineering Department and Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - James N. Wilking
- Chemical and Biological Engineering Department and Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
27
|
Pin C, Collins T, Gibbs M, Kimko H. Systems Modeling to Quantify Safety Risks in Early Drug Development: Using Bifurcation Analysis and Agent-Based Modeling as Examples. AAPS JOURNAL 2021; 23:77. [PMID: 34018069 PMCID: PMC8137611 DOI: 10.1208/s12248-021-00580-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
Quantitative Systems Toxicology (QST) models, recapitulating pharmacokinetics and mechanism of action together with the organic response at multiple levels of biological organization, can provide predictions on the magnitude of injury and recovery dynamics to support study design and decision-making during drug development. Here, we highlight the application of QST models to predict toxicities of cancer treatments, such as cytopenia(s) and gastrointestinal adverse effects, where narrow therapeutic indexes need to be actively managed. The importance of bifurcation analysis is demonstrated in QST models of hematologic toxicity to understand how different regions of the parameter space generate different behaviors following cancer treatment, which results in asymptotically stable predictions, yet highly irregular for specific schedules, or oscillating predictions of blood cell levels. In addition, an agent-based model of the intestinal crypt was used to simulate how the spatial location of the injury within the crypt affects the villus disruption severity. We discuss the value of QST modeling approaches to support drug development and how they align with technological advances impacting trial design including patient selection, dose/regimen selection, and ultimately patient safety.
Collapse
Affiliation(s)
- Carmen Pin
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge, UK
| | - Teresa Collins
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge Science Park, Milton Road, Cambridge, UK
| | - Megan Gibbs
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland, USA.
| |
Collapse
|
28
|
Zhou Z, Zhu J, Jiang M, Sang L, Hao K, He H. The Combination of Cell Cultured Technology and In Silico Model to Inform the Drug Development. Pharmaceutics 2021; 13:pharmaceutics13050704. [PMID: 34065907 PMCID: PMC8151315 DOI: 10.3390/pharmaceutics13050704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Human-derived in vitro models can provide high-throughput efficacy and toxicity data without a species gap in drug development. Challenges are still encountered regarding the full utilisation of massive data in clinical settings. The lack of translated methods hinders the reliable prediction of clinical outcomes. Therefore, in this study, in silico models were proposed to tackle these obstacles from in vitro to in vivo translation, and the current major cell culture methods were introduced, such as human-induced pluripotent stem cells (hiPSCs), 3D cells, organoids, and microphysiological systems (MPS). Furthermore, the role and applications of several in silico models were summarised, including the physiologically based pharmacokinetic model (PBPK), pharmacokinetic/pharmacodynamic model (PK/PD), quantitative systems pharmacology model (QSP), and virtual clinical trials. These credible translation cases will provide templates for subsequent in vitro to in vivo translation. We believe that synergising high-quality in vitro data with existing models can better guide drug development and clinical use.
Collapse
Affiliation(s)
- Zhengying Zhou
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
| | - Jinwei Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
| | - Muhan Jiang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
| | - Lan Sang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
| | - Kun Hao
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (J.Z.); (L.S.)
- Correspondence: (K.H.); (H.H.)
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; (Z.Z.); (M.J.)
- Correspondence: (K.H.); (H.H.)
| |
Collapse
|
29
|
Hargrove-Grimes P, Low LA, Tagle DA. Microphysiological systems: What it takes for community adoption. Exp Biol Med (Maywood) 2021; 246:1435-1446. [PMID: 33899539 DOI: 10.1177/15353702211008872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microphysiological systems (MPS) are promising in vitro tools which could substantially improve the drug development process, particularly for underserved patient populations such as those with rare diseases, neural disorders, and diseases impacting pediatric populations. Currently, one of the major goals of the National Institutes of Health MPS program, led by the National Center for Advancing Translational Sciences (NCATS), is to demonstrate the utility of this emerging technology and help support the path to community adoption. However, community adoption of MPS technology has been hindered by a variety of factors including biological and technological challenges in device creation, issues with validation and standardization of MPS technology, and potential complications related to commercialization. In this brief Minireview, we offer an NCATS perspective on what current barriers exist to MPS adoption and provide an outlook on the future path to adoption of these in vitro tools.
Collapse
Affiliation(s)
- Passley Hargrove-Grimes
- 390834National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucie A Low
- 390834National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danilo A Tagle
- 390834National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Vargas R, Egurbide-Sifre A, Medina L. Organ-on-a-Chip systems for new drugs development. ADMET AND DMPK 2021; 9:111-141. [PMID: 35299767 PMCID: PMC8920106 DOI: 10.5599/admet.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
Research on alternatives to the use of animal models and cell cultures has led to the creation of organ-on-a-chip systems, in which organs and their physiological reactions to the presence of external stimuli are simulated. These systems could even replace the use of human beings as subjects for the study of drugs in clinical phases and have an impact on personalized therapies. Organ-on-a-chip technology present higher potential than traditional cell cultures for an appropriate prediction of functional impairments, appearance of adverse effects, the pharmacokinetic and toxicological profile and the efficacy of a drug. This potential is given by the possibility of placing different cell lines in a three-dimensional-arranged polymer piece and simulating and controlling specific conditions. Thus, the normal functioning of an organ, tissue, barrier, or physiological phenomenon can be simulated, as well as the interrelation between different systems. Furthermore, this alternative allows the study of physiological and pathophysiological processes. Its design combines different disciplines such as materials engineering, cell cultures, microfluidics and physiology, among others. This work presents the main considerations of OoC systems, the materials, methods and cell lines used for their design, and the conditions required for their proper functioning. Examples of applications and main challenges for the development of more robust systems are shown. This non-systematic review is intended to be a reference framework that facilitates research focused on the development of new OoC systems, as well as their use as alternatives in pharmacological, pharmacokinetic and toxicological studies.
Collapse
Affiliation(s)
- Ronny Vargas
- Industrial Pharmacy Department, Faculty of Pharmacy, University of Costa Rica 11501-2060, San José, Costa Rica
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-1, 08028, Barcelona, Spain
| | - Andrea Egurbide-Sifre
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-1, 08028, Barcelona, Spain
| | - Laura Medina
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, 27-1, 08028, Barcelona, Spain
| |
Collapse
|
31
|
Kopec AK, Yokokawa R, Khan N, Horii I, Finley JE, Bono CP, Donovan C, Roy J, Harney J, Burdick AD, Jessen B, Lu S, Collinge M, Sadeghian RB, Derzi M, Tomlinson L, Burkhardt JE. Microphysiological systems in early stage drug development: Perspectives on current applications and future impact. J Toxicol Sci 2021; 46:99-114. [PMID: 33642521 DOI: 10.2131/jts.46.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microphysiological systems (MPS) are making advances to provide more standardized and predictive physiologically relevant responses to test articles in living tissues and organ systems. The excitement surrounding the potential of MPS to better predict human responses to medicines and improving clinical translation is overshadowed by their relatively slow adoption by the pharmaceutical industry and regulators. Collaboration between multiorganizational consortia and regulators is necessary to build an understanding of the strengths and limitations of MPS models and closing the current gaps. Here, we review some of the advances in MPS research, focusing on liver, intestine, vascular system, kidney and lung and present examples highlighting the context of use for these systems. For MPS to gain a foothold in drug development, they must have added value over existing approaches. Ideally, the application of MPS will augment in vivo studies and reduce the use of animals via tiered screening with less reliance on exploratory toxicology studies to screen compounds. Because MPS support multiple cell types (e.g. primary or stem-cell derived cells) and organ systems, identifying when MPS are more appropriate than simple 2D in vitro models for understanding physiological responses to test articles is necessary. Once identified, MPS models require qualification for that specific context of use and must be reproducible to allow future validation. Ultimately, the challenges of balancing complexity with reproducibility will inform the promise of advancing the MPS field and are critical for realization of the goal to reduce, refine and replace (3Rs) the use of animals in nonclinical research.
Collapse
Affiliation(s)
- Anna K Kopec
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Japan
| | - Nasir Khan
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Ikuo Horii
- Drug Safety Research & Development, Pfizer, Inc., Japan
| | - James E Finley
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Carol Donovan
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Jessica Roy
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Julie Harney
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Bart Jessen
- Drug Safety Research & Development, Pfizer, Inc., CA, USA
| | - Shuyan Lu
- Drug Safety Research & Development, Pfizer, Inc., CA, USA
| | - Mark Collinge
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Mazin Derzi
- Drug Safety Research & Development, Pfizer, Inc., MA, USA
| | | | | |
Collapse
|
32
|
de Haan P, Santbergen MJC, van der Zande M, Bouwmeester H, Nielen MWF, Verpoorte E. A versatile, compartmentalised gut-on-a-chip system for pharmacological and toxicological analyses. Sci Rep 2021; 11:4920. [PMID: 33649376 PMCID: PMC7921645 DOI: 10.1038/s41598-021-84187-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
A novel, integrated, in vitro gastrointestinal (GI) system is presented to study oral bioavailability parameters of small molecules. Three compartments were combined into one hyphenated, flow-through set-up. In the first compartment, a compound was exposed dynamically to enzymatic digestion in three consecutive microreactors, mimicking the processes of the mouth, stomach, and intestine. The resulting solution (chyme) continued to the second compartment, a flow-through barrier model of the intestinal epithelium allowing absorption of the compound and metabolites thereof. The composition of the effluents from the barrier model were analysed either offline by electrospray-ionisation-mass spectrometry (ESI-MS), or online in the final compartment using chip-based ESI-MS. Two model drugs, omeprazole and verapamil, were used to test the integrated model. Omeprazole was shown to be broken down upon treatment with gastric acid, but reached the cell barrier unharmed when introduced to the system in a manner emulating an enteric-coated formulation. In contrast, verapamil was unaffected by digestion. Finally, a reduced uptake of verapamil was observed when verapamil was introduced to the system dissolved in apple juice, a simple food matrix. It is envisaged that this integrated, compartmentalised GI system has potential for enabling future research in the fields of pharmacology, toxicology, and nutrition.
Collapse
Affiliation(s)
- Pim de Haan
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB20, 9700 AD, Groningen, The Netherlands
- TI-COAST, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Milou J C Santbergen
- TI-COAST, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Meike van der Zande
- Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Michel W F Nielen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Elisabeth Verpoorte
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB20, 9700 AD, Groningen, The Netherlands.
| |
Collapse
|
33
|
Rusyn I, Roth A. Editorial overview of the special issue on application of tissue chips in toxicology. Toxicology 2021; 450:152687. [PMID: 33484733 DOI: 10.1016/j.tox.2021.152687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Adrian Roth
- Product Development Safety, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
34
|
Hinman SS, Wang Y, Kim R, Allbritton NL. In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels. Nat Protoc 2021; 16:352-382. [PMID: 33299154 PMCID: PMC8420814 DOI: 10.1038/s41596-020-00419-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The large intestine, with its array of crypts lining the epithelium and diverse luminal contents, regulates homeostasis throughout the body. In vitro crypts formed from primary human intestinal epithelial stem cells on a 3D shaped hydrogel scaffold replicate the functional and architectural features of in vivo crypts. Collagen scaffolding assembly methods are provided, along with the microfabrication and soft lithography protocols necessary to shape these hydrogels to match the dimensions and density of in vivo crypts. In addition, stem-cell scale-up protocols are provided so that even ultrasmall primary samples can be used as starting material. Initially, these cells are seeded as a proliferative monolayer over the shaped scaffold and cultured as stem/proliferative cells to expand them and cover the scaffold surface with the crypt-shaped structures. To convert these immature crypts into fully polarized, functional units with a basal stem cell niche and luminal differentiated cell zone, stable, linear gradients of growth factors are formed across the crypts. This platform supports the formation of chemical gradients across the crypts, including those of growth and differentiation factors, inflammatory compounds, bile and food metabolites and bacterial products. All microfabrication and device assembly steps are expected to take 8 d, with the primary cells cultured for 12 d to form mature in vitro crypts.
Collapse
Affiliation(s)
- Samuel S Hinman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Raehyun Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
35
|
Markus J, Landry T, Stevens Z, Scott H, Llanos P, Debatis M, Armento A, Klausner M, Ayehunie S. Human small intestinal organotypic culture model for drug permeation, inflammation, and toxicity assays. In Vitro Cell Dev Biol Anim 2020; 57:160-173. [PMID: 33237403 PMCID: PMC7687576 DOI: 10.1007/s11626-020-00526-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract (GIT), in particular, the small intestine, plays a significant role in food digestion, fluid and electrolyte transport, drug absorption and metabolism, and nutrient uptake. As the longest portion of the GIT, the small intestine also plays a vital role in protecting the host against pathogenic or opportunistic microbial invasion. However, establishing polarized intestinal tissue models in vitro that reflect the architecture and physiology of the gut has been a challenge for decades and the lack of translational models that predict human responses has impeded research in the drug absorption, metabolism, and drug-induced gastrointestinal toxicity space. Often, animals fail to recapitulate human physiology and do not predict human outcomes. Also, certain human pathogens are species specific and do not infect other hosts. Concerns such as variability of results, a low throughput format, and ethical considerations further complicate the use of animals for predicting the safety and efficacy xenobiotics in humans. These limitations necessitate the development of in vitro 3D human intestinal tissue models that recapitulate in vivo–like microenvironment and provide more physiologically relevant cellular responses so that they can better predict the safety and efficacy of pharmaceuticals and toxicants. Over the past decade, much progress has been made in the development of in vitro intestinal models (organoids and 3D-organotypic tissues) using either inducible pluripotent or adult stem cells. Among the models, the MatTek’s intestinal tissue model (EpiIntestinal™ Ashland, MA) has been used extensively by the pharmaceutical industry to study drug permeation, metabolism, drug-induced GI toxicity, pathogen infections, inflammation, wound healing, and as a predictive model for a clinical adverse outcome (diarrhea) to pharmaceutical drugs. In this paper, our review will focus on the potential of in vitro small intestinal tissues as preclinical research tool and as alternative to the use of animals.
Collapse
Affiliation(s)
- Jan Markus
- In Vitro Life Science Laboratories, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang X, Hou Y, Ai X, Sun J, Xu B, Meng X, Zhang Y, Zhang S. Potential applications of microfluidics based blood brain barrier (BBB)-on-chips for in vitro drug development. Biomed Pharmacother 2020; 132:110822. [PMID: 33059264 DOI: 10.1016/j.biopha.2020.110822] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
The human blood-brain barrier (BBB) is a complex multi-dimensional reticular barrier system composed of cerebral microvascular endothelial cells, pericytes, astrocytes and a variety of neurons. The conventional in vitro cell culture model fails to truly present the dynamic hemodynamics of BBB and the interaction between neurons. And it is even more impossible to explore brain-related multi-organ diseases, which brings huge obstacles to explore diseases of the central nervous system and the interaction between brain-related multi-organs, and evaluate drug efficacy. Miniaturized microfluidics based BBB chips are being commonly used to co-culture a variety of cells on a small-sized chip to construct a three-dimensional (3D) BBB or BBB-related organ disease models. By combining with other electrophysiological, biochemical sensors or equipment and imaging systems, it can in real time and quickly screen disease-related markers and evaluate drug efficacy. This review systematically summarized the research progress of in vitro BBB and BBB-related organ chips, and analyzed the obstacles of BBB models in depth. Parallelly combined with the current research trends and hot spots, we give the further improvement measures of microfluidic BBB chips.
Collapse
Affiliation(s)
- Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaopeng Ai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Binjie Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
37
|
Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discov 2020; 20:345-361. [PMID: 32913334 DOI: 10.1038/s41573-020-0079-3] [Citation(s) in RCA: 420] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Organs-on-chips (OoCs), also known as microphysiological systems or 'tissue chips' (the terms are synonymous), have attracted substantial interest in recent years owing to their potential to be informative at multiple stages of the drug discovery and development process. These innovative devices could provide insights into normal human organ function and disease pathophysiology, as well as more accurately predict the safety and efficacy of investigational drugs in humans. Therefore, they are likely to become useful additions to traditional preclinical cell culture methods and in vivo animal studies in the near term, and in some cases replacements for them in the longer term. In the past decade, the OoC field has seen dramatic advances in the sophistication of biology and engineering, in the demonstration of physiological relevance and in the range of applications. These advances have also revealed new challenges and opportunities, and expertise from multiple biomedical and engineering fields will be needed to fully realize the promise of OoCs for fundamental and translational applications. This Review provides a snapshot of this fast-evolving technology, discusses current applications and caveats for their implementation, and offers suggestions for directions in the next decade.
Collapse
Affiliation(s)
- Lucie A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| | - Christine Mummery
- Leiden University Medical Center, Leiden, Netherlands.,University of Twente, Enschede, Netherlands
| | - Brian R Berridge
- National Institute for Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Christopher P Austin
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
38
|
Naumovska E, Aalderink G, Wong Valencia C, Kosim K, Nicolas A, Brown S, Vulto P, Erdmann KS, Kurek D. Direct On-Chip Differentiation of Intestinal Tubules from Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21144964. [PMID: 32674311 PMCID: PMC7404294 DOI: 10.3390/ijms21144964] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Intestinal organoids have emerged as the new paradigm for modelling the healthy and diseased intestine with patient-relevant properties. In this study, we show directed differentiation of induced pluripotent stem cells towards intestinal-like phenotype within a microfluidic device. iPSCs are cultured against a gel in microfluidic chips of the OrganoPlate, in which they undergo stepwise differentiation. Cells form a tubular structure, lose their stem cell markers and start expressing mature intestinal markers, including markers for Paneth cells, enterocytes and neuroendocrine cells. Tubes develop barrier properties as confirmed by transepithelial electrical resistance (TEER). Lastly, we show that tubules respond to pro-inflammatory cytokine triggers. The whole procedure for differentiation lasts 14 days, making it an efficient process to make patient-specific organoid tubules. We anticipate the usage of the platform for disease modelling and drug candidate screening.
Collapse
Affiliation(s)
- Elena Naumovska
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Germaine Aalderink
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Christian Wong Valencia
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Kinga Kosim
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Arnaud Nicolas
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Stephen Brown
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Paul Vulto
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Kai S. Erdmann
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
- Correspondence: (K.S.E.); (D.K.)
| | - Dorota Kurek
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Correspondence: (K.S.E.); (D.K.)
| |
Collapse
|
39
|
Belair DG, Visconti RJ, Hong M, Marella M, Peters MF, Scott CW, Kolaja KL. Human ileal organoid model recapitulates clinical incidence of diarrhea associated with small molecule drugs. Toxicol In Vitro 2020; 68:104928. [PMID: 32622998 DOI: 10.1016/j.tiv.2020.104928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022]
Abstract
Drug-induced gastrointestinal toxicity (GIT) is a common treatment-emergent adverse event that can negatively impact dosing, thereby limiting efficacy and treatment options for patients. An in vitro assay of GIT is needed to address patient variability, mimic the microphysiology of the gut, and accurately predict drug-induced GIT. Primary human ileal organoids (termed 'enteroids') have proven useful for stimulating intestinal stem cell proliferation and differentiation to multiple cell types present in the gut epithelium. Enteroids have enabled characterization of gut biology and the signaling involved in the pathogenesis of disease. Here, enteroids were differentiated from four healthy human donors and assessed for culture duration-dependent differentiation status by immunostaining for gut epithelial markers lysozyme, chromogranin A, mucin, and sucrase isomaltase. Differentiated enteroids were evaluated with a reference set of 31 drugs exhibiting varying degrees of clinical incidence of diarrhea, a common manifestation of GIT that can be caused by drug-induced thinning of the gut epithelium. An assay examining enteroid viability in response to drug treatment demonstrated 90% accuracy for recapitulating the incidence of drug-induced diarrhea. The human enteroid viability assay developed here presents a promising in vitro model for evaluating drug-induced diarrhea.
Collapse
Affiliation(s)
- David G Belair
- Investigative Toxicology, Nonclinical Development, Celgene Corporation, Summit, NJ, USA
| | - Richard J Visconti
- Investigative Toxicology, Nonclinical Development, Celgene Corporation, Summit, NJ, USA
| | - Miyoun Hong
- Investigative Toxicology, Nonclinical Development, Celgene Corporation, Summit, NJ, USA
| | - Mathieu Marella
- Histology and Pathology, Nonclinical Development, Celgene Corporation, Summit, NJ, USA
| | - Matthew F Peters
- Oncology Safety, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Clay W Scott
- Oncology Safety, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Kyle L Kolaja
- Investigative Toxicology, Nonclinical Development, Celgene Corporation, Summit, NJ, USA.
| |
Collapse
|
40
|
Guo Y, Deng P, Chen W, Li Z. Modeling Pharmacokinetic Profiles for Assessment of Anti-Cancer Drug on a Microfluidic System. MICROMACHINES 2020; 11:E551. [PMID: 32486116 PMCID: PMC7344513 DOI: 10.3390/mi11060551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
The pharmacokinetic (PK) properties of drug, which include drug absorption and excretion, play an important role in determining the in vivo pharmaceutical activity. However, current in vitro systems that model PK profiles are often limited by the in vivo-like concentration profile of a drug. Herein, we present a perfused and multi-layered microfluidic chip system to model the PK profile of anti-cancer drug 5-FU in vitro. The chip device contains two layers of culture channels sandwiched by a porous membrane, which allows for drug exposure and diffusion between the two channels. The integration of upper intestine cells (Caco-2) and bottom targeted cells within the device enables the generation of loading and clearance portions of a PK curve under peristaltic flow. Fluorescein as a test molecule was initially used to generate a concentration-time curve, investigating the effects of parameters of flow rate, administration time, and initial concentration on dynamic drug concentration profiles. Furthermore, anti-cancer drug 5-FU was performed to assess its pharmaceutical activity on target cells (human lung adenocarcinoma cells or human pulmonary alveolar epithelial cells) using different drug administration regimens. A dynamic, in vivo-like 5-FU exposure refers to PK profile regimen, led to generate a lower drug concentration (dynamically fluctuate from 0 to 1 μg/mL affected by absorption) compared to the constant exposure. Moreover, the PK profile regimen alleviates the drug-induced cytotoxicity on target cells. These results demonstrate the feasibility of determining the PK profiles using this microfluidic system with in vivo-like drug administration regimens. This established system may provide a powerful platform for the prediction of drug safety and effectiveness in the pharmaceutical research.
Collapse
Affiliation(s)
- Yaqiong Guo
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.G.); (P.D.); (W.C.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Pengwei Deng
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.G.); (P.D.); (W.C.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenwen Chen
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.G.); (P.D.); (W.C.)
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongyu Li
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Y.G.); (P.D.); (W.C.)
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|