1
|
Katarzyna Lesiów M, Witwicki M, Tan NK, Graziotto ME, New EJ. Unravelling the Mystery of COVID-19 Pathogenesis: Spike Protein and Cu Can Synergize to Trigger ROS Production. Chemistry 2023; 29:e202301530. [PMID: 37414735 DOI: 10.1002/chem.202301530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
The COVID-19 pandemic has had a devastating impact on global health, highlighting the need to understand how the SARS-CoV-2 virus damages the lungs in order to develop effective treatments. Recent research has shown that patients with COVID-19 experience severe oxidative damage to various biomolecules. We propose that the overproduction of reactive oxygen species (ROS) in SARS-CoV-2 infection involves an interaction between copper ions and the virus's spike protein. We tested two peptide fragments, Ac-ELDKYFKNH-NH2 (L1) and Ac-WSHPQFEK-NH2 (L2), derived from the spike protein of the Wuhan strain and the β variant, respectively, and found that they bind Cu(II) ions and form a three-nitrogen complexes at lung pH. Our research demonstrates that these complexes trigger the overproduction of ROS, which can break both DNA strands and transform DNA into its linear form. Using A549 cells, we demonstrated that ROS overproduction occurs in the mitochondria, not in the cytoplasm. Our findings highlight the importance of the interaction between copper ions and the virus's spike protein in the development of lung damage and may aid in the development of therapeutic procedures.
Collapse
Affiliation(s)
| | - Maciej Witwicki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Nian Kee Tan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for, Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Elizabeth Joy New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for, Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Pelucelli A, Peana M, Orzeł B, Piasta K, Gumienna-Kontecka E, Medici S, Zoroddu MA. Zn 2+ and Cu 2+ Interaction with the Recognition Interface of ACE2 for SARS-CoV-2 Spike Protein. Int J Mol Sci 2023; 24:ijms24119202. [PMID: 37298154 DOI: 10.3390/ijms24119202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The spike protein (S) of SARS-CoV-2 is able to bind to the human angiotensin-converting enzyme 2 (ACE2) receptor with a much higher affinity compared to other coronaviruses. The binding interface between the ACE2 receptor and the spike protein plays a critical role in the entry mechanism of the SARS-CoV-2 virus. There are specific amino acids involved in the interaction between the S protein and the ACE2 receptor. This specificity is critical for the virus to establish a systemic infection and cause COVID-19 disease. In the ACE2 receptor, the largest number of amino acids playing a crucial role in the mechanism of interaction and recognition with the S protein is located in the C-terminal part, which represents the main binding region between ACE2 and S. This fragment is abundant in coordination residues such as aspartates, glutamates, and histidine that could be targeted by metal ions. Zn2+ ions bind to the ACE2 receptor in its catalytic site and modulate its activity, but it could also contribute to the structural stability of the entire protein. The ability of the human ACE2 receptor to coordinate metal ions, such as Zn2+, in the same region where it binds to the S protein could have a crucial impact on the mechanism of recognition and interaction of ACE2-S, with consequences on their binding affinity that deserve to be investigated. To test this possibility, this study aims to characterize the coordination ability of Zn2+, and also Cu2+ for comparison, with selected peptide models of the ACE2 binding interface using spectroscopic and potentiometric techniques.
Collapse
Affiliation(s)
- Alessio Pelucelli
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Bartosz Orzeł
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Karolina Piasta
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland
| | | | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Antonietta Zoroddu
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
3
|
Walencik PK. The redox-active Cu-FomA complex: the mode that provides coordination of Cu II/Cu I ions during the reduction/oxidation cycle. Dalton Trans 2022; 51:15515-15529. [PMID: 36165635 DOI: 10.1039/d2dt02398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed form of cancer worldwide. Recent studies have indicated a strong correlation between microbial imbalance and the development of CRC. An abundance of Fusobacterium nucleatum, an anaerobic Gram-negative bacterium, has been considered a biomarker of CRC progression. Several investigations have also proposed that binding copper ions to various bacterial proteins enhances the CuII + e- ⇄ CuI redox cycle, which consequently promotes uncontrolled production of reactive oxygen species (ROS) and propels colorectal carcinogenesis. In this work, a multidisciplinary approach was applied to study the molecular relation of copper with the peptide models of FomA, a protein expressed by Fusobacterium nucleatum. The main goal was to investigate all the factors that tune the CuII + e- ⇄ CuI equilibrium. A linear peptide Fom1 (Ac-KGHGNGEEGTPTVHNE-NH2) and cyclic peptide Fom2 (cyclo-(KGHGNGEEGTPTVHNE)) were used as ligands. The coordination of CuI was deduced from the NMR data. The conditional dissociation constants KcondD defined the stability of CuI complexes. The electrochemical activity of CuII and CuI compounds was analysed using cyclic voltammetry. A quasi-reversible redox conversion CuII-peptide + e- ⇄ CuI-peptide was revealed for all studied systems. In the presence of ascorbic acid (HAsc), CuII complexes were immediately reduced to CuI species; however, their re-oxidation was kinetically sluggish. The HAsc-induced redox cycle provoked the metal-catalyzed oxidation (MCO) effect. That in the end prevented coordination of the re-appearing CuII ion to its initial binding site. The toxicity of the FomA-CuII/CuI complexes and their role in CRC progression were briefly discussed.
Collapse
Affiliation(s)
- Paulina K Walencik
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| |
Collapse
|
4
|
Abstract
Copper ions bind to biomolecules (e.g., peptides and proteins) playing an essential role in many biological and physiological pathways in the human body. The resulting complexes may contribute to the initiation of neurodegenerative diseases, cancer, and bacterial and viral diseases, or act as therapeutics. Some compounds can chemically damage biological macromolecules and initiate the development of pathogenic states. Conversely, a number of these compounds may have antibacterial, antiviral, and even anticancer properties. One of the most significant current discussions in Cu biochemistry relates to the mechanisms of the positive and negative actions of Cu ions based on the generation of reactive oxygen species, including radicals that can interact with DNA molecules. This review aims to analyze various peptide–copper complexes and the mechanism of their action.
Collapse
|
5
|
Lesiów MK, Bieńko A, Sobańska K, Kowalik-Jankowska T, Rolka K, Łęgowska A, Ptaszyńska N. Cu(II) complexes with peptides from FomA protein containing -His-Xaa-Yaa-Zaa-His and -His-His-motifs. ROS generation and DNA degradation. J Inorg Biochem 2020; 212:111250. [PMID: 32920436 DOI: 10.1016/j.jinorgbio.2020.111250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/23/2020] [Accepted: 08/29/2020] [Indexed: 12/28/2022]
Abstract
Mono- and dinuclear Cu(II) complexes with Ac-PTVHNEYH-NH2 (L1) and Ac-NHHTLND-NH2 (L2) peptides from FomA protein of Fusobacterium nucleatum were studied by potentiometry, spectroscopic methods (UV-Vis, CD, EPR) and MS technique. The dominant mononuclear complexes for L1 ligand are: CuHL (pH range 5.0-6.0) with 2N {2Nim}, CuH-2L (pH range 8.0-8.5) and CuH-3L species (above pH 9.0) with 4N {Nim, 3N-} coordination modes. The complexes: CuH-1L with 3N {2Nim, N-}, CuH-2L with 3N {Nim, 2N-} and CuH-3L with 4N {Nim, 3N-} binding sites are proposed for the L2 ligand. Probably in the CuH-2L complex for CuL2 system the second His residue in His-His sequence is bound to Cu(II) ion, while the first His residue may stabilize this complex by His-His and/or His-Cu(II) interactions. The dominant dinuclear Cu2L1 complexes in the pH range 6.5-10.5 are: the Cu2H-4L and Cu2H-6L species with 3N{Nim, 2N-}4N{Nim, 3N-} and 4N{Nim, 3N-}4N{Nim, 3N-} binding sites, respectively. In the case of the Cu2L2 complex in the pH range 7.2-10.5, the Cu2H-4L and Cu2H-7L species dominate with 2N{Nim, N-}4N{Nim, 3N-} and (Cu(OH)42-4N{Nim, 3N-}) coordination modes, respectively. The ability to generate reactive oxygen species (ROS) by uncomplexed Cu(II) ions, ligands and their complexes at pH 7.4 in the presence of hydrogen peroxide or ascorbic acid was studied. UV-Vis, luminescence, EPR spin trapping and gel electrophoresis methods were used. Both complexes produce higher level of ROS compared to those of their ligands. ROS produced by Cu(II) complexes are hydroxyl radical and singlet oxygen, which contribute to oxidative DNA cleavage.
Collapse
Affiliation(s)
| | - Alina Bieńko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Kamila Sobańska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Krzysztof Rolka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Łęgowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Natalia Ptaszyńska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
6
|
Lesiów MK, Komarnicka UK, Kyzioł A, Bieńko A, Pietrzyk P. ROS-mediated lipid peroxidation as a result of Cu(ii) interaction with FomA protein fragments of F. nucleatum: relevance to colorectal carcinogenesis. Metallomics 2020; 11:2066-2077. [PMID: 31657425 DOI: 10.1039/c9mt00179d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of the studied FomA protein fragments of Fusobacterium nucleatum (Fn) with copper(ii) ions (Cu(ii)-Ac-KGHGNGEEGTPTVHNE-NH2 (1Cu) and its cyclic analogue Cu(ii)-cyclo(KGHGNGEEGTPTVHNE) (2Cu)) to induce reactive oxygen species (ROS) generation, as a result of red-ox processes, was determined by UV-Vis, luminescence methods, spin trapping and cyclic voltamperometry. The contribution of 1O2 and ˙OH to DNA degradation was proved using gel electrophoresis. Furthermore, the pronounced generation of ROS by mouse colon carcinoma cells (CT26) stimulated by both copper(ii) complexes was confirmed. A fluorescence method allowed the total amounts of ROS generated inside the CT26 cells to be detected, while the spin trapping technique proved that free radicals mainly attached to the membrane surface. These last results are in agreement with the data obtained from the ICP-MS method, which demonstrates that 1Cu and 2Cu complexes are not efficiently accumulated inside the cell. Furthermore, the role of ROS in lipid peroxidation was established. The above-mentioned factors may clearly indicate the contribution of ROS generated by the studied copper(ii) complexes to colonic cell damage, which can lead to a carcinogenesis process. This study may be an important step to recognize and understand the mechanism of colon cancer initiation.
Collapse
|