1
|
Chen Q, Li C, Wei W, Li J, Liu F, Fu Y, Tang L, Han F. Endoplasmic reticulum stress response pathway-mediated cell death in ovarian cancer. Front Oncol 2024; 14:1446552. [PMID: 39319052 PMCID: PMC11420017 DOI: 10.3389/fonc.2024.1446552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
The endoplasmic reticulum (ER) is one of the largest organelles, and Endoplasmic Reticulum Stress Response Pathway is a series of responses triggered by the homeostatic imbalance of the ER and the state in which unfolded or misfolded proteins accumulate in the ER, which can trigger cell death. Cell death plays a crucial role in the development of diseases such as gynecological oncology. Herein, we review the current research on the response and ovarian cancer, discussing the key sensors (IRE1, PERK, ATF6), and the conditions under which it occurs (Ca2+ homeostasis disruption, hypoxia, others). Using the response as a starting point, provide a comprehensive overview of the relationship with the four types of cell death (apoptosis, autophagy, immunogenic cell death, paraptosis) in an attempt to provide new targeted therapeutic strategies for the organelle-Endoplasmic Reticulum Stress Response Pathway-cell death in ovarian cancer therapy.
Collapse
Affiliation(s)
- Qiaochu Chen
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqian Fu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Tang
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Chen B, Liu J. Mechanisms associated with cuproptosis and implications for ovarian cancer. J Inorg Biochem 2024; 257:112578. [PMID: 38797108 DOI: 10.1016/j.jinorgbio.2024.112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer, a profoundly fatal gynecologic neoplasm, exerts a substantial economic strain on nations globally. The formidable challenge of its frequent relapse necessitates the exploration of novel cytotoxic agents, efficacious antineoplastic medications with minimal adverse effects, and strategies to surmount resistance to primary chemotherapeutic agents. These endeavors aim to supplement extant pharmacological interventions and elucidate molecular mechanisms underlying induced cytotoxicity, distinct from conventional therapeutic modalities. Recent scientific research has unveiled a novel form of cellular demise, known as copper-death, which is contingent upon the intracellular concentration of copper. Diverging from conventional mechanisms of cellular demise, copper-death exhibits a pronounced reliance on mitochondrial respiration, particularly the tricarboxylic acid (TCA) cycle. Tumor cells manifest distinctive metabolic profiles and elevated copper levels in comparison to their normal counterparts. The advent of copper-death presents alluring possibilities for targeted therapeutic interventions within the realm of cancer treatment. Hence, the primary objective of this review is to present an overview of the proteins and intricate mechanisms associated with copper-induced cell death, while providing a comprehensive summary of the knowledge acquired regarding potential therapeutic approaches for ovarian cancer. These findings will serve as valuable references to facilitate the advancement of customized therapeutic interventions for ovarian cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Jiaqi Liu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Guo J, Sun Y, Liu G. The mechanism of copper transporters in ovarian cancer cells and the prospect of cuproptosis. J Inorg Biochem 2023; 247:112324. [PMID: 37481825 DOI: 10.1016/j.jinorgbio.2023.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Copper transporters can not only carry copper (Cu) to maintain the homeostasis of Cu in cells but also transport platinum-based chemotherapy drugs. The effect of copper transporters on chemosensitivity has been demonstrated in a variety of malignancies. In addition, recent studies have reported that copper transporters can act as vectors to induce cuproptosis. Therefore, copper transporters can act on cells through different mechanisms to achieve different purposes. This review mainly describes the current research progress of the intracellular transport mechanism of copper transporters and cuproptosis, and prospects for the application of them in the treatment of ovarian cancer (OC).
Collapse
Affiliation(s)
- Jiahuan Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guoyan Liu
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
4
|
Masuri S, Moráň L, Vesselá T, Cadoni E, Cabiddu MG, Pečinka L, Gabrielová V, Meloni F, Havel J, Vaňhara P, Pivetta T. A novel heteroleptic Cu(II)-phenanthroline-UDCA complex as lipoxygenase inhibitor and ER-stress inducer in cancer cell lines. J Inorg Biochem 2023; 246:112301. [PMID: 37392615 DOI: 10.1016/j.jinorgbio.2023.112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
A new heteroleptic copper(II) compound named C0-UDCA was prepared by reaction of [Cu(phen)2(OH2)](ClO4)2 (C0) with the bile ursodeoxycholic acid (UDCA). The resulting compound is able to inhibit the lipoxygenase enzyme showing more efficacy than the precursors C0 and UDCA. Molecular docking simulations clarified the interactions with the enzyme as due to allosteric modulation. The new complex shows antitumoral effect on ovarian (SKOV-3) and pancreatic (PANC-1) cancer cells at the Endoplasmic Reticulum (ER) level by activating the Unfolded Protein Response. In particular, the chaperone BiP, the pro-apoptotic protein CHOP and the transcription factor ATF6 are upregulated in the presence of C0-UDCA. The combination of Intact Cell MALDI-MS and statistical analysis have allowed us to discriminate between untreated and treated cells based on their mass spectrometry fingerprints.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Tereza Vesselá
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Enzo Cadoni
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Lukáš Pečinka
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Viktorie Gabrielová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Francesca Meloni
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
5
|
Copper(II) complexes with 4-(diethylamino)salicylaldehyde and α-diimines: Anticancer, antioxidant, antigenotoxic effects and interaction with DNA and albumins. J Inorg Biochem 2022; 235:111942. [DOI: 10.1016/j.jinorgbio.2022.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
|
6
|
Synthesis, Characterization, and Photocatalytic Activity of Mixed-Ligand Cerium(III) and Bismuth(III) Complexes. J CHEM-NY 2022. [DOI: 10.1155/2022/6849793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two ternary complexes (Ce(sal)3(phen)2) (1) and (Bi(sal)3(phen)2) (2) with salicylic acid (sal) and 1,10-phenanthroline (phen) have been synthesized and characterized by analytical techniques such as UV-visible spectroscopy, FT-IR spectroscopy, PXRD, and SEM. The UV-visible study indicated the shifting of peak positions of metal complexes compared with the individual ligands whereas FT-IR analysis demonstrated that the metals were successfully coordinated with different functional groups of the ligands. The photocatalytic properties of prepared complexes were evaluated against Congo red dye as a model pollutant under ultraviolet and sunlight irradiation. The degradation efficiency of complex (2) was greater than that of complex (1). The results indicated that the investigated complexes can be employed as potential candidates for photocatalytic breakdown of synthetic dyes and can be safely recommended for environmental remediation.
Collapse
|
7
|
Sima M, Martinkova S, Kafkova A, Pala J, Trnka J. Cell-tak coating interferes with DNA-based normalization of metabolic flux data. Physiol Res 2022. [DOI: 10.33549/physiolres.934855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Metabolic flux investigations of cells and tissue samples are a rapidly advancing tool in diverse research areas. Reliable methods of data normalization are crucial for an adequate interpretation of results and to avoid a misinterpretation of experiments and incorrect conclusions. The most common methods for metabolic flux data normalization are to cell number, DNA and protein. Data normalization may be affected by a variety of factors, such as density, healthy state, adherence efficiency, or proportional seeding of cells. The mussel-derived adhesive Cell Tak is often used to immobilize poorly adherent cells. Here we demonstrate that this coating strongly affects the fluorescent detection of DNA leading to an incorrect and highly variable normalization of metabolic flux data. Protein assays are much less affected and cell counting can virtually completely remove the effect of the coating. Cell-Tak coating also affects cell shape in a cell line-specific manner and may change cellular metabolism. Based on these observations we recommend cell counting as a gold standard normalization method for Seahorse metabolic flux measurements with protein content as a reasonable alternative.
Collapse
Affiliation(s)
| | | | | | | | - J Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic. E-mail:
| |
Collapse
|
8
|
Structural elucidation and cytotoxicity profile of neocuproine-Cu(II) and Cu(I)-based chemotherapeutic agents: Effect of picric acid-derived cocrystals. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Kuznetcova I, Bacher F, Alfadul SM, Tham MJR, Ang WH, Babak MV, Rapta P, Arion VB. Elucidation of Structure-Activity Relationships in Indolobenzazepine-Derived Ligands and Their Copper(II) Complexes: the Role of Key Structural Components and Insight into the Mechanism of Action. Inorg Chem 2022; 61:10167-10181. [PMID: 35713376 PMCID: PMC9490829 DOI: 10.1021/acs.inorgchem.2c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indolo[3,2-d][1]benzazepines (paullones), indolo[3,2-d][2]benzazepines, and indolo[2,3-d][2]benzazepines (latonduines) are isomeric scaffolds of current medicinal interest. Herein, we prepared a small library of novel indolo[3,2-d][2]benzazepine-derived ligands HL1-HL4 and copper(II) complexes 1-4. All compounds were characterized by spectroscopic methods (1H and 13C NMR, UV-vis, IR) and electrospray ionization (ESI) mass spectrometry, while complexes 2 and 3, in addition, by X-ray crystallography. Their purity was confirmed by HPLC coupled with high-resolution ESI mass spectrometry and/or elemental analysis. The stability of compounds in aqueous solutions in the presence of DMSO was confirmed by 1H NMR and UV-vis spectroscopy measurements. The compounds revealed high antiproliferative activity in vitro in the breast cancer cell line MDA-MB-231 and hepatocellular carcinoma cell line LM3 in the low micromolar to nanomolar concentration range. Important structure-activity relationships were deduced from the comparison of anticancer activities of HL1-HL4 and 1-4 with those of structurally similar paullone-derived (HL5-HL7 and 5-7) and latonduine-derived scaffolds (HL8-HL11 and 8-11). The high anticancer activity of the lead drug candidate 4 was linked to reactive oxygen species and endoplasmic reticulum stress induction, which were confirmed by fluorescent microscopy and Western blot analysis.
Collapse
Affiliation(s)
- Irina Kuznetcova
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Felix Bacher
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Samah Mutasim Alfadul
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Max Jing Rui Tham
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
10
|
Chan CW, Yong CY, Chang HM, Ng PY, Davamani F, Chitra E, Lee VS, Tan KW, Maah MJ, Ng CH. Anticancer chiral and racemic ternary copper(II) complexes: Multiple mechanisms and epigenetic histone methyltransferase enzymes as novel targets. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Karpagam S, Mamindla A, Kumar Sali V, Niranjana RS, Periasamy VS, Alshatwi AA, Akbarsha MA, Rajendiran V. Folic acid-conjugated mixed-ligand copper(II) complexes as promising cytotoxic agents for triple-negative breast cancers: A case study using MDA-MB-231 cell. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Bildziukevich U, Özdemir Z, Šaman D, Vlk M, Šlouf M, Rárová L, Wimmer Z. Novel cytotoxic 1,10-phenanthroline–triterpenoid amphiphiles with supramolecular characteristics capable of coordinating 64Cu( ii) labels. Org Biomol Chem 2022; 20:8157-8163. [DOI: 10.1039/d2ob01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Novel 1,10-phenanthroline–triterpenoid amphiphiles formed nano-assemblies in water, coordinated Cu(ii) and 64Cu(ii) salts for potential cancer monitoring and therapy, and displayed cytotoxicity partly dependent on the formation of nano-assemblies.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Zulal Özdemir
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague 6, Czech Republic
| | - Martin Vlk
- Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, CZ-11519 Prague 1, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq. 2, CZ-16206 Prague 6, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
- University of Chemistry and Technology in Prague, Department of Chemistry of Natural Compounds, Technická 5, CZ-16628 Prague 6, Czech Republic
| |
Collapse
|
13
|
Masuri S, Vaňhara P, Cabiddu MG, Moráň L, Havel J, Cadoni E, Pivetta T. Copper(II) Phenanthroline-Based Complexes as Potential AntiCancer Drugs: A Walkthrough on the Mechanisms of Action. Molecules 2021; 27:49. [PMID: 35011273 PMCID: PMC8746828 DOI: 10.3390/molecules27010049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022] Open
Abstract
Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been found at high levels in serum and tissues of several types of human cancers. Under these circumstances, two strategies are commonly followed in the development of novel anticancer Copper-based drugs: the sequestration of free Copper ions and the synthesis of Copper complexes that trigger cell death. The latter strategy has been followed in the last 40 years and many reviews have covered the anticancer properties of a broad spectrum of Copper complexes, showing that the activity of these compounds is often multi factored. In this work, we would like to focus on the anticancer properties of mixed Cu(II) complexes bearing substituted or unsubstituted 1,10-phenanthroline based ligands and different classes of inorganic and organic auxiliary ligands. For each metal complex, information regarding the tested cell lines and the mechanistic studies will be reported and discussed. The exerted action mechanisms were presented according to the auxiliary ligand/s, the metallic centers, and the increasing complexity of the compound structures.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
| | - Maria Grazia Cabiddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic;
- Department of Chemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Enzo Cadoni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| | - Tiziana Pivetta
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Cagliari, Italy; (M.G.C.); (E.C.); (T.P.)
| |
Collapse
|
14
|
Masuri S, Cadoni E, Cabiddu MG, Isaia F, Demuru MG, Moráň L, Buček D, Vaňhara P, Havel J, Pivetta T. The first copper(ii) complex with 1,10-phenanthroline and salubrinal with interesting biochemical properties. Metallomics 2021; 12:891-901. [PMID: 32337526 DOI: 10.1039/d0mt00006j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The novel copper complex [Cu(phen)2(salubrinal)](ClO4)2 (C0SAL) has been synthesised and characterised. Copper(ii) is coordinated by salubrinal through the thionic group, as shown by the UV-Vis, IR, ESI-MS and tandem mass results, together with the theoretical calculations. The formed complex showed a DPPH radical scavenging ability higher than that of salubrinal alone. Studies on lipid oxidation inhibition showed that the C0SAL concentration, required to inhibit the enzyme, was lower than that of salubrinal. The inhibition of the enzyme could take place via allosteric modulation, as suggested by docking calculations. C0SAL showed a good cytotoxic activity on A2780 cells, 82 fold higher than that of the precursor salubrinal and 1.4 fold higher than that of [Cu(phen)2(H2O)](ClO4)2. Treatment with C0SAL in SKOV3 ovarian cancer cells induced expression of GRP-78 and DDIT3 regulators of ER-stress response. The cytotoxic effect of C0SAL was reverted in the presence of TUDCA, suggesting that C0SAL induces cell death through ER-stress. In A2780 cells treated with C0SAL γ-H2AX was accumulated, suggesting that DNA damage was also involved.
Collapse
Affiliation(s)
- Sebastiano Masuri
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| | - Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| | - Maria Grazia Cabiddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| | - Maria Giovanna Demuru
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| | - Lukáš Moráň
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic and International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - David Buček
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic and International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Josef Havel
- International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic and Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tiziana Pivetta
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy.
| |
Collapse
|
15
|
Sharma P, Nath H, Frontera A, Barcelo-Oliver M, Verma AK, Hussain S, Bhattacharyya MK. Biologically relevant unusual cooperative assemblies and fascinating infinite crown-like supramolecular nitrate–water hosts involving guest complex cations in bipyridine and phenanthroline-based Cu( ii) coordination compounds: antiproliferative evaluation and theoretical studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01004b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytotoxicity in cancer cells with structure activity relationship has been explored in Cu(ii) compounds involving biologically relevant cooperative assemblies and fascinating crown-like nitrate–water hosts with guest complex cations.
Collapse
Affiliation(s)
- Pranay Sharma
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Hiren Nath
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Miquel Barcelo-Oliver
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Akalesh K. Verma
- Department of Zoology
- Cell & Biochemical Technology Laboratory
- Cotton University
- Guwahati-781001
- India
| | - Sahid Hussain
- Department of Chemistry
- Indian Institute of Technology Patna, Bihta
- Patna-801103
- India
| | | |
Collapse
|
16
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
17
|
Karpagam S, Kartikeyan R, Paravai Nachiyar P, Velusamy M, Kannan M, Krishnan M, Chitgupi U, Lovell JF, Abdulkader Akbarsha M, Rajendiran V. ROS-mediated cell death induced by mixed ligand copper(II) complexes of l-proline and diimine: effect of co-ligand. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1680834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sambantham Karpagam
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Radhakrishnan Kartikeyan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Pappaiyan Paravai Nachiyar
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong, India
| | - Mani Kannan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Muthukalingan Krishnan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Center for Alternatives, Bharathidasan University, Tiruchirappalli, India
- Department of Life Sciences, National College (Autonomous), Tiruchirappalli, India
| | - Venugopal Rajendiran
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|