1
|
Amna T, Shamshi Hassan M, Algethami JS, Aljuaid A, Alfarsi A, Alnefaie R, Sheikh FA, Khil MS. Characterization of Gold-Enhanced Titania: Boosting Cell Proliferation and Combating Bacterial Infestation. Tissue Eng Regen Med 2024; 21:711-721. [PMID: 38520636 PMCID: PMC11187044 DOI: 10.1007/s13770-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND In this study an approach was made to efficaciously synthesize gold enhanced titania nanorods by electrospinning. This study aims to address effects of gold enhanced titania nanorods on muscle precursor cells. Additionally, implant related microbial infections are prime cause of various disastrous diseases. So, there is predictable demand for synthesis of novel materials with multifunctional adaptability. METHODS Herein, gold nanoparticles were attached on titania nanorods and described using many sophisticated procedures such as XRD, SEM, EDX and TEM. Antimicrobial studies were probed against Gram-negative Escherichia coli. C2C12 cell lines were exposed to various doses of as-prepared gold enhanced titania nanorods in order to test in vitro cytotoxicity and proliferation. Cell sustainability was assessed through Cell Counting Kit-8 assay at regular intervals. A phase-contrast microscope was used to examine morphology of exposed C2C12 cells and confocal laser scanning microscope was used to quantify cell viability. RESULTS The findings indicate that titania nanorods enhanced with gold exhibit superior antimicrobial efficacy compared to pure titania. Furthermore, newly synthesized gold-enhanced titania nanorods illustrate that cell viability follows a time and concentration dependent pattern. CONCLUSION Consequently, our study provides optimistic findings indicating that titania nanorods adorned with gold hold significant potential as foundational resource for developing forthcoming antimicrobial materials, suitable for applications both in medical and biomedical fields. This work also demonstrates that in addition to being extremely biocompatible, titania nanorods with gold embellishments may be used in a range of tissue engineering applications in very near future.
Collapse
Affiliation(s)
- Touseef Amna
- Department of Biology, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia.
| | - M Shamshi Hassan
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia.
| | - Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, 11001, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, 11001, Najran, Saudi Arabia
| | - Alya Aljuaid
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Anas Alfarsi
- Department of Chemistry, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia
| | - Rasha Alnefaie
- Department of Biology, Faculty of Science, Al-Baha University, P.O. Box 1988, 65799, Al-Baha, Saudi Arabia
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Myung-Seob Khil
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
2
|
Qadeer A, Khan A, Khan NM, Wajid A, Ullah K, Skalickova S, Chilala P, Slama P, Horky P, Alqahtani MS, Alreshidi MA. Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals. Heliyon 2024; 10:e31728. [PMID: 38845989 PMCID: PMC11153202 DOI: 10.1016/j.heliyon.2024.e31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Aamir Khan
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Noor Muhammad Khan
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University Dera Ismail Khan, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Kaleem Ullah
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 RH, UK
| | | |
Collapse
|
3
|
Ma J, Yang M, Zhang B, Niu M. The roles of templates consisting of amino acids in the synthesis and application of gold nanoclusters. NANOSCALE 2024; 16:7287-7306. [PMID: 38529817 DOI: 10.1039/d3nr06042j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Gold nanoclusters (AuNCs) with low toxicity, high photostability, and facile synthesis have attracted great attention. The ligand is of great significance in stabilizing AuNCs and regulating their properties. Ligands consisting of amino acids (proteins and peptides) are an ideal template for synthesizing applicative AuNCs due to their inherent bioactivity, biocompatibility, and accessibility. In this review, we summarize the correlation of the template consisting of amino acids with the properties of AuNCs by analyzing different peptide sequences. The selection of amino acids can regulate the fluorescence excitation/emission and intensity, size, cell uptake, and light absorption. By analyzing the role played by AuNCs stabilized by proteins and peptides in the application, universal rules and detailed performances of sensors, antibacterial agents, therapeutic reagents, and light absorbers are reviewed. This review can guide the template design and application of AuNCs when selecting proteins and peptides as ligands.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mengmeng Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Bin Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| |
Collapse
|
4
|
Okkeh M, De Vita L, Bruni G, Doveri L, Minzioni P, Restivo E, Patrini M, Pallavicini P, Visai L. Photodynamic toluidine blue-gold nanoconjugates as a novel therapeutic for Staphylococcal biofilms. RSC Adv 2023; 13:33887-33904. [PMID: 38019993 PMCID: PMC10658660 DOI: 10.1039/d3ra04398c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Staphylococci are among the most frequent bacteria known to cause biofilm-related infections. Pathogenic biofilms represent a global healthcare challenge due to their high tolerance to antimicrobials. In this study, water soluble polyethylene glycol (PEG)-coated gold nanospheres (28 ppm) and nanostars (15 ppm) with electrostatically adsorbed photosensitizer (PS) Toluidine Blue O (TBO) ∼4 μM were successfully synthesized and characterized as PEG-GNPs@TBO and PEG-GNSs@TBO. Both nanoconjugates and the TBO 4 μM solution showed remarkable, if similar, antimicrobial photodynamic inactivation (aPDI) effects at 638 nm, inhibiting the formation of biofilms by two Staphylococcal strains: a clinical methicillin-resistant Staphylococcus aureus (MRSA) isolate and Staphylococcus epidermidis (S. epidermidis) RP62A. Alternatively in biofilm eradication treatments, the aPDI effects of PEG-GNSs@TBO were more effective and yielded a 75% and 50% reduction in viable count of MRSA and S. epidermidis RP62A preformed biofilms, respectively and when compared with untreated samples. This reduction in viable count was even greater than that obtained through aPDI treatment using a 40 μM TBO solution. Confocal laser microscopy (CLSM) and scanning electron microscope (SEM) images of PEG-GNSs@TBO's aPDI treatments revealed significant changes in the integrity and morphology of biofilms, with fewer colony masses. The generation of reactive oxygen species (ROS) upon PEG-GNSs@TBO's aPDI treatment was detected by CLSM using a specific ROS fluorescent probe, demonstrating bright fluorescence red spots across the surfaces of the treated biofilms. Our findings shine a light on the potential synergism between gold nanoparticles (AuNPs) and photosensitizers in developing novel nanoplatforms to target Staphylococcal biofilm related infections.
Collapse
Affiliation(s)
- Mohammad Okkeh
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
| | - Lorenzo De Vita
- Department of Chemistry, University of Pavia 27100 Pavia Italy
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section, Center for Colloid and Surfaces Science, University of Pavia 27100 Pavia Italy
| | - Lavinia Doveri
- Department of Chemistry, University of Pavia 27100 Pavia Italy
| | - Paolo Minzioni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia 27100 Pavia Italy
| | - Elisa Restivo
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS 27100 Pavia Italy
| | | | | | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS 27100 Pavia Italy
| |
Collapse
|
5
|
Peilin W, Ying P, Renyuan W, Zhuoxuan L, Zhenwu Y, Mai Z, Jianguo S, Hao Z, Gang Y, Lin L, Haodong L. Size-dependent gold nanoparticles induce macrophage M2 polarization and promote intracellular clearance of Staphylococcus aureus to alleviate tissue infection. Mater Today Bio 2023; 21:100700. [PMID: 37455821 PMCID: PMC10338365 DOI: 10.1016/j.mtbio.2023.100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023] Open
Abstract
Tissue infection typically results from blood transmission or the direct inoculation of bacteria following trauma. The pathogen-induced destruction of tissue prevents antibiotics from penetrating the infected site, and severe inflammation further impairs the efficacy of conventional treatment. The current study describes the size-dependent induction of macrophage polarization using gold nanoparticles. Gold nanoparticles with a diameter of 50 nm (Au50) can induce M2 polarization in macrophages by inhibiting the NF-κB signaling pathway and stimulate an inflammatory response in the environment by inhibiting the MAPK signaling pathway LPS. Furthermore, the induced polarization and anti-inflammatory effects of the Au50 nanoparticles promoted the osteogenic differentiation of BMSCs in vitro. In addition, the overexpression of TREM2 in macrophage induced by Au50 nanoparticles was found to promote macrophage phagocytosis of Staphylococcus aureus, enhance the fusion of autophagosomes and lysosomes, accelerate the intracellular degradation of S. aureus, in addition to achieving an effective local treatment of osteomyelitis and infectious skin defects in conjunction with inflammatory regulation and accelerating bone regeneration. The findings, therefore, demonstrate that Au50 nanoparticles can be utilized as a promising nanomaterial for in vivo treatment of infections.
Collapse
Affiliation(s)
- Wang Peilin
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Peng Ying
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wang Renyuan
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Li Zhuoxuan
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yang Zhenwu
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhao Mai
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Song Jianguo
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhang Hao
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yin Gang
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Lin Lin
- School of Chemical and Environmental, Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lin Haodong
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
6
|
Kim D, Park KW, Park JT, Choi I. Photoactive MOF-Derived Bimetallic Silver and Cobalt Nanocomposite with Enhanced Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22903-22914. [PMID: 36996415 DOI: 10.1021/acsami.3c01529] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Conventional antibiotic-based treatment of bacterial infections remains one of the most difficult challenges in medicine because of the threat of multidrug resistance caused by indiscriminate abuse. To solve these problems, it is essential to develop an effective antibacterial agent that can be used at a small dose while minimizing the occurrence of multiple resistance. Metal-organic frameworks (MOFs), which are hyper-porous hybrid materials containing metal ions linked by organic ligands, have recently attracted attention because of their strong antibacterial activity through metal-ion release, unlike conventional antibiotics. In this study, we developed a photoactive MOF-derived cobalt-silver bimetallic nanocomposite (Ag@CoMOF) by simply depositing silver nanoparticles on a cobalt-based MOF through nanoscale galvanic replacement. The nanocomposite structure continuously releases antibacterial metal ions (i.e., Ag and Co ions) in the aqueous phase and exhibits a strong photothermal conversion effect of Ag nanoparticles, accompanied by a rapid temperature increase of 25-80 °C under near-infrared (NIR) irradiation. Using this MOF-based bimetallic nanocomposite, superior antibacterial activities were achieved by 22.1-fold for Escherichia coli and 18.3-fold for Bacillus subtilis enhanced inhibition of bacterial growth in a liquid culture environment compared with the generally used chemical antibiotics. In addition, we confirmed the synergistic enhancement of the antibacterial ability of the bimetallic nanocomposite induced by NIR-triggered photothermal heating and bacterial membrane disruption even when using a small amount of the nanocomposites. We envision that this novel antibacterial agent using MOF-based nanostructures will replace traditional antibiotics to circumvent multidrug resistance and present a new approach to antibiotic development.
Collapse
Affiliation(s)
- Doyun Kim
- Department of Life Science, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Kun Woo Park
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung Tae Park
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
- Department of Applied Chemistry, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
7
|
Liu T, Lu Y, Zhan R, Qian W, Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv Drug Deliv Rev 2023; 193:114670. [PMID: 36538990 DOI: 10.1016/j.addr.2022.114670] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Various factors could damage the structure and integrity of skin to cause wounds. Nonhealing or chronic wounds seriously affect the well-being of patients and bring heavy burdens to the society. The past few decades have witnessed application of numerous nanomaterials to promote wound healing. Owing to the unique physicochemical characteristics at nanoscale, nanomaterials-based therapy has been regarded as a potential approach to promote wound healing. In this review, we first overview the wound categories, wound healing process and critical influencing factors. Then applications of nanomaterials with intrinsic therapeutic effect and nanomaterials-based drug delivery systems to promote wound healing are addressed in detail. Finally, current limitations and future perspectives of nanomaterials in wound healing are discussed.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rixing Zhan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
8
|
Khan A, Jabeen H, Ahmad T, Rehman NU, Khan SS, Shareef H, Sarwar R, Yahya S, Hussain N, Uddin J, Hussain J, Al-Harrasi A. Comparative efficacy of cephradine-loaded silver and gold nanoparticles against resistant human pathogens. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:312-321. [DOI: 10.1080/21691401.2022.2144340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Humera Jabeen
- Department of Chemistry, Sardar Bahadur Khan Women’s University, Quetta, Pakistan
| | - Touqeer Ahmad
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Saleha Suleman Khan
- Department of Chemistry, Sardar Bahadur Khan Women’s University, Quetta, Pakistan
| | - Huma Shareef
- Department of Pharmacognosy, Faculty of Pharmacy, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Saira Yahya
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Nusrat Hussain
- Department of Chemistry, University of Baltistan Skardu, Skardu, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
9
|
Timoszyk A, Grochowalska R. Mechanism and Antibacterial Activity of Gold Nanoparticles (AuNPs) Functionalized with Natural Compounds from Plants. Pharmaceutics 2022; 14:pharmaceutics14122599. [PMID: 36559093 PMCID: PMC9784296 DOI: 10.3390/pharmaceutics14122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Recently, the biosynthesis of gold nanoparticles (AuNPs) has been widely studied and described. In the age of bacterial drug resistance, an intensive search for new agents with antibacterial properties or a new form of antibiotics with effective action is necessary. As a result, the antibacterial activity of AuNPs functionalized with natural compounds is being investigated more frequently. AuNPs biosynthesized with plant extract or functionalized with bioactive compounds isolated from plants could be particularly useful for pharmaceutical applications. The biosynthesized AuNPs are stabilized by an envelope, which may consist of flavonoids, phenolic acids, lipids and proteins as well as carbohydrates and vitamins. The composition of the natural coating affects the size, shape and stability of the AuNPs and is also responsible for interactions with the bacterial cell wall. Recently, several mechanisms of AuNP interactions with bacterial cells have been identified. Nevertheless, they are not yet well understood, due to the large diversity of plants and biosynthesized AuNPs. Understanding the antibacterial mechanisms allows for the creation of pharmaceutical formulations in the most useful form. Utilizing AuNPs functionalized with plant compounds as antibacterial agents is still a new concept. However, the unique physicochemical and biological properties of AuNPs emphasises their potential for a broad range of applications in the future.
Collapse
Affiliation(s)
- Anna Timoszyk
- Laboratory of Biophysics, Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
- Correspondence:
| | - Renata Grochowalska
- Laboratory of Biochemistry and Cell Biology, Department of Biotechnology, Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| |
Collapse
|
10
|
El-Gendy AO, Obaid Y, Ahmed E, Enwemeka CS, Hassan M, Mohamed T. The Antimicrobial Effect of Gold Quantum Dots and Femtosecond Laser Irradiation on the Growth Kinetics of Common Infectious Eye Pathogens: An In Vitro Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213757. [PMID: 36364531 PMCID: PMC9654226 DOI: 10.3390/nano12213757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 05/29/2023]
Abstract
We studied the antimicrobial effect of gold quantum dots (AuQDs), femtosecond laser irradiation, and the combined effect of laser irradiation and AuQD treatment against common infectious eye pathogens. The INSPIRE HF100 laser system (Spectra Physics) provided a femtosecond laser, which was pumped by a mode-locked femtosecond Ti: sapphire laser MAI TAI HP (Spectra Physics), while a Quanta-Ray nanosecond Nd: YAG laser (Spectra-Physics) was used to precisely synthesize 7.8, 8.7, and 11.6 nm spherical AuQDs. Then, the in vitro growth kinetics and growth rate analysis of E. coli, methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, and Candida albicans (treated with the AuQDs, femtosecond laser irradiation, or combined laser and AuQDs treatment) was measured. The biocompatibility of the AuQDs with the retinal epithelial cell lines (ARPE-19) and their toxicity to the cells was assayed. The results showed that (1) in vitro irradiation using a 159 J/cm2 energy density obtained from the 400 nm femtosecond laser suppressed the growth of each of the five pathogens. (2) Similarly, treatment with the AuQDs was antimicrobial against the four bacteria. The AuQDs with an average size of 7.8 nm were more highly antimicrobial and biocompatible and were less cytotoxic than the larger AuQD sizes. (3) The combined femtosecond laser irradiation and AuQD treatment was more highly antimicrobial than each treatment alone. (4) The AuQD treatment did not impair the rate of wound closure in vitro. These findings suggest that combined femtosecond laser irradiation and AuQD treatment is significantly antimicrobial against Candida albicans, Gram-positive L. monocytogenes, S. aureus, and E. faecalis, as well as Gram-negative E. coli. The nontoxicity and biocompatibility of the AuQD particles tested suggest that this form of treatment may be clinically viable.
Collapse
Affiliation(s)
- Ahmed O. El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Yousif Obaid
- Anbar Health Department, Ministry of Health, Ramadi 31001, Iraq
| | - Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Chukuka S. Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA 92182, USA
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mansour Hassan
- Department of Ophthalmology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
11
|
He J, Hong M, Xie W, Chen Z, Chen D, Xie S. Progress and prospects of nanomaterials against resistant bacteria. J Control Release 2022; 351:301-323. [PMID: 36165865 DOI: 10.1016/j.jconrel.2022.09.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/18/2022]
Abstract
Drug-resistant bacterial infections are increasingly heightening, which lead to more severe illness, higher cost of treatment and increased risk of death. Nanomaterials-based therapy, an "outrider", serving as a kind of innovative antimicrobial therapeutics, showing promise in replacing antimicrobial agents and enhancing the activity of antibiotics, generally bases on the various inorganic and/or organic materials. When the size of those materials is below to a certain nano-level and the content of nanomaterials is above a certain amount, they are lethal to the resistant bacteria, which bypass the traditional bacterial resistance mechanisms. This review highlights the effect of nanomaterials in combating extracellular/intracellular bacteria and eradicating biofilms. Based on the studies searched on the Web of Science through relevant keywords, this review article starts with analyzing the current situation, resistance mechanisms, and treatment difficulties of bacteria resistance. Then, the efficacy of nanomaterials against resistant bacteria and their mechanisms (e.g., physical impairment, biofilm lysis, regulating bacterial metabolism, protein and DNA replication as well as enhancing the antibiotics concentration in infected cells) are collected. Lastly, the factors affecting the antibacterial efficacy are argued from the side of nanomatrials and bacterium, which followed by the emerging challenges and recent perspectives of achieving higher targeting released nanomaterials as antibacterial therapeutics.
Collapse
Affiliation(s)
- Jian He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mian Hong
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Wenqing Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China.
| |
Collapse
|
12
|
Basavegowda N, Baek KH. Combination Strategies of Different Antimicrobials: An Efficient and Alternative Tool for Pathogen Inactivation. Biomedicines 2022; 10:2219. [PMID: 36140320 PMCID: PMC9496525 DOI: 10.3390/biomedicines10092219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the discovery and development of an array of antimicrobial agents, multidrug resistance poses a major threat to public health and progressively increases mortality. Recently, several studies have focused on developing promising solutions to overcome these problems. This has led to the development of effective alternative methods of controlling antibiotic-resistant pathogens. The use of antimicrobial agents in combination can produce synergistic effects if each drug invades a different target or signaling pathway with a different mechanism of action. Therefore, drug combinations can achieve a higher probability and selectivity of therapeutic responses than single drugs. In this systematic review, we discuss the combined effects of different antimicrobial agents, such as plant extracts, essential oils, and nanomaterials. Furthermore, we review their synergistic interactions and antimicrobial activities with the mechanism of action, toxicity, and future directions of different antimicrobial agents in combination. Upon combination at an optimum synergistic ratio, two or more drugs can have a significantly enhanced therapeutic effect at lower concentrations. Hence, using drug combinations could be a new, simple, and effective alternative to solve the problem of antibiotic resistance and reduce susceptibility.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Korea
| |
Collapse
|
13
|
Abu Lila AS, Huwaimel B, Alobaida A, Hussain T, Rafi Z, Mehmood K, Abdallah MH, Hagbani TA, Rizvi SMD, Moin A, Ahmed AF. Delafloxacin-Capped Gold Nanoparticles (DFX-AuNPs): An Effective Antibacterial Nano-Formulation of Fluoroquinolone Antibiotic. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165709. [PMID: 36013845 PMCID: PMC9415438 DOI: 10.3390/ma15165709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/03/2023]
Abstract
New antibiotics are seen as 'drugs of last resort' against virulent bacteria. However, development of resistance towards new antibiotics with time is a universal fact. Delafloxacin (DFX) is a new fluoroquinolone antibiotic that differs from existing fluoroquinolones by the lack of a protonatable substituent, which gives the molecule a weakly acidic nature, affording it higher antibacterial activity under an acidic environment. Furthermore, antibiotic-functionalized metallic nanoparticles have been recently emerged as a feasible platform for conquering bacterial resistance. In the present study, therefore, we aimed at preparing DFX-gold nano-formulations to increase the antibacterial potential of DFX. To synthesize DFX-capped gold nanoparticles (DFX-AuNPs), DFX was used as a reducing and stabilizing/encapsulating agent. Various analytical techniques such as UV-visible spectroscopy, TEM, DLS, FTIR and zeta potential analysis were applied to determine the properties of the synthesized DFX-AuNPs. The synthesized DFX-AuNPs revealed a distinct surface plasmon resonance (SPR) band at 530 nm and an average size of 16 nm as manifested by TEM analysis. In addition, Zeta potential results (-19 mV) confirmed the stability of the synthesized DFX-AuNPs. Furthermore, FTIR analysis demonstrated that DFX was adsorbed onto the surface of AuNPs via strong interaction between AuNPs and DFX. Most importantly, comparative antibacterial analysis of DFX alone and DFX-AuNPs against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) verified the superior antibacterial activity of DFX-AuNPs against the tested microorganisms. To sum up, DFX gold nano-formulations can offer a promising possible solution, even at a lower antibiotic dose, to combat pathogenic bacteria.
Collapse
Affiliation(s)
- Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Zeeshan Rafi
- Nanomedicine and Nanotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India
| | - Khalid Mehmood
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian 22500, Pakistan
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Correspondence: (S.M.D.R.); (A.M.)
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Correspondence: (S.M.D.R.); (A.M.)
| | - Abobakr F. Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
14
|
Perli G, Bertuzzi DL, Souto DEP, Ramos MD, Braga CB, Aguiar SB, Ornelas C. Synthesis and Characterization of Dendronized Gold Nanoparticles Bearing Charged Peripheral Groups with Antimicrobial Potential. NANOMATERIALS 2022; 12:nano12152610. [PMID: 35957042 PMCID: PMC9370457 DOI: 10.3390/nano12152610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Dendronized gold nanoparticles (AuNPs) were synthesized bearing charged peripheral groups. Two novel AB3-type dendrons were synthesized with a thiol group at the focal point followed by their attachment to AuNPs. Dendrons were designed to have nine charged peripheral groups (carboxyl or amine), glycol solubilizing, units and one thiol moiety at the focal point. Both dendrons and all intermediates were synthesized in high yields and characterized by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). The amine- and carboxyl-terminated dendrons were used to functionalize gold nanoparticles (AuNPs) previously stabilized with citrate. The nanoparticles’ diameters and their colloidal stability were investigated using dynamic light scattering (DLS). The size and morphology of the dendronized AuNPs were evaluated by scanning electron microscopy (SEM), which revealed individual particles with no aggregation after replacement of citrate by the dendrons, in agreement with the DLS data. The absorption spectroscopy reveals a prominent plasmonic band at 560 nm for all AuNPs. The zeta potential further confirmed the expected charged structures of the dendronized AuNPs. Considering all the physical–chemical properties of the charged dendronized AuNPs developed in this work, these AuNPs might be used as a weapon against multi-drug resistant bacterial infections.
Collapse
Affiliation(s)
- Gabriel Perli
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
| | - Diego L. Bertuzzi
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
| | - Dênio E. P. Souto
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
- Laboratorio de Espectrometria, Sensores e Biossensores, Departamento de Quimica, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Miguel D. Ramos
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
| | - Carolyne B. Braga
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
| | - Samile B. Aguiar
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
| | - Catia Ornelas
- Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil; (G.P.); (D.L.B.); (D.E.P.S.); (M.D.R.); (C.B.B.); (S.B.A.)
- Correspondence:
| |
Collapse
|
15
|
Unraveling the Antibiofilm Activity of a New Nanogold Resin for Dentures and Epithesis. Pharmaceutics 2022; 14:pharmaceutics14071513. [PMID: 35890413 PMCID: PMC9322197 DOI: 10.3390/pharmaceutics14071513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Dentures and epitheses are mostly made from poly(methyl methacrylate) (PMMA), which does not show antimicrobial properties. They present reservoirs of microorganisms grown in biofilms. The aim of this study is to prepare a PMMA enriched with gold nanoparticles (AuNPs)-PMMA/AuNPs and the examination of its physical, mechanical and antimicrobial properties. The AuNPS were synthetized from HAuCl4 using the ultrasonic spray pyrolysis method with lyophilization. The PMMA/AuNP samples were compared to PMMA samples. Density was measured by pycnometer. Microhardness was evaluated using the Vickers hardness test. Monomicrobial biofilm formation (Streptococcus mitis, Candida albicans, Staphylococcus aureus and Escherichia coli) was measured by colony-forming units (CFUs) and MTT test and visualized by SEM. AuNP release was measured indirectly (the CFUs of the medium around the sample). The density and microhardness of the PMMA/AuNPs were similar to those of the PMMA. CFU and MTT values for the biofilms formed on the PMMA for each of the tested species were higher than those of the biofilms formed on the PMMA/AuNPs. The CFUs of the medium around the sample were similar for both materials. PMMA/AuNPs showed a significant reduction in the monomicrobial biofilms of all tested species. AuNPs are not released from PMMA/AuNPs. Density, indirect measurement of residual monomer and dentures weight were similar between PMMA and PMMA/AuNPs. Microhardness, as a measure of the wear resistance, was also similar between tested discs.
Collapse
|
16
|
Linklater DP, Le Guével X, Bryant G, Baulin VA, Pereiro E, Perera PGT, Wandiyanto JV, Juodkazis S, Ivanova EP. Lethal Interactions of Atomically Precise Gold Nanoclusters and Pseudomonas aeruginosa and Staphylococcus aureus Bacterial Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32634-32645. [PMID: 35758190 DOI: 10.1021/acsami.2c04410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasmall metal nanoclusters (NCs) are employed in an array of diagnostic and therapeutic applications due to their tunable photoluminescence, high biocompatibility, polyvalent effect, ease of modification, and photothermal stability. However, gold nanoclusters' (AuNCs') intrinsically antimicrobial properties remain poorly explored and are not well understood. Here, we share an insight into the antimicrobial action of atomically precise AuNCs based on their ability to passively translocate across the bacterial membrane. Functionalized by a hydrophilic modified-bidentate sulfobetaine zwitterionic molecule (AuNC-ZwBuEt) or a more hydrophobic monodentate-thiolate, mercaptohexanoic acid (AuNC-MHA) molecule, 2 nm AuNCs were lethal to both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. The bactericidal efficiency was found to be bacterial strain-, time-, and concentration-dependent. The direct visualizations of the translocation of AuNCs and AuNC-cell and subcellular interactions were investigated using cryo-soft X-ray nano-tomography, transmission electron microscopy (TEM), and scanning TEM energy-dispersive spectroscopy analyses. AuNC-MHA were identified in the bacterial cytoplasm within 30 min, without evidence of the loss of membrane integrity. It is proposed that the bactericidal effect of AuNCs is attributed to their size, which allows for efficient energy-independent translocation across the cell membrane. The internalization of both AuNCs caused massive internal damage to the cells, including collapsed subcellular structures and altered cell morphology, leading to the eventual loss of cellular integrity.
Collapse
Affiliation(s)
- Denver P Linklater
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Xavier Le Guével
- Cancer Targets and Experimental Therapeutics, Institute for Advanced Biosciences, University of Grenoble Alpes, Site Santé─Allée des Alpes, La Tronche 38700, France
| | - Gary Bryant
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Vladimir A Baulin
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/ Marcel.lí Domingo s/n, Tarragona 43007, Spain
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès 08290, Barcelona, Spain
| | | | - Jason V Wandiyanto
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Elena P Ivanova
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
17
|
Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells. NANOMATERIALS 2022; 12:nano12142402. [PMID: 35889626 PMCID: PMC9319685 DOI: 10.3390/nano12142402] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
Silver and copper nanoparticles (AgNPs and CuNPs) coated with stabilizing moieties induce oxidative stress in both bacteria and mammalian cells. Effective antibacterial agents that can overcome existing mechanisms of antibacterial resistance will greatly improve biomedical interventions. In this study, we analyzed the effect of nanoparticle-induced stress. Escherichia coli and normal human bronchial epithelial (BEAS-2B) cells were selected for this study. The nanoparticle constructs tested showed low toxicity to mammalian cells except for the polyvinylpyrrolidone-surface-stabilized copper nanoparticles. In fact, both types of copper nanoparticles used in this study induced higher levels of reactive oxygen species than the surface-stabilized silver nanoparticles. In contrast to mammalian cells, the surface-stabilized silver and copper nanoparticles showed varying levels of toxicity to bacteria cells. These data are expected to aid in bridging the knowledge gap in differential toxicities of silver and copper nanoparticles against bacteria and mammalian cells and will also improve infection interventions.
Collapse
|
18
|
A Review on Antibacterial Biomaterials in Biomedical Applications: From Materials Perspective to Bioinks Design. Polymers (Basel) 2022; 14:polym14112238. [PMID: 35683916 PMCID: PMC9182805 DOI: 10.3390/polym14112238] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
In tissue engineering, three-dimensional (3D) printing is an emerging approach to producing functioning tissue constructs to repair wounds and repair or replace sick tissue/organs. It allows for precise control of materials and other components in the tissue constructs in an automated way, potentially permitting great throughput production. An ink made using one or multiple biomaterials can be 3D printed into tissue constructs by the printing process; though promising in tissue engineering, the printed constructs have also been reported to have the ability to lead to the emergence of unforeseen illnesses and failure due to biomaterial-related infections. Numerous approaches and/or strategies have been developed to combat biomaterial-related infections, and among them, natural biomaterials, surface treatment of biomaterials, and incorporating inorganic agents have been widely employed for the construct fabrication by 3D printing. Despite various attempts to synthesize and/or optimize the inks for 3D printing, the incidence of infection in the implanted tissue constructs remains one of the most significant issues. For the first time, here we present an overview of inks with antibacterial properties for 3D printing, focusing on the principles and strategies to accomplish biomaterials with anti-infective properties, and the synthesis of metallic ion-containing ink, chitosan-containing inks, and other antibacterial inks. Related discussions regarding the mechanics of biofilm formation and antibacterial performance are also presented, along with future perspectives of the importance of developing printable inks.
Collapse
|
19
|
McFarland AW, Elumalai A, Miller CC, Humayun A, Mills DK. Effectiveness and Applications of a Metal-Coated HNT/Polylactic Acid Antimicrobial Filtration System. Polymers (Basel) 2022; 14:1603. [PMID: 35458351 PMCID: PMC9030812 DOI: 10.3390/polym14081603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022] Open
Abstract
A broad-spectrum antimicrobial respiration apparatus designed to fight bacteria, viruses, fungi, and other biological agents is critical in halting the current pandemic's trajectory and containing future outbreaks. We applied a simple and effective electrodeposition method for metal (copper, silver, and zinc) coating the surface of halloysite nanotubes (HNTs). These nanoparticles are known to possess potent antiviral and antimicrobial properties. Metal-coated HNTs (mHNTs) were then added to polylactic acid (PLA) and extruded to form an mHNT/PLA 3D composite printer filament. Our composite 3D printer filament was then used to fabricate an N95-style mask with an interchangeable/replaceable filter with surfaces designed to inactivate a virus and kill bacteria on contact, thus reducing deadly infections. The filter, made of a multilayered antimicrobial/mHNT blow spun polymer and fabric, is disposable, while the mask can be sanitized and reused. We used several in vitro means of assessing critical clinical features and assessed the bacterial growth inhibition against commonly encountered bacterial strains. These tests demonstrated the capability of our antimicrobial filament to fabricate N95 masks and filters that possessed antibacterial capabilities against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Antwine W. McFarland
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - Anusha Elumalai
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - Christopher C. Miller
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - Ahmed Humayun
- Molecular Science and Nanotechnology, Louisiana Tech University, Ruston, LA 71270, USA; (A.W.M.J.); (A.E.); (C.C.M.); (A.H.)
| | - David K. Mills
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA 71270, USA
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA
| |
Collapse
|
20
|
Antibacterial and Antibiofilm Activity of Mercaptophenol Functionalized-Gold Nanorods Against a Clinical Isolate of Methicillin-Resistant Staphylococcus aureus. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractGold nanorods (AuNRs) were synthesized by the seed-mediated wet chemical method using a binary surfactant system. AuNRs were stabilized with polyethylene glycol, then functionalized with 4-mercaptophenol (4-MPH) ligand by surface ligand exchange. The surface-functionalized AuNRs (4-MPH-AuNRs) exhibited a typical UV–vis spectrum of AuNRs with a slightly shifted longitudinal peak. Furthermore, 4-MPH-AuNRs demonstrated a similar Fourier-Transformed Infrared spectrum to 4-MPH and a fading of the thiol band, which suggests a successful functionalization through thiol-gold binding. The antibacterial and antibiofilm activities of 4-MPH-AuNRs were evaluated against a clinical isolate of Methicillin-Resistant Staphylococcus aureus (MRSA). The results indicate that 4-MPH-AuNRs exhibit a bactericidal activity with a minimum inhibitory concentration (MIC) of ~ 6.25 $$\upmu$$
μ
g/mL against a planktonic suspension of MRSA. Furthermore, 4-MPH-AuNRs resulted in a 1.8–2.9 log-cycle reduction of MRSA biofilm viable count over a concentration range of 100–6.0 $$\upmu$$
μ
g/mL. The bacterial uptake of the surface-modified nanorods was investigated by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) imaging; the results reveal that the nanorods were internalized into the bacterial cells after 6 h (h) of exposure. SEM imaging revealed a significant accumulation of the nanorods at the bacterial cell wall and a possible cellular internalization. Thus, 4-MPH-AuNRs can be considered a potential antibacterial agent, particularly against MRSA strain biofilms.
Collapse
|
21
|
Sriubas M, Bockute K, Palevicius P, Kaminskas M, Rinkevicius Z, Ragulskis M, Simonyte S, Ruzauskas M, Laukaitis G. Antibacterial Activity of Silver and Gold Particles Formed on Titania Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1190. [PMID: 35407308 PMCID: PMC9000426 DOI: 10.3390/nano12071190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Metal-based nanoparticles with antimicrobial activity are gaining a lot of attention in recent years due to the increased antibiotics resistance. The development and the pathogenesis of oral diseases are usually associated with the formation of bacteria biofilms on the surfaces; therefore, it is crucial to investigate the materials and their properties that would reduce bacterial attachment and biofilm formation. This work provides a systematic investigation of the physical-chemical properties and the antibacterial activity of TiO2 thin films decorated by Ag and Au nanoparticles (NP) against Veillonella parvula and Neisseria sicca species associated with oral diseases. TiO2 thin films were formed using reactive magnetron sputtering by obtaining as-deposited amorphous and crystalline TiO2 thin films after annealing. Au and Ag NP were formed using a two-step process: magnetron sputtering of thin metal films and solid-state dewetting. The surface properties and crystallographic nature of TiO2/NP structures were investigated by SEM, XPS, XRD, and optical microscopy. It was found that the higher thickness of Au and Ag thin films results in the formation of the enlarged NPs and increased distance between them, influencing the antibacterial activity of the formed structures. TiO2 surface with AgNP exhibited higher antibacterial efficiency than Au nanostructured titania surfaces and effectively reduced the concentration of the bacteria. The process of the observation and identification of the presence of bacteria using the deep learning technique was realized.
Collapse
Affiliation(s)
- Mantas Sriubas
- Physics Department, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (M.S.); (M.K.); (G.L.)
| | - Kristina Bockute
- Physics Department, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (M.S.); (M.K.); (G.L.)
| | - Paulius Palevicius
- Department of Mathematical Modeling, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (P.P.); (M.R.)
| | - Marius Kaminskas
- Physics Department, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (M.S.); (M.K.); (G.L.)
| | - Zilvinas Rinkevicius
- Division of Theoretical Chemistry & Biology, KTH Royal Institute of Technology, School of Biotechnology, 109 61 Stockholm, Sweden;
| | - Minvydas Ragulskis
- Department of Mathematical Modeling, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (P.P.); (M.R.)
| | - Sandrita Simonyte
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (S.S.); (M.R.)
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Ave. 15, LT-50162 Kaunas, Lithuania
| | - Modestas Ruzauskas
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (S.S.); (M.R.)
- Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Giedrius Laukaitis
- Physics Department, Kaunas University of Technology, Studentu Str. 50, LT-51368 Kaunas, Lithuania; (M.S.); (M.K.); (G.L.)
| |
Collapse
|
22
|
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof.
Collapse
|
23
|
Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022; 57:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
24
|
Toczek J, Sadłocha M, Major K, Stojko R. Benefit of Silver and Gold Nanoparticles in Wound Healing Process after Endometrial Cancer Protocol. Biomedicines 2022; 10:679. [PMID: 35327481 PMCID: PMC8945154 DOI: 10.3390/biomedicines10030679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
It is intractable to manage the vast majority of wounds in a classical surgical manner, however if silver, likewise gold and its representative nanoparticles, can lead to the amelioration of the wound healing process after extensive procedures, they should be employed in the current gynecological practice as promptly as possible. Most likely due to its antimicrobial properties, silver is usually applied as an additional component in the wound healing process. In wound management, we obtained various aspects that can lead to impaired wound healing; the crucial aspect for the wound milieu is to prevent the offending agents from occurring. The greatest barrier to healing is represented by the bacterial biofilm, which can occur naturally or in other ways. Biofilm bacteria can produce extracellular polymers, which can then resist concentrated anti-bacterial treatment. The published literature on the use of silver nanoparticles' utilization in wound healing becomes slightly heterogenous and requires us in difficult moments to set up proper treatment guidelines.
Collapse
Affiliation(s)
- Jakub Toczek
- Department of Gynecology, Obstetrics and Oncological Gynecology, Medical University of Silesia in Katowice, Markiefki 87, 40-211 Katowice, Poland; (M.S.); (K.M.); (R.S.)
| | | | | | | |
Collapse
|
25
|
Magdy M, Elmowafy E, Elassal M, Ishak RA. Localized drug delivery to the middle ear: Recent advances and perspectives for the treatment of middle and inner ear diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Light Triggered Enhancement of Antibiotic Efficacy in Biofilm Elimination Mediated by Gold-Silver Alloy Nanoparticles. Front Microbiol 2022; 13:841124. [PMID: 35295305 PMCID: PMC8919054 DOI: 10.3389/fmicb.2022.841124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial biofilm is a tri-dimensional complex community of cells at different metabolic stages involved in a matrix of self-produced extracellular polymeric substances. Biofilm formation is part of a defense mechanism that allows the bacteria to survive in hostile environments, such as increasing resistance or tolerance to antimicrobial agents, causing persistent infections hard to treat and impair disease eradication. One such example is bovine mastitis associated with Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), whose worldwide health and economic impact is on the surge. As such, non-conventional nanobased approaches have been proposed as an alternative to tackle biofilm formation and to which pathogenic bacteria fail to adapt. Among these, metallic nanoparticles have gained significant attention, particularly gold and silver nanoparticles, due to their ease of synthesis and impact against microorganism growth. This study provides a proof-of-concept investigation into the use of gold-silver alloy nanoparticles (AuAgNPs) toward eradication of bacterial biofilms. Upon visible light irradiation of AuAgNPs there was considerable disturbance of the biofilms' matrix. The hindering of structural integrity of the biofilm matrix resulted in an increased permeability for entry of antibiotics, which then cause the eradication of biofilm and inhibit subsequent biofilm formation. Additionally, our results that AuAgNPs inhibited the formation of SDSD biofilms via distinct stress pathways that lead to the downregulation of two genes critical for biofilm production, namely, brpA-like encoding biofilm regulatory protein and fbpA fibronectin-binding protein A. This study provides useful information to assist the development of nanoparticle-based strategies for the active treatment of biofilm-related infections triggered by photoirradiation in the visible.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- Biomedical Research Centre, Institute of Nutrition and Food Technology, Department of Physiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alexandra R. Fernandes
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- Applied Molecular Biosciences Unit, Dept. Ciências da Vida, NOVA School of Science and Technology, Costa da Caparica, Portugal
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
27
|
Composite Membrane Dressings System with Metallic Nanoparticles as an Antibacterial Factor in Wound Healing. MEMBRANES 2022; 12:membranes12020215. [PMID: 35207136 PMCID: PMC8876280 DOI: 10.3390/membranes12020215] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023]
Abstract
Wound management is the burning problem of modern medicine, significantly burdening developed countries’ healthcare systems. In recent years, it has become clear that the achievements of nanotechnology have introduced a new quality in wound healing. The application of nanomaterials in wound dressing significantly improves their properties and promotes the healing of injuries. Therefore, this review paper presents the subjectively selected nanomaterials used in wound dressings, including the metallic nanoparticles (NPs), and refers to the aspects of their application as antimicrobial factors. The literature review was supplemented with the results of our team’s research on the elements of multifunctional new-generation dressings containing nanoparticles. The wound healing multiple molecular pathways, mediating cell types, and affecting agents are discussed herein. Moreover, the categorization of wound dressings is presented. Additionally, some materials and membrane constructs applied in wound dressings are described. Finally, bacterial participation in wound healing and the mechanism of the antibacterial function of nanoparticles are considered. Membranes involving NPs as the bacteriostatic factors for improving wound healing of skin and bones, including our experimental findings, are discussed in the paper. In addition, some studies of our team concerning the selected bacterial strains’ interaction with material involving different metallic NPs, such as AuNPs, AgNPs, Fe3O4NPs, and CuNPs, are presented. Furthermore, nanoparticles’ influence on selected eukaryotic cells is mentioned. The ideal, universal wound dressing still has not been obtained; thus, a new generation of products have been developed, represented by the nanocomposite materials with antibacterial, anti-inflammatory properties that can influence the wound-healing process.
Collapse
|
28
|
Ray P, Lodha T, Biswas A, Sau TK, Ramana CV. Particle specific physical and chemical effects on antibacterial activities: A comparative study involving gold nanostars, nanorods and nanospheres. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Effect of Gold Nanostars Plus Amikacin against Carbapenem-Resistant Klebsiella pneumoniae Biofilms. BIOLOGY 2022; 11:biology11020162. [PMID: 35205029 PMCID: PMC8869706 DOI: 10.3390/biology11020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 01/16/2023]
Abstract
Simple Summary Carbapenem-resistant Klebsiella pneumoniae (CR-KP) infection rates represent a challenging treatment since the pipeline for effective antibiotics against this pathogen, such as beta-lactams among others, is practically nil. This study aims to evaluate the antibacterial effect of gold nanostars (GNS) alone or associated with some of the most widely used antibiotics for the treatment of CR-KP strains, i.e., meropenem or amikacin, on both planktonic or free-living and sessile forms. GNS were able to inhibit the planktonic growth of CR-KP at 80 µM, to eradicate the bacterial viability at 160 µM, and were unable to inhibit or eradicate the biofilm growth of this bacterium. GNS gave rise to filamentous bacteria through mechanisms mediated by the inhibition of energy-dependent cytoplasmic proteases. The combination of GNS and amikacin was able to inhibit or even eradicate the CR-KP biofilm. This combination was administered to greater wax moth larvae (Galleria mellonella), and this treatment was found to be tolerated well and to prevent the CR-KP infection. Thus, GNS in combination with amikacin represent a promising anti-CR-KP nanomaterial. Abstract (1) Background: Carbapenem-resistant Klesiella pneumoniae (CR-KP) infection rates depict an almost pre-antibiotic scenario since the pipeline for effective antibiotics against this pathogen has been almost entirely depleted. This study aims to evaluate the antibacterial effect of gold nanostars (GNS) alone or associated with some of the most widely used antibiotics for the treatment of CR-KP strains, i.e., meropenem or amikacin, on both planktonic and sessile forms. Additionally, we measured the effect of GNS on cell proliferation and biocompatibility in invertebrate in vivo models. (2) Materials and methods: GNS were made from gold seeds grown using a seeded-growth surfactant-free method assisted by silver ions and functionalized with mercapto-poly(ethylene glycol)amino by ligand exchange. The antimicrobial capacity, effect on cell proliferation, and biocompatibility of the most effective combination was evaluated in a Galleria mellonella model. (3) Results: The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were 80 and 160 µM of GNS for all strains, respectively. The minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) were >320 µM of GNS for both. A synergy was found between GNS and amikacin. Larvae administered GNS plus amikacin were found to tolerate the treatment well, which prevented infection. (4) Conclusions: GNS are a promising anti-CR-KP nanomaterial.
Collapse
|
30
|
Joseph SK, M A A, Thomas S, Nair SC. Nanomedicine as a future therapeutic approach for treating meningitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021; 12:70. [PMID: 34940549 PMCID: PMC8708476 DOI: 10.3390/jfb12040070] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of biomedical problems. The gold nanoparticles production by biological method ("green synthesis") is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts. This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms (bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis and the influence of size, shapes, and capping agents on the functionalities are described. The proposed action mechanisms on target cells are highlighted. The biological activities of "green" AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical application are also discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
32
|
Godoy-Gallardo M, Eckhard U, Delgado LM, de Roo Puente YJ, Hoyos-Nogués M, Gil FJ, Perez RA. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact Mater 2021; 6:4470-4490. [PMID: 34027235 PMCID: PMC8131399 DOI: 10.1016/j.bioactmat.2021.04.033] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection of implanted scaffolds may have fatal consequences and, in combination with the emergence of multidrug bacterial resistance, the development of advanced antibacterial biomaterials and constructs is of great interest. Since decades ago, metals and their ions had been used to minimize bacterial infection risk and, more recently, metal-based nanomaterials, with improved antimicrobial properties, have been advocated as a novel and tunable alternative. A comprehensive review is provided on how metal ions and ion nanoparticles have the potential to decrease or eliminate unwanted bacteria. Antibacterial mechanisms such as oxidative stress induction, ion release and disruption of biomolecules are currently well accepted. However, the exact antimicrobial mechanisms of the discussed metal compounds remain poorly understood. The combination of different metal ions and surface decorations of nanoparticles will lead to synergistic effects and improved microbial killing, and allow to mitigate potential side effects to the host. Starting with a general overview of antibacterial mechanisms, we subsequently focus on specific metal ions such as silver, zinc, copper, iron and gold, and outline their distinct modes of action. Finally, we discuss the use of these metal ions and nanoparticles in tissue engineering to prevent implant failure.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Ulrich Eckhard
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Yolanda J.D. de Roo Puente
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Mireia Hoyos-Nogués
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - F. Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Carrer de Josep Trueta, 08195, del Vallès, Sant Cugat, Barcelona, Spain
| |
Collapse
|
33
|
Prasad SV, Piktel E, Depciuch J, Maximenko A, Suprewicz Ł, Daniluk T, Spałek J, Wnorowska U, M Zielinski P, Parlinska-Wojtan M, B Savage P, Okła S, Fiedoruk K, Bucki R. Targeting bacteria causing otitis media using nanosystems containing nonspherical gold nanoparticles and ceragenins. Nanomedicine (Lond) 2021; 16:2657-2678. [PMID: 34823374 DOI: 10.2217/nnm-2021-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: To evaluate the antibacterial and antibiofilm activity of ceragenin-conjugated nonspherical gold nanoparticles against the most common agents of otitis media. Methods: Minimal inhibitory and bactericidal concentrations and colony-counting assays, as well as colorimetric and fluorimetric methods, were used to estimate the antibacterial activity of compounds in phosphate-buffered saline and human cerumen. The nanosystems' biocompatibility and ability to decrease IL-8 release was tested using keratinocyte cells. Results: The tested compounds demonstrated strong antimicrobial activity against planktonic and biofilm cultures at nontoxic doses due to the induction of oxidative stress followed by the damage of bacterial membranes. Conclusion: This study indicates that ceragenin-conjugated nonspherical gold nanoparticles have potential as new treatment methods for eradicating biofilm-forming pathogens associated with otitis media.
Collapse
Affiliation(s)
- Suhanya V Prasad
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| | - Alexey Maximenko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, PL-30392, Krakow, Poland
| | - Łukasz Suprewicz
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Jakub Spałek
- Department of Pathology, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317, Kielce, Poland.,Department of Otolaryngology, Head & Neck Surgery, Holy Cross Cancer Center in Kielce, PL-25734, Kielce, Poland
| | - Urszula Wnorowska
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Piotr M Zielinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| | | | - Paul B Savage
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Sławomir Okła
- Department of Otolaryngology, Head & Neck Surgery, Holy Cross Cancer Center in Kielce, PL-25734, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology & Nanobiomedical Engineering, Medical University of Bialystok, PL-15222, Bialystok, Poland
| |
Collapse
|
34
|
Mobed A, Hasanzadeh M, Seidi F. Anti-bacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: recent advances and challenges. RSC Adv 2021; 11:34688-34698. [PMID: 35494766 PMCID: PMC9042813 DOI: 10.1039/d1ra06030a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Gold nanocomposites are being widely used in numerous biomedical applications owing to their excellent stability and miniaturization. Gold nanocomposites are notable because of their flexibility of functionalization and synthesis, ease of detection, and low toxicity. Cost-effectiveness, long-term stability, non-cytotoxicity, and biocompatibility are the main aspects of ideal nanocomposites. Antibacterial nanocomposites are being developed extensively in the food industry, environmental applications, and biological and medical devices. This review focuses on the applications of metal-based nanoparticles, mainly gold nanoparticles (AuNPs), as antibacterial agents in medical approaches. Additionally, the antibacterial mechanisms of AuNPs and their roles in fighting antibiotic-resistant microorganisms are highlighted in the present review.
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences Iran
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
35
|
Varied-shaped gold nanoparticles with nanogram killing efficiency as potential antimicrobial surface coatings for the medical devices. Sci Rep 2021; 11:12546. [PMID: 34131207 PMCID: PMC8206335 DOI: 10.1038/s41598-021-91847-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Medical device-associated infections are a serious medical threat, particularly for patients with impaired mobility and/or advanced age. Despite a variety of antimicrobial coatings for medical devices being explored to date, only a limited number have been introduced for clinical use. Research into new bactericidal agents with the ability to eradicate pathogens, limit biofilm formation, and exhibit satisfactory biocompatibility, is therefore necessary and urgent. In this study, a series of varied-morphology gold nanoparticles in shapes of rods, peanuts, stars and spherical-like, porous ones with potent antibacterial activity were synthesized and thoroughly tested against spectrum of Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus clinical strains, as well as spectrum of uropathogenic Escherichia coli isolates. The optimization of gold nanoparticles synthesis allowed to develop nanomaterials, which are proved to be significantly more potent against tested microbes compared with the gold nanoformulations reported to date. Notably, their antimicrobial spectrum includes strains with different drug resistance mechanisms. Facile and cost-efficient synthesis of gold nanoparticles, remarkable bactericidal efficiency at nanogram doses, and low toxicity, underline their potential for development as a new coatings, as indicated by the example of urological catheters. The presented research fills a gap in microbial studies of non-spherical gold nanoparticles for the development of antimicrobial coatings targeting multidrug-resistant pathogens responsible for device-associated nosocomial infections.
Collapse
|
36
|
Cudalbeanu M, Peitinho D, Silva F, Marques R, Pinheiro T, Ferreira AC, Marques F, Paulo A, Soeiro CF, Sousa SA, Leitão JH, Tăbăcaru A, Avramescu SM, Dinica RM, Campello MPC. Sono-Biosynthesis and Characterization of AuNPs from Danube Delta Nymphaea alba Root Extracts and Their Biological Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1562. [PMID: 34198512 PMCID: PMC8231883 DOI: 10.3390/nano11061562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023]
Abstract
Root extracts from Danube Delta Nymphaea alba were used to prepare gold nanoparticles (AuNPRn) by reducing HAuCl4 at different pHs (6.4-8.4) using ultrasonic irradiation: an easy, cheap, eco-friendly and green approach. Their antibacterial and anticancer activities were evaluated against Staphylococcus aureus and Escherichia coli, and A2780 ovarian cancer cells, respectively. The AuNPRn were characterized concerning their phytoconstituents (polyphenols, flavonoids and condensed tannins) and gold content. All of the nanoparticles were negatively charged. AuNPRn exhibited a hydrodynamic size distribution ranging from 32 nm to 280 nm, with the larger nanoparticles being obtained with an Au/root extract ratio of 0.56, pH 7 and 10 min of sonication (AuNPR1), whereas the smallest were obtained with an Au/root extract ratio of 0.24, pH 7.8 and 40 min of sonication (AuNPR4). The TEM/SEM images showed that the AuNPRn had different shapes. The ATR-FTIR indicated that AuNPRn interact mainly with hydroxyl groups present in the polyphenol compounds, which also confirm their high antioxidant capacity, except for AuNPR2 obtained at pH 6.4. Among the AuNPRn, the smallest ones exhibited enhanced antimicrobial and anticancer activities.
Collapse
Affiliation(s)
- Mihaela Cudalbeanu
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (A.T.)
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - David Peitinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
| | - Rosa Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal;
| | - Teresa Pinheiro
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal;
- Department of Bioengineering, iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (C.F.S.); (S.A.S.); (J.H.L.)
| | - Ana C. Ferreira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal;
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal;
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal;
| | - Catarina F. Soeiro
- Department of Bioengineering, iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (C.F.S.); (S.A.S.); (J.H.L.)
| | - Sílvia Andreia Sousa
- Department of Bioengineering, iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (C.F.S.); (S.A.S.); (J.H.L.)
| | - Jorge Humberto Leitão
- Department of Bioengineering, iBB-Institute of Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; (C.F.S.); (S.A.S.); (J.H.L.)
| | - Aurel Tăbăcaru
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (A.T.)
| | - Sorin Marius Avramescu
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Soseaua Panduri, 050663 Bucharest, Romania
| | - Rodica Mihaela Dinica
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania; (M.C.); (A.T.)
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal; (D.P.); (F.S.); (R.M.); (F.M.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal;
| |
Collapse
|
37
|
Wang P, Lin H. [Research progress of nanomaterials in osteomyelitis treatment]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:648-655. [PMID: 33998221 DOI: 10.7507/1002-1892.202012044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the related studies on the application of nanomaterials in the treatment of osteomyelitis, and to provide new ideas for the research and clinical treatment of osteomyelitis. Methods The literature about the treatment of osteomyelitis with nanomaterials at home and abroad in recent years was reviewed and analyzed. Results At present, surgical treatment and antibiotic application are the main treatment options for osteomyelitis. But there are many defects such as antibiotic resistance, residual bone defect, and low effective concentration of local drugs. The application of nanomaterials can make up for the above defects. In recent years, nanomaterials play an important role in the treatment of osteomyelitis by filling bone defects, establishing local drug delivery system, and self-antibacterial properties. Conclusion It will provide a new idea and an important research direction for the treatment of osteomyelitis to fully study the related characteristics of nanomaterials and select beneficial materials to make drug delivery system or substitute drugs.
Collapse
Affiliation(s)
- Peilin Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai, 200080, P.R.China
| | - Haodong Lin
- Department of Orthopaedics, Shanghai General Hospital, Shanghai, 200080, P.R.China
| |
Collapse
|
38
|
Spirescu VA, Chircov C, Grumezescu AM, Vasile BȘ, Andronescu E. Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies. Int J Mol Sci 2021; 22:4595. [PMID: 33925617 PMCID: PMC8123905 DOI: 10.3390/ijms22094595] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
The development of drug-resistant microorganisms has become a critical issue for modern medicine and drug discovery and development with severe socio-economic and ecological implications. Since standard and conventional treatment options are generally inefficient, leading to infection persistence and spreading, novel strategies are fundamentally necessary in order to avoid serious global health problems. In this regard, both metal and metal oxide nanoparticles (NPs) demonstrated increased effectiveness as nanobiocides due to intrinsic antimicrobial properties and as nanocarriers for antimicrobial drugs. Among them, gold, silver, copper, zinc oxide, titanium oxide, magnesium oxide, and iron oxide NPs are the most preferred, owing to their proven antimicrobial mechanisms and bio/cytocompatibility. Furthermore, inorganic NPs can be incorporated or attached to organic/inorganic films, thus broadening their application within implant or catheter coatings and wound dressings. In this context, this paper aims to provide an up-to-date overview of the most recent studies investigating inorganic NPs and their integration into composite films designed for antimicrobial therapies.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (C.C.); (B.Ș.V.); (E.A.)
| |
Collapse
|
39
|
Pormohammad A, Monych NK, Ghosh S, Turner DL, Turner RJ. Nanomaterials in Wound Healing and Infection Control. Antibiotics (Basel) 2021; 10:antibiotics10050473. [PMID: 33919072 PMCID: PMC8143158 DOI: 10.3390/antibiotics10050473] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/05/2023] Open
Abstract
Wounds continue to be a serious medical concern due to their increasing incidence from injuries, surgery, burns and chronic diseases such as diabetes. Delays in the healing process are influenced by infectious microbes, especially when they are in the biofilm form, which leads to a persistent infection. Biofilms are well known for their increased antibiotic resistance. Therefore, the development of novel wound dressing drug formulations and materials with combined antibacterial, antibiofilm and wound healing properties are required. Nanomaterials (NM) have unique properties due to their size and very large surface area that leads to a wide range of applications. Several NMs have antimicrobial activity combined with wound regeneration features thus give them promising applicability to a variety of wound types. The idea of NM-based antibiotics has been around for a decade at least and there are many recent reviews of the use of nanomaterials as antimicrobials. However, far less attention has been given to exploring if these NMs actually improve wound healing outcomes. In this review, we present an overview of different types of nanomaterials explored specifically for wound healing properties combined with infection control.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; (A.P.); (N.K.M.)
| | - Nadia K. Monych
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; (A.P.); (N.K.M.)
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot 360020, India;
| | - Diana L. Turner
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, 2500 University Dr. N.W., Calgary, AB T2N 1N4, Canada; (A.P.); (N.K.M.)
- Correspondence: ; Tel.: +1-403-220-4308
| |
Collapse
|
40
|
Arshad R, Pal K, Sabir F, Rahdar A, Bilal M, Shahnaz G, Kyzas GZ. A review of the nanomaterials use for the diagnosis and therapy of salmonella typhi. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević NŽ, Gadjanski I, Vidić J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 2021; 20:2428-2454. [DOI: 10.1111/1541-4337.12727] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Nejra Omerović
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | - Mila Djisalov
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | | | | | - Jovana Vunduk
- Ekofungi Ltd. Belgrade Serbia
- Faculty of Agriculture, Institute of Food Technology and Biochemistry University of Belgrade Belgrade Serbia
| | | | | | | | - Jasmina Vidić
- Micalis Institute, INRAE, AgroParisTech Université Paris‐Saclay Jouy en Josas France
| |
Collapse
|
42
|
Basavegowda N, Baek KH. Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Molecules 2021; 26:912. [PMID: 33572219 PMCID: PMC7915418 DOI: 10.3390/molecules26040912] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, infectious diseases caused by bacterial pathogens have become a major cause of morbidity and mortality globally due to their resistance to multiple antibiotics. This has triggered initiatives to develop novel, alternative antimicrobial materials, which solve the issue of infection with multidrug-resistant bacteria. Nanotechnology using nanoscale materials, especially multimetallic nanoparticles (NPs), has attracted interest because of the favorable physicochemical properties of these materials, including antibacterial properties and excellent biocompatibility. Multimetallic NPs, particularly those formed by more than two metals, exhibit rich electronic, optical, and magnetic properties. Multimetallic NP properties, including size and shape, zeta potential, and large surface area, facilitate their efficient interaction with bacterial cell membranes, thereby inducing disruption, reactive oxygen species production, protein dysfunction, DNA damage, and killing potentiated by the host's immune system. In this review, we summarize research progress on the synergistic effect of multimetallic NPs as alternative antimicrobial agents for treating severe bacterial infections. We highlight recent promising innovations of multimetallic NPs that help overcome antimicrobial resistance. These include insights into their properties, mode of action, the development of synthetic methods, and combinatorial therapies using bi- and trimetallic NPs with other existing antimicrobial agents.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| |
Collapse
|
43
|
Gold Nanoparticles: Can They Be the Next Magic Bullet for Multidrug-Resistant Bacteria? NANOMATERIALS 2021; 11:nano11020312. [PMID: 33530434 PMCID: PMC7911621 DOI: 10.3390/nano11020312] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
In 2017 the World Health Organization (WHO) announced a list of the 12 multidrug-resistant (MDR) families of bacteria that pose the greatest threat to human health, and recommended that new measures should be taken to promote the development of new therapies against these superbugs. Few antibiotics have been developed in the last two decades. Part of this slow progression can be attributed to the surge in the resistance acquired by bacteria, which is holding back pharma companies from taking the risk to invest in new antibiotic entities. With limited antibiotic options and an escalating bacterial resistance there is an urgent need to explore alternative ways of meeting this global challenge. The field of medical nanotechnology has emerged as an innovative and a powerful tool for treating some of the most complicated health conditions. Different inorganic nanomaterials including gold, silver, and others have showed potential antibacterial efficacies. Interestingly, gold nanoparticles (AuNPs) have gained specific attention, due to their biocompatibility, ease of surface functionalization, and their optical properties. In this review, we will focus on the latest research, done in the field of antibacterial gold nanoparticles; by discussing the mechanisms of action, antibacterial efficacies, and future implementations of these innovative antibacterial systems.
Collapse
|
44
|
Linklater DP, Baulin VA, Le Guével X, Fleury JB, Hanssen E, Nguyen THP, Juodkazis S, Bryant G, Crawford RJ, Stoodley P, Ivanova EP. Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005679. [PMID: 33179362 DOI: 10.1002/adma.202005679] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/05/2020] [Indexed: 06/11/2023]
Abstract
It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP-membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing. This general phenomenon is demonstrated experimentally using both model membranes and Pseudomonas aeruginosa and Staphylococcus aureus, representing Gram-positive and Gram-negative bacteria. Hydrophilic and hydrophobic quasi-spherical and star-shaped gold (Au)NPs are synthesized to explore the antibacterial mechanism of non-translocating AuNPs. Direct observation of nanoparticle-induced membrane tension and squeezing is demonstrated using a custom-designed microfluidic device, which relieves contraction of the model membrane surface area and eventual lipid bilayer collapse. Quasi-spherical nanoparticles exhibit a greater bactericidal action due to a higher interactive affinity, resulting in greater membrane stretching and rupturing, corroborating the theoretical model. Electron microscopy techniques are used to characterize the NP-bacterial-membrane interactions. This combination of experimental and theoretical results confirm the proposed mechanism of membrane-tension-induced (mechanical) killing of bacterial cells by non-translocating NPs.
Collapse
Affiliation(s)
- Denver P Linklater
- School of Science, RMIT University, P.O. Box 2476, Melbourne, Victoria, 3001, Australia
- Opical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Vladimir A Baulin
- Department d'Enginyeria Quimica, Universitat Rovira i Virgili, 26 Av. dels Paisos Catalans, Tarragona, 43007, Spain
| | - Xavier Le Guével
- Insitute for Advanced Biosciences, University Grenoble-Alpes, Allee des Alpes, La Tronche, 38700, France
| | - Jean-Baptiste Fleury
- Experimental Physics and Center for Biophysics, Saarland University, Saarbrücken, 66123, Germany
| | - Eric Hanssen
- Ian Holmes Imaging Centre, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria, 3010, Australia
| | - The Hong Phong Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Saulius Juodkazis
- Opical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Gary Bryant
- School of Science, RMIT University, P.O. Box 2476, Melbourne, Victoria, 3001, Australia
| | - Russell J Crawford
- School of Science, RMIT University, P.O. Box 2476, Melbourne, Victoria, 3001, Australia
| | - Paul Stoodley
- Infectious Diseases Institute, The Ohio State University, 716 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH, 43210, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, SO17 1Bj, UK
| | - Elena P Ivanova
- School of Science, RMIT University, P.O. Box 2476, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
45
|
Joshi AS, Singh P, Mijakovic I. Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. Int J Mol Sci 2020; 21:E7658. [PMID: 33081366 PMCID: PMC7589962 DOI: 10.3390/ijms21207658] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Many bacteria have the capability to form a three-dimensional, strongly adherent network called 'biofilm'. Biofilms provide adherence, resourcing nutrients and offer protection to bacterial cells. They are involved in pathogenesis, disease progression and resistance to almost all classical antibiotics. The need for new antimicrobial therapies has led to exploring applications of gold and silver nanoparticles against bacterial biofilms. These nanoparticles and their respective ions exert antimicrobial action by damaging the biofilm structure, biofilm components and hampering bacterial metabolism via various mechanisms. While exerting the antimicrobial activity, these nanoparticles approach the biofilm, penetrate it, migrate internally and interact with key components of biofilm such as polysaccharides, proteins, nucleic acids and lipids via electrostatic, hydrophobic, hydrogen-bonding, Van der Waals and ionic interactions. Few bacterial biofilms also show resistance to these nanoparticles through similar interactions. The nature of these interactions and overall antimicrobial effect depend on the physicochemical properties of biofilm and nanoparticles. Hence, study of these interactions and participating molecular players is of prime importance, with which one can modulate properties of nanoparticles to get maximal antibacterial effects against a wide spectrum of bacterial pathogens. This article provides a comprehensive review of research specifically directed to understand the molecular interactions of gold and silver nanoparticles with various bacterial biofilms.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
46
|
Boomi P, Ganesan R, Prabu Poorani G, Jegatheeswaran S, Balakumar C, Gurumallesh Prabu H, Anand K, Marimuthu Prabhu N, Jeyakanthan J, Saravanan M. Phyto-Engineered Gold Nanoparticles (AuNPs) with Potential Antibacterial, Antioxidant, and Wound Healing Activities Under in vitro and in vivo Conditions. Int J Nanomedicine 2020; 15:7553-7568. [PMID: 33116487 PMCID: PMC7548233 DOI: 10.2147/ijn.s257499] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background A diabetic ulcer is one of the major causes of illness among diabetic patients that involves severe and intractable complications associated with diabetic wounds. Hence, a suitable wound-healing agent is urgently needed at this juncture. Greener nanotechnology is a very promising and emerging technology currently employed for the development of alternative medicines. Plant-mediated synthesis of metal nanoparticles has been intensively investigated and regarded as an alternative strategy for overcoming various diseases and their secondary complications like microbial infections. Hence, we are interested in developing phyto-engineered gold nanoparticles as useful therapeutic agents for the treatment of infectious diseases and wounds effectively. Methods and Results We have synthesized phyto-engineered gold nanoparticles from the aqueous extract of Acalypha indica and characterized using advanced bio-analytical techniques. The surface plasmon resonance feature and crystalline behavior of gold nanoparticles were revealed by ultraviolet-visible spectroscopy and X-ray diffraction, respectively. High-performance liquid chromatography analysis of the extract demonstrated the presence of different constituents, while major functional groups were interpreted by the Fourier-transform infrared spectroscopy as the various stretching vibrations appeared for important O-H (3443 cm−1), C=O (1644 cm−1) and C-O (1395 cm−1) groups. Scanning electron microscopy, high-resolution transmission electron microscopy results revealed a distribution of spherical and rod-like nanostructures with 20 nm of size. The gold nanoparticle-coated cotton fabric was evaluated for the antibacterial activity against Staphylococcus epidermidis and Escherichia coli bacterial strains which revealed remarkable inhibition at the zone of inhibition of 31 mm diameter against S. epidermidis. Further, antioxidant activity was tested for their free radical scavenging property, and the maximum antioxidant activity of the extract containing gold nanoparticles was found to be 80% at 100 µg/mL. The potent free radical scavenging property of the nanoparticles is observed at IC50 value 16.25 µg/mL. Moreover, in vivo wound-healing activity was carried out using BALB/c mice model with infected diabetic wounds and observed the stained microscopic images at different time intervals (day 2, day 7 and day 15). It was noted that in 15 days, the wound area is completely re-epithelialized due to the presence of different morphologies such as spherical, needle and triangle nanoparticles. The re-epithelialization layer is fully covered by nanoparticles on the wound area and also collagen filled in the scar tissue when compared with the control group. Conclusion The pharmacological evaluation results of the study indicated an encouraging antibacterial and antioxidant activity of the greener synthesized gold nanoparticles tethered with aqueous extract of Acalypha indica. Moreover, we demonstrated enhanced in vivo wound-healing efficiency of the synthesized gold nanoparticles through the animal model. Thus, the outcome of this work revealed that the phyto-engineered gold nanoparticles could be useful for biomedical applications, especially in the development of promising antibacterial and wound-healing agents.
Collapse
Affiliation(s)
- Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Ramalingam Ganesan
- Department of Chemistry, Arumugam Seethaiyammal Arts and Science College, Tiruppattur, Tamil Nadu, India
| | | | - Sonamuthu Jegatheeswaran
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | | | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Science, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
47
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines. Front Microbiol 2020; 11:579916. [PMID: 33123110 PMCID: PMC7573253 DOI: 10.3389/fmicb.2020.579916] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
48
|
Souza F, Fornasier F, Carvalho A, Silva B, Lima M, Pimentel A. Polymer-coated gold nanoparticles and polymeric nanoparticles as nanocarrier of the BP100 antimicrobial peptide through a lung surfactant model. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Ponnuvel S, Sankar S, Ponnuraj K. Analyzing the adhesion mechanism of FnBPA, a surface adhesin from Staphylococcus aureus on its interaction with nanoparticle. Microb Pathog 2020; 146:104239. [PMID: 32376360 DOI: 10.1016/j.micpath.2020.104239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus expresses many Microbial Surface Recognizing Adhesive Matrix Molecules (MSCRAMM's) to recognize host extracellular matrix (ECM) molecules to initiate colonization. The MSCRAMM, fibronectin binding protein A (FnBPA), is an important adhesin for S. aureus infection. FnBPA also binds with fibrinogen (Fg) by using a unique ligand binding mechanism called dock, lock and latch. Nanoparticles, especially nanosilver particles have been widely used in a variety of biomedical applications which includes disease diagnosis and treatment, drug delivery and implanted medical device coating. In a biological system, when protein molecules encounter nanoparticle, they can be absorbed onto its surface which results in the formation of protein corona. In the present study, we have analysed the fibrinogen binding ability of rFnBPA(189-512) in the presence of silver nanoparticles by employing techniques like gel shift assay, Western blot, size exclusion chromatography, enzyme-linked immunosorbent assay, bio-layer interferometry and circular dichroism spectroscopy. The results indicate that rFnBPA(189-512) is unable to bind to Fg in the presence of a nanoparticle. This could be due to the inaccessibility of the Fg binding site and conformational change in rFnBPA(189-512). With nanoparticles, rFnBPA(189-512) undergoes significant structural changes as the β-sheet content has drastically reduced to 10% from the initial 60% at higher concentration of the nanoparticle. Pathogenic bacteria interact with its surrounding environment through their surface molecules which includes MSCRAMMs. Therefore MSCRAMMs play an important role when bacteria encounter nanoparticles. The results of the present study suggest that the orientation of the protein during the absorption on the surface of a nanoparticle as well as the concentration of the nanoparticle, will dictate the function of the absorbed protein and in this case the Fg binding property of rFnBPA(189-512).
Collapse
Affiliation(s)
- Shobana Ponnuvel
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Sreejanani Sankar
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India.
| |
Collapse
|
50
|
Mottola F, Iovine C, Santonastaso M, Romeo ML, Pacifico S, Cobellis L, Rocco L. NPs-TiO 2 and Lincomycin Coexposure Induces DNA Damage in Cultured Human Amniotic Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1511. [PMID: 31652841 PMCID: PMC6915627 DOI: 10.3390/nano9111511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Titanium dioxide nanoparticles (NPs-TiO2 or TiO2-NPs) have been employed in many commercial products such as medicines, foods and cosmetics. TiO2-NPs are able to carry antibiotics to target cells enhancing the antimicrobial efficiency; so that these nanoparticles are generally used in antibiotic capsules, like lincomycin, added as a dye. Lincomycin is usually used to treat pregnancy bacterial vaginosis and its combination with TiO2-NPs arises questions on the potential effects on fetus health. This study investigated the potential impact of TiO2-NPs and lincomycin co-exposure on human amniocytes in vitro. Cytotoxicity was evaluated with trypan blue vitality test, while genotoxic damage was performed by Comet Test, Diffusion Assay and RAPD-PCR for 48 and 72 exposure hours. Lincomycin exposure produced no genotoxic effects on amniotic cells, instead, the TiO2-NPs exposure induced genotoxicity. TiO2-NPs and lincomycin co-exposure caused significant increase of DNA fragmentation, apoptosis and DNA damage in amniocytes starting from 48 exposure hours. These results contribute to monitor the use of TiO2-NPs combined with drugs in medical application. The potential impact of antibiotics with TiO2-NPs during pregnancy could be associated with adverse effects on embryo DNA. The use of nanomaterials in drugs formulation should be strictly controlled in order to minimize risks.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
| | - Maria Luisa Romeo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Luigi Cobellis
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
- Sant' Anna e San Sebastiano Hospital, 81100 Caserta, Italy.
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|