1
|
Giannakopoulou E, Akrani I, Mpekoulis G, Frakolaki E, Dimitriou M, Myrianthopoulos V, Vassilaki N, Zoidis G. Novel Pyrazino[1,2- a]indole-1,3(2 H,4 H)-dione Derivatives Targeting the Replication of Flaviviridae Viruses: Structural and Mechanistic Insights. Viruses 2024; 16:1238. [PMID: 39205212 PMCID: PMC11360281 DOI: 10.3390/v16081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Infections with Flaviviridae viruses, such as hepatitis C (HCV), dengue (DENV), and yellow fever (YFV) viruses, are major public health problems worldwide. In the case of HCV, treatment is associated with drug resistance and high costs, while there is no clinically approved therapy for DENV and YFV. Consequently, there is still a need for new chemotherapies with alternative modes of action. We have previously identified novel 2-hydroxypyrazino[1,2-a]indole-1,3(2H,4H)-diones as metal-chelating inhibitors targeting HCV RNA replication. Here, by utilizing a structure-based approach, we rationally designed a second series of compounds by introducing various substituents at the indole core structure and at the imidic nitrogen, to improve specificity against the RNA-dependent RNA polymerase (RdRp). The resulting derivatives were evaluated for their potency against HCV genotype 1b, DENV2, and YFV-17D using stable replicon cell lines. The most favorable substitution was nitro at position 6 of the indole ring (compound 36), conferring EC50 1.6 μM against HCV 1b and 2.57 μΜ against HCV 1a, with a high selectivity index. Compound 52, carrying the acetohydroxamic acid functionality (-CH2CONHOH) on the imidic nitrogen, and compound 78, the methyl-substituted molecule at the position 4 indolediketopiperazine counterpart, were the most effective against DENV and YFV, respectively. Interestingly, compound 36 had a high genetic barrier to resistance and only one resistance mutation was detected, T181I in NS5B, suggesting that the compound target HCV RdRp is in accordance with our predicted model.
Collapse
Affiliation(s)
- Erofili Giannakopoulou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece; (E.G.); (I.A.); (V.M.)
| | - Ifigeneia Akrani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece; (E.G.); (I.A.); (V.M.)
| | - George Mpekoulis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, GR-11521 Athens, Greece; (G.M.); (M.D.)
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, GR-11521 Athens, Greece; (G.M.); (M.D.)
| | - Marios Dimitriou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, GR-11521 Athens, Greece; (G.M.); (M.D.)
| | - Vassilios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece; (E.G.); (I.A.); (V.M.)
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, GR-11521 Athens, Greece; (G.M.); (M.D.)
| | - Grigoris Zoidis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece; (E.G.); (I.A.); (V.M.)
| |
Collapse
|
2
|
Fytas G, Zoidis G, Drakopoulos A, Taylor MC, Kelly JM, Tsatsaroni A, Tsotinis A. New Lipophilic Hydroxamates as Promising Trypanocidal Agents: Design, Synthesis, SAR, and Conformational Behavior Studies. ACS Med Chem Lett 2024; 15:1041-1048. [PMID: 39015276 PMCID: PMC11247629 DOI: 10.1021/acsmedchemlett.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024] Open
Abstract
A series of novel hydroxamic acid derivatives was designed and synthesized, and their growth inhibitory activity against bloodstream form Trypanosoma brucei was evaluated. These compounds are based on conformationally constrained, lipophilic, spiro carbocyclic 2,6-diketopiperazine (2,6-DKP) scaffolds and bear a side pharmacophoric functionality that contains an acetohydroxamic acid moiety (CH2CONHOH) linked with the imidic nitrogen atom of the 2,6-DKP ring via an acetamido portion [CH2CON(R), R = H, CH3]. Most of these analogues were active in the midnanomolar to low micromolar range against T. brucei. (S)-Isobutyl- or (S)-benzyl-substitution on the methylene carbon located between the amine nitrogen atom and carbonyl of the 2,6-DKP ring was studied. The effect of the methyl-substitution on the nitrogen atom of the acetamido portion in the side pharmacophoric functionality was also examined. Compounds 22 and 23, bearing an isobutyl- or benzyl-substituent, respectively, and concurrently a methyl-substituent, were found to be the most potent hydroxamates of this series (IC50 = 34 and 53 nM, respectively). Both had promising selectivity over the parasite compared to mammalian cells (SI = 940 and 470, respectively). Moreover, an E/Z conformational behavior study on hydroxamic acid 18 and its methyl-substituted counterpart 21 was undertaken using NMR spectroscopy and theoretical calculations.
Collapse
Affiliation(s)
- George Fytas
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Grigoris Zoidis
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Antonios Drakopoulos
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Göteborg SE-412 96, Sweden
| | - Martin C. Taylor
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - John M. Kelly
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Alexandra Tsatsaroni
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Andrew Tsotinis
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| |
Collapse
|
3
|
Pardali V, Giannakopoulou E, Mpekoulis G, Tsopela V, Panos G, Taylor MC, Kelly JM, Vassilaki N, Zoidis G. Novel Lipophilic Hydroxamates Based on Spirocarbocyclic Hydantoin Scaffolds with Potent Antiviral and Trypanocidal Activity. Pharmaceuticals (Basel) 2023; 16:1046. [PMID: 37513957 PMCID: PMC10385743 DOI: 10.3390/ph16071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Flaviviridae infections, such as those caused by hepatitis C (HCV) and dengue viruses (DENVs), represent global health risks. Infected people are in danger of developing chronic liver failure or hemorrhagic fever, both of which can be fatal if not treated. The tropical parasites Trypanosoma brucei and Trypanosoma cruzi cause enormous socioeconomic burdens in Sub-Saharan Africa and Latin America. Anti-HCV chemotherapy has severe adverse effects and is expensive, whereas dengue has no clinically authorized treatment. Antiparasitic medicines are often toxic and difficult to administer, and treatment failures are widely reported. There is an urgent need for new chemotherapies. Based on our previous research, we have undertaken structural modification of lead compound V with the goal of producing derivatives with both antiviral and trypanocidal activity. The novel spirocarbocyclic-substituted hydantoin analogs were designed, synthesized, and tested for antiviral activity against three HCV genotypes (1b, 3a, 4a), DENV, yellow fever virus (YFV), and two trypanosome species (T. brucei, T. cruzi). The optimization was successful and led to compounds with significant antiviral and trypanocidal activity and exceptional selectivity. Several modifications were made to further investigate the structure-activity relationships (SARs) and confirm the critical role of lipophilicity and conformational degrees of freedom.
Collapse
Affiliation(s)
- Vasiliki Pardali
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Erofili Giannakopoulou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - George Mpekoulis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Vassilina Tsopela
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Georgios Panos
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Grigoris Zoidis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
4
|
García-Ariza LL, González-Rivillas N, Díaz-Aguirre CJ, Rocha-Roa C, Padilla-Sanabria L, Castaño-Osorio JC. Antiviral Activity of an Indole-Type Compound Derived from Natural Products, Identified by Virtual Screening by Interaction on Dengue Virus NS5 Protein. Viruses 2023; 15:1563. [PMID: 37515249 PMCID: PMC10384440 DOI: 10.3390/v15071563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Dengue is an acute febrile illness caused by the Dengue virus (DENV), with a high number of cases worldwide. There is no available treatment that directly affects the virus or the viral cycle. The objective of this study was to identify a compound derived from natural products that interacts with the NS5 protein of the dengue virus through virtual screening and evaluate its in vitro antiviral effect on DENV-2. Molecular docking was performed on NS5 using AutoDock Vina software, and compounds with physicochemical and pharmacological properties of interest were selected. The preliminary antiviral effect was evaluated by the expression of the NS1 protein. The effect on viral genome replication and/or translation was determined by NS5 production using DENV-2 Huh-7 replicon through ELISA and viral RNA quantification using RT-qPCR. The in silico strategy proved effective in finding a compound (M78) with an indole-like structure and with an effect on the replication cycle of DENV-2. Treatment at 50 µM reduced the expression of the NS5 protein by 70% and decreased viral RNA by 1.7 times. M78 is involved in the replication and/or translation of the viral genome.
Collapse
Affiliation(s)
| | | | | | - Cristian Rocha-Roa
- Grupo de Parasitología Molecular GEPAMOL, Universidad del Quindío, Armenia 630001, Quindío, Colombia
| | | | | |
Collapse
|
5
|
Moianos D, Prifti GM, Makri M, Zoidis G. Targeting Metalloenzymes: The "Achilles' Heel" of Viruses and Parasites. Pharmaceuticals (Basel) 2023; 16:901. [PMID: 37375848 DOI: 10.3390/ph16060901] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. Metal-chelating agents have been expansively studied as antivirals and antiparasitics, resulting in important classes of metal-dependent enzyme inhibitors. This review provides the recent advances in targeting the metalloenzymes of viruses and parasites that impose a significant burden on global public health, including influenza A and B, hepatitis B and C, and human immunodeficiency viruses as well as Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Makri
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
6
|
Nasr T, Aboshanab AM, Mpekoulis G, Drakopoulos A, Vassilaki N, Zoidis G, Abouzid KAM, Zaghary W. Novel 6-Aminoquinazolinone Derivatives as Potential Cross GT1-4 HCV NS5B Inhibitors. Viruses 2022; 14:v14122767. [PMID: 36560772 PMCID: PMC9782603 DOI: 10.3390/v14122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infections are a worldwide medical problem responsible for diverse types of liver diseases. The NS5B polymerase enzyme has become a very interesting target for the development of anti-HCV drugs owing to its fundamental role in viral replication. Here we report the synthesis of a novel series of 1-substituted phenyl-4(1H)-quinazolinone and 2-methyl-1-substituted phenyl-4(1H)-quinazolinone derivatives and evaluate their activity against HCV in HCV subgenomic replicon assays. The biological data revealed that compound 11a showed the highest activity against HCV GT1b at a micromolar concentration (EC50 = 0.984 µM) followed by compound 11b (EC50 = 1.38 µM). Both compounds 11a and 11b had high selectivity indices (SI = CC50/EC50), 160.71 and 71.75, respectively, which make them very interesting candidates for further development of more potent and selective anti-HCV agents.
Collapse
Affiliation(s)
- Tamer Nasr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo 11795, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, MTI University, Cairo 12055, Egypt
- Correspondence: (T.N.); (G.Z.)
| | - Ahmed M. Aboshanab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - George Mpekoulis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Antonios Drakopoulos
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Correspondence: (T.N.); (G.Z.)
| | - Khaled A. M. Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wafaa Zaghary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| |
Collapse
|
7
|
Mpekoulis G, Tsopela V, Chalari A, Kalliampakou KI, Panos G, Frakolaki E, Milona RS, Sideris DC, Vassilacopoulou D, Vassilaki N. Dengue Virus Replication Is Associated with Catecholamine Biosynthesis and Metabolism in Hepatocytes. Viruses 2022; 14:v14030564. [PMID: 35336971 PMCID: PMC8948859 DOI: 10.3390/v14030564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Previously, the association between the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) and Dengue virus (DV) replication was demonstrated in liver cells and was found to be mediated at least by the interaction between DDC and phosphoinositide 3-kinase (PI3K). Here, we show that biogenic amines production and uptake impede DV replication in hepatocytes and monocytes, while the virus reduces catecholamine biosynthesis, metabolism, and transport. To examine how catecholamine biosynthesis/metabolism influences DV, first, we verified the role of DDC by altering DDC expression. DDC silencing enhanced virus replication, but not translation, attenuated the negative effect of DDC substrates on the virus and reduced the infection related cell death. Then, the role of the downstream steps of the catecholamine biosynthesis/metabolism was analyzed by chemical inhibition of the respective enzymes, application of their substrates and/or their products; moreover, reserpine, the inhibitor of the vesicular monoamine transporter 2 (VMAT2), was used to examine the role of uptake/storage of catecholamines on DV. Apart from the role of each enzyme/transporter, these studies revealed that the dopamine uptake, and not the dopamine-signaling, is responsible for the negative effect on DV. Accordingly, all treatments expected to enhance the accumulation of catecholamines in the cell cytosol suppressed DV replication. This was verified by the use of chemical inducers of catecholamine biosynthesis. Last, the cellular redox alterations due to catecholamine oxidation were not related with the inhibition of DV replication. In turn, DV apart from its negative impact on DDC, inhibits tyrosine hydroxylase, dopamine beta-hydroxylase, monoamine oxidase, and VMAT2 expression.
Collapse
Affiliation(s)
- George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Anna Chalari
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Georgios Panos
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Efseveia Frakolaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Raphaela S. Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
| | - Diamantis C. Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (D.C.S.); (D.V.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece; (G.M.); (V.T.); (A.C.); (K.I.K.); (G.P.); (R.S.M.)
- Correspondence: ; Tel.: +30-210-647-8875
| |
Collapse
|
8
|
Abdallah M, Hamed MM, Frakolaki E, Katsamakas S, Vassilaki N, Bartenschlager R, Zoidis G, Hirsch AKH, Abdel-Halim M, Abadi AH. Redesigning of the cap conformation and symmetry of the diphenylethyne core to yield highly potent pan-genotypic NS5A inhibitors with high potency and high resistance barrier. Eur J Med Chem 2021; 229:114034. [PMID: 34959173 DOI: 10.1016/j.ejmech.2021.114034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Herein, we report the discovery of several NS5A inhibitors with potency against HCV genotype 1b in the picomolar range. Compounds (15, 33) were of extremely high potency against HCV genotype 1b (EC50 ≈ 1 pM), improved activity against genotype 3a (GT 3a) and good metabolic stability. We studied the impact of changing the cap conformation relative to the diphenylethyne core and/or compound symmetry on both potency and metabolic stability. The analogs obtained exhibited improved potency against HCV genotypes 1a, 1b, 3a and 4a compared to the clinically approved candidate daclatasvir with EC50 values in the low picomolar range and SI50s > 7 orders of magnitude. Compound 15, a symmetrically m-, m'-substituted diphenyl ethyne analog, was 150-fold more potent than daclatasvir against GT 3a, while compound 33, an asymmetrically m-, p-substituted diphenyl ethyne analog, was 35-fold more potent than daclatasvir against GT 3a. In addition, compound 15 exhibited a higher resistance barrier than daclatasvir against genotype 1b.
Collapse
Affiliation(s)
- Mennatallah Abdallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521, Athens, Greece
| | - Sotirios Katsamakas
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521, Athens, Greece
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, Germany
| | - Grigoris Zoidis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, Saarbrücken, 66123, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
9
|
Abstract
A simple, fast and cost-effective three-step synthesis of 1-methyl-8-phenyl-1,3-diazaspiro[4.5]decane-2,4-dione has been developed. The reactions described herein proceed readily, with high yields and no further purification. Therefore, the proposed method, with an overall yield of 60%, offers a facile pathway to the synthesis of N-1 monosubstituted spiro carbocyclic imidazolidine-2,4-diones (hydantoins), which constitute a privileged class of heterocyclic scaffolds with pharmacological interest.
Collapse
|
10
|
Mousa MHA, Ahmed NS, Schwedtmann K, Frakolaki E, Vassilaki N, Zoidis G, Weigand JJ, Abadi AH. Design and Synthesis of Novel Symmetric Fluorene-2,7-Diamine Derivatives as Potent Hepatitis C Virus Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14040292. [PMID: 33806139 PMCID: PMC8064491 DOI: 10.3390/ph14040292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) is an international challenge. Since the discovery of NS5A direct-acting antivirals, researchers turned their attention to pursue novel NS5A inhibitors with optimized design and structure. Herein we explore highly potent hepatitis C virus (HCV) NS5A inhibitors; the novel analogs share a common symmetrical prolinamide 2,7-diaminofluorene scaffold. Modification of the 2,7-diaminofluorene backbone included the use of (S)-prolinamide or its isostere (S,R)-piperidine-3-caboxamide, both bearing different amino acid residues with terminal carbamate groups. Compound 26 exhibited potent inhibitory activity against HCV genotype (GT) 1b (effective concentration (EC50) = 36 pM and a selectivity index of >2.78 × 106). Compound 26 showed high selectivity on GT 1b versus GT 4a. Interestingly, it showed a significant antiviral effect against GT 3a (EC50 = 1.2 nM). The structure-activity relationship (SAR) analysis revealed that picomolar inhibitory activity was attained with the use of S-prolinamide capped with R- isoleucine or R-phenylglycine residues bearing a terminal alkyl carbamate group.
Collapse
Affiliation(s)
- Mai H. A. Mousa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Nermin S. Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
- Correspondence: (N.S.A.); (A.H.A.); Tel.: +202-27590700 (ext. 3429) (N.S.A.); +202-27590700 (ext. 3400) (A.H.A.); Fax: +202-27581041 (N.S.A. & A.H.A.)
| | - Kai Schwedtmann
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (K.S.); (J.J.W.)
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; (E.F.); (N.V.)
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; (E.F.); (N.V.)
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Jan J. Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (K.S.); (J.J.W.)
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
- Correspondence: (N.S.A.); (A.H.A.); Tel.: +202-27590700 (ext. 3429) (N.S.A.); +202-27590700 (ext. 3400) (A.H.A.); Fax: +202-27581041 (N.S.A. & A.H.A.)
| |
Collapse
|
11
|
Abdel Karim SE, Youssef YH, Abdel-Halim M, Frakolaki E, Vassilaki N, Zoidis G, Ahmed NS, Abadi AH. Symmetric benzidine derivatives as anti-HCV agents: Insight into the nature, stereochemistry of the capping amino acid and the size of the terminal capping carbamates. Bioorg Chem 2020; 102:104089. [PMID: 32717691 DOI: 10.1016/j.bioorg.2020.104089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Novel symmetric molecules, bearing a benzidine prolinamide core, two terminal carbamate caps of variable sizes and nature, including natural and unnatural amino acids were developed. Several terminal N-carbamate substituents of the core structure, ranging from linear methyl, ethyl and butyl groups to branching isobutyl group; and an aromatic substituent were also synthesized. Series 1 has hydrophobic AA residues, namely S and R phenylglycine and a terminal carbamate capping group, whereas Series 2 bears sulphur containing amino acids, specifically S and R methionine and the natural R methylcysteine. The novel compounds were tested for their inhibitory activity (EC50) and their cytotoxicity (CC50), using an HCV 1b (Con1) reporter replicon cell line. Compound 4 with the unnatural capping residue, bearing d-Phenylglycine amino acid residue and N-isobutyloxycarbonyl capping group, was the most active within the two series, with EC50 = 0.0067 nM. Moreover, it showed high SI50 > 14788524 and was not cytotoxic at the highest tested concentration (100 μΜ), indicating its safety profile. Compound 4 also inhibited HCV genotypes 2a, 3a and 4a. Compared to the clinically approved NS5A inhibitor Daclatasvir, compound 4 shows higher activity against genotypes 1b and 3a, as well as improved safety profile.
Collapse
Affiliation(s)
- Shereen E Abdel Karim
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, 11835 Cairo, Egypt
| | - Youssef H Youssef
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, 11835 Cairo, Egypt
| | - Mohammad Abdel-Halim
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, 11835 Cairo, Egypt
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, GR-15771 Athens, Greece
| | - Nermin S Ahmed
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, 11835 Cairo, Egypt
| | - Ashraf H Abadi
- Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Chemistry, German University in Cairo, 11835 Cairo, Egypt.
| |
Collapse
|