1
|
Islam M, Khan IM, Shakya S, Alam N. Design, synthesis, characterizing and DFT calculations of a binary CT complex co-crystal of bioactive moieties in different polar solvents to investigate its pharmacological activity. J Biomol Struct Dyn 2023; 41:10813-10829. [PMID: 36579428 DOI: 10.1080/07391102.2022.2158937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Imidazole (IM) and salicylic acid (SA) have a significant class among the medical compound. These are widely used as topical drugs like antifungal, antibacterial, anticancer, immunosuppressive agent, etc. These two bioactive organic moieties are combined by a weak hydrogen bond formed by hydrogen transfer. The charge transfer (CT) complex of acceptor (SA) and donor (IM), has been synthesized at room temperature in methanol and confirmed by signal-crystal XRD, conductance and UV-visible spectroscopy. The X-ray crystallography provides the original structural information of CT complex and displays the existence of N+-H--O- bond between IM and SA. The physical properties such as (ECT), (RN), (ID), (f), (D) and (Δ G0) along with molar extinction coefficient (εCT) and formation constant (KCT) were estimated through UV-visible spectroscopy. Job's method and Benesi-Hildebrand equation suggested 1:1 stoichiometry of ([IM]+[SA]-). The results indicate a complete transfer of hydrogen atom and CT complex formation with 1:1 molar ratio of IM and SA. Antimicrobial activity was veiled against different bacteria like Escherichia coli, Bacillus subtilis and Staphylococcus aureus; and different fungi as Fusarium oxysporum, Candida albicans and Aspergillus niger by disc diffusion method. CT complex was also tested for cytotoxic activity against lung cancer cell lines in comparison to breast cancer cell lines. Molecular docking provides the information of binding of [(IM)+(SA)-] with the cancer marker (1M17), which has substantial application for drug designing. The investigational studies were supplemented through time-dependent density functional theory (TD-DFT) using basis set B3LYP/6-311G**. Through DFT calculations, HOMO→LUMO electronic energy gap (Δ E ) was obtained.
Collapse
Affiliation(s)
- Maidul Islam
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Ishaat M Khan
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Sonam Shakya
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Nisat Alam
- Department of Bio-chemistry, School of Chemical and Life Science, New Delhi, India
| |
Collapse
|
2
|
Mustafa SK, Jame R, Aljohani MMH, Omer N, Alessa AH, Al-Anazi M, Alotaibi FA, Sk M, Islam M, Shakya S. Synthesis, spectrophotometric, pharmacology and theoretical investigation of a new electron transfer complex of 8-hydroxyquinoline with oxalic acid in different polar solvents. J Biomol Struct Dyn 2023:1-13. [PMID: 37962847 DOI: 10.1080/07391102.2023.2279277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Preparation, characterization, and investigation of a novel organic charge transfer (CT) complex were carried out, with a focus on exploring its antibacterial and antifungal characteristics. Theoretical analysis backs up the experimental findings. CT complex formed was synthesized between 8-hydroxyquinoline (8HQ) and oxalic acid (OA) at RT (room temperature). Different analyses were used to describe the CT complex, including 1H-NMR, FTIR, TGA/DTA, and UV-vis spectra (in different solvents). These indicate that the CT interaction is linked to proton transfer from OA to 8HQ and the subsequent development of 'N+__H…O-" type bonding. On the basis of wave number, the CT complex and reactants are distinguished in FTIR spectra. By using Thermo gravimetric Analysis/Differential Thermal Analysis (TGA/DTA) tests, the thermal stability of complicated and thorough corrosion was examined. Through UV-visible spectroscopy, physical characteristics like ECT (interaction energy), RN (resonance energy), ID (ionization potential), f (oscillator strength) and ΔG (free energy) were calculated. The εCT (molar extinction coefficient), the KCT (formation constant), and additional physical properties of this complex were calculated by the Benesi-Hildebrand equation in order to determine its 1:1 stoichiometry. The biological properties are also supported by theoretical study. The protein, Human Serum Albumin (HSA), is observed to bind with CT complex, as shown by molecular docking and the observed binding energy value is -167.04 kcal/mol. Molecular dynamics (MD) simulation 100 ns run was used to refine docking results and binding free energy was calculated using MM-PBSA. This study introduces a novel CT complex, offering fresh perspectives on molecular interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Meshari M H Aljohani
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ali Hamzah Alessa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Fatimah A Alotaibi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Matiur Sk
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Maidul Islam
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Sonam Shakya
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Mathew BM, Suma S, Sudarsanakumar M, Joe IH, Anitha L, Suresh S, Anusree S. Experimental and theoretical analyses and investigation of intermolecular interactions and antibacterial activity of a novel proton transfer compound:8-hydroxyquinolinium oxalate monohydrate. Heliyon 2023; 9:e14703. [PMID: 37089303 PMCID: PMC10114187 DOI: 10.1016/j.heliyon.2023.e14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
A novel proton transfer compound, 8-hydroxyquinolinium oxalate monohydrate was synthesised by solid state grinding of 8-hydroxyquinoline and oxalic acid. The resulting compound is characterised by single crystal X-ray diffraction (SXRD), FT-IR, UV-Visible, TG/DTG, DTA and DSC analyses. The compound crystallizes in monoclinic crystal system with space group P21/n. The carboxylate oxygen O2 which acts as a tetrafurcated acceptor of four hydrogen bonds is the main feature of the crystal structure. The molecules are linked together by O-H⋯O, N-H⋯O and C-H⋯O hydrogen bonds. Carbonyl-carbonyl interactions play a crucial role in stabilising the crystal packing. Hirshfeld surface analysis and the associated finger print plots facilitates the comparison of intermolecular interactions. The nature of charge density distribution and topological parameters of the proton transfer region N1-H1A⋯O2 hydrogen bond reveals that the bond has considerable covalent character. Natural Bond Orbital (NBO) has been extended to analyse the nature and strength of intermolecular interactions. Topology analysis using ELF and LOL reveals electron localisation and depletion regions. ADMET analysis reveals that the compound satisfies Lipinski's rule of five and drug likeness. Antibacterial activity was screened against 3 g positive - Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus and 2 g negative strains- Klebsiella pneumonia and Salmonella typhi by employing disc diffusion method.
Collapse
Affiliation(s)
- Binimol Mary Mathew
- Department of Chemistry, Sree Narayana College, Chempazhanthy, Thiruvananthapuram, 695587, India
| | - S. Suma
- Department of Chemistry, Sree Narayana College, Chempazhanthy, Thiruvananthapuram, 695587, India
- Corresponding author.
| | - M.R. Sudarsanakumar
- Department of Chemistry, Mahatma Gandhi College, Thiruvananthapuram, 695004, India
| | - I. Hubert Joe
- Department of Physics, University of Kerala, Thiruvananthapuram, 695581, India
| | - L. Anitha
- Department of Chemistry, Mahatma Gandhi College, Thiruvananthapuram, 695004, India
| | - Suganya Suresh
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, 636011, India
| | - S. Anusree
- Department of Chemistry, Mar Ivanios College, Thiruvananthapuram, 695015, India
| |
Collapse
|
4
|
Khan IM, Khan A, Shakya S, Islam M. Exploring the photocatalytic activity of synthesized hydrogen bonded charge transfer co-crystal of chloranilic acid with 2-ethylimidazole: DFT, molecular docking and spectrophotometric studies in different solvents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Single Crystal XRD and DFT investigation of 1,5-dimethyl-4-[(2-oxo-1,2-diphenylethylidene) amino]-2-phenyl-1,2-dihydro-3H-pyrazol-3-one. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Exploring Interaction Dynamics of Designed Organic Charge Transfer Complex of 6-Aminoindole and Chloranilic Acid: Spectrophotometric, Characterization, Computational, Antimicrobial, and DNA Binding Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Nampally V, Palnati MK, Baindla N, Varukolu M, Gangadhari S, Tigulla P. Charge Transfer Complex between O-Phenylenediamine and 2, 3-Dichloro-5, 6-Dicyano-1, 4-Benzoquinone: Synthesis, Spectrophotometric, Characterization, Computational Analysis, and its Biological Applications. ACS OMEGA 2022; 7:16689-16704. [PMID: 35601332 PMCID: PMC9118382 DOI: 10.1021/acsomega.2c01177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 05/28/2023]
Abstract
UV-vis electronic absorption spectroscopy was used to investigate the new molecular charge transfer complex (CTC) interaction between electron donor O-phenylenediamine (OPD) and electron acceptor 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). The CTC solution state analysis was carried out by two different polarities. The stoichiometry of the prepared CTC was determined by using Job's, photometric, and conductometric titration methods and was detemined to be 1:1 in both solvents (at 298 K). The formation constant and molar extinction coefficient were determined by applying the modified (1:1) Benesi-Hildebrand equation. The thermodynamic parameter ΔG° result indicated that the charge transfer reaction was spontaneous.The stability of the synthesized CTC was evaluated by using different spectroscopic parameters like the energy, ionization potential, oscillator strength, resonance energy, dissociation energy, and transition dipole moment. The synthesized solid CTC was characterized by using different analytical methods, including elemental analysis, Fourier transform infrared, nuclear magnetic resonance, TGA-DTA, and powder X-ray diffraction. The biological evolution of the charge transfer (CT) complex was studied by using DNA binding and antibacterial analysis. The CT complex binding with calf thymus DNA through an intercalative mode was observed from UV-vis spectral study. The CT complex produced a good binding constant value (6.0 × 105 L.mol-1). The antibacterial activity of the CT complex shows notable activity compared to the standard drug, tetracycline. These results reveal that the CT complex may in future be used as a bioactive drug. The hypothetical DFT estimations of the CT complex supported the experimental studies.
Collapse
Affiliation(s)
| | | | - Naveen Baindla
- Department
of Chemistry, Osmania University, Hyderabad-500007, India
| | - Mahipal Varukolu
- Department
of Chemistry, Osmania University, Hyderabad-500007, India
| | - Suresh Gangadhari
- Department
of Chemistry, Osmania University, Hyderabad-500007, India
| | | |
Collapse
|
8
|
Crystal Structure, Topology, DFT and Hirshfeld Surface Analysis of a Novel Charge Transfer Complex (L3) of Anthraquinone and 4-{[(Anthracen-9-yl)methyl] Amino}Benzoic Acid (L2) Exhibiting Photocatalytic Properties: An Experimental and Theoretical Approach. Molecules 2022; 27:molecules27051724. [PMID: 35268825 PMCID: PMC8912118 DOI: 10.3390/molecules27051724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/18/2023] Open
Abstract
Here, we report a facile route to the synthesizing of a new donor–acceptor complex, L3, using 4-{[(anthracen-9-yl)meth-yl] amino}-benzoic acid, L2, as donor moiety with anthraquinone as an acceptor moiety. The formation of donor–acceptor complex L3 was facilitated via H-bonding and characterized by single-crystal X-ray diffraction. The X-ray diffraction results confirmed the synthesized donor–acceptor complex L3 crystal belongs to the triclinic system possessing the P-1 space group. The complex L3 was also characterized by other spectral techniques, viz., FTIR and UV absorption spectroscopy, which confirmed the formation of new bonds between donor L2 moiety and acceptor anthraquinone molecule. The crystallinity and thermal stability of the newly synthesized complex L3 was confirmed by powdered XRD and TGA analysis and theoretical studies; Hirshfeld surface analysis was performed to define the type of interactions occurring in the complex L3. Interestingly, theoretical results were successfully corroborated with experimental results of FTIR and UV absorption. The density functional theory (DFT) calculations were employed for HOMO to LUMO; the energy gap (∆E) was calculated to be 3.6463 eV. The complex L3 was employed as a photocatalyst for the degradation of MB dye and was found to be quite efficient. The results showed MB dye degraded about 90% in 200 min and followed the pseudo-first-order kinetic with rate constant k = 0.0111 min−1 and R2 = 0.9596. Additionally, molecular docking reveals that the lowest binding energy was −10.8 Kcal/mol which indicates that the L3 complex may be further studied for its biological applications.
Collapse
|
9
|
Manojkumar P, Harilal, Mahipal V, Suresh G, Venkatesh N, Ramesh M, Parthasarathy T. Exploring the charge transfer dynamics of hydrogen bonded crystals of 2-methyl-8-quinolinol and chloranilic acid: synthesis, spectrophotometric, single-crystal, DFT/PCM analysis, antimicrobial, and DNA binding studies. RSC Adv 2021; 11:39994-40010. [PMID: 35494159 PMCID: PMC9044685 DOI: 10.1039/d1ra07658b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 01/31/2023] Open
Abstract
The new chemistry of the hydrogen-bonded charge and proton transfer complex (HB CT) between electron-donor 2-methyl-8-quinolinol (2 MQ) and electron-acceptor chloranilic acid (CHLA) has been studied using electronic absorption spectroscopy in acetonitrile (ACN), methanol (MeOH), and ethanol (EtOH) polar media at room temperature. The stoichiometric proportion of the HB CT complex was observed to be 1 : 1 from the Job data and photometric titration process. The association constant (K CT) and molar absorptivity (ε CT) of the HB CT complex were determined by using the modified Benesi-Hildebrand equation in three polarities. Other spectroscopic physical parameters like the energy of interaction (E CT), ionization potential (I D), resonance energy (R N), standard free energy change (ΔG°), oscillator strength (f), and transition dipole moment (μ) were also evaluated. The HB CT complex structure was confirmed by different characterization techniques, such as FT-IR, NMR, TGA-DTA, and SEM-EDX analysis. Powder XRD and single-crystal XRD were used to determine the nature and structure of the synthesized HB CT complex. DNA binding studies for the HB CT complex produced a good binding constant value of 2.25 × 104 L mol-1 in UV-visible and 1.17 × 104 L mol-1 in fluorescence spectroscopy. The biological activity of the HB CT complex was also tested in vitro against the growth of bacteria and fungi, and the results indicated remarkable activity for the HB CT complex compared to the standard drugs, ampicillin and clindamycin. Hence, the abovementioned biological results of the synthesized HB CT complex show it could be used as a pharmaceutical drug in the future. Computational analysis was carried out by DFT studies using the B3LYP function with a basis set of 6-31G(d,p) in the gas phase and PCM analysis. The computational studies further supported the experimental results by confirming the charge and proton transfer complex.
Collapse
Affiliation(s)
| | - Harilal
- School of Chemistry, University of Hyderabad Gachibowli Hyderabad-500046 India
| | - Varukolu Mahipal
- Department of Chemistry, Osmania University Hyderabad-500007 India
| | | | | | - Macha Ramesh
- University College of Science, Osmania University Saifabad Hyderabad-500004 India
| | | |
Collapse
|
10
|
Muslim M, Kamaal S, Mehkoom M, Jane Alam M, Afzal SM, Ahmad M. A Proton‐Transfer Complex Containing 5‐Hydroxy‐isophthalic Acid with 3,3′‐(Piperazine‐1,4‐diylbis (methylene)) Dibenzonitrile: Structural Topology, Hirshfeld Analysis, NLO, and DFT Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202101640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mohd Muslim
- Department of Applied Chemistry Faculty of Engineering and Technology ZHCET Aligarh Muslim University Aligarh U.P-202002 India
| | - Saima Kamaal
- Department of Applied Chemistry Faculty of Engineering and Technology ZHCET Aligarh Muslim University Aligarh U.P-202002 India
| | - Mohd Mehkoom
- Department of Physics, Faculty of Science Aligarh Muslim University Aligarh U.P-202002 India
| | - Mohammad Jane Alam
- Department of Physics, Faculty of Science Aligarh Muslim University Aligarh U.P-202002 India
| | - S. M. Afzal
- Department of Physics, Faculty of Science Aligarh Muslim University Aligarh U.P-202002 India
| | - Musheer Ahmad
- Department of Applied Chemistry Faculty of Engineering and Technology ZHCET Aligarh Muslim University Aligarh U.P-202002 India
| |
Collapse
|
11
|
Synthesis and spectroscopic interpretations of Co(II), Ni(II) and Cu(II) decxycholate complexes with molecular docking of COVId-19 protease. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2021. [DOI: 10.2478/pjct-2021-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Co(II), Ni(II) and Cu(II) decxycholate complexes are interesting due to their biologically active and deliberate interest in the research due to their coordination properties. The microanalytical ‘elemental analysis’, molar conductivity, (infrared and Raman) spectroscopy, thermal analyses (TGA/DSC), UV-vis spectra, and ESR for copper(II) decxycholate complex investigations were performed in the structural assignments of Co(II), Ni(II) and Cu(II) decxycholate complexes. Reaction of the sodium deoxycholate ligand (C24H39O4Na) with three transition metal ions form the complexes of formulae, [M(C24H39O4)2(H2O)2]. xH2O where M = Co(II), Ni(II) and Cu(II) where x = 2 for Cu(II) and x = 4 in case of M = Co(II) or Ni(II) metal ions. The FTIR spectra of the complexes show that decxycholate molecule is present as bidentate ligand. Molecular docking utilizing to additionally examine the interaction of COVID-19 (6LU7) with different complexes of deoxycholic acid with Co(II), Ni(II) and Cu(II). Furthermore, in the case of Co(II) deoxycholate complex, the probe is surrounded by amino residues Met235, Pro241, Glu240, Pro108, Gln110, Phe294, and Ile152. The probe molecule of Ni(II) deoxycholate complex is sited close to amino acids Tyr126, Tyr239, Leu287, Leu272, and Lys137. For, Cu(II) deoxycholate complex, the residues of amino acids comprise of Pro132, Pro108, Gln110, Gly109, Ile200, Asn203, Val202, His246, Pro293 and Tyr154. The binding energy was determined from the docking reads for Co(II)–6LU7, Ni(II)–6LU7 and Cu(II)–6LU7 deoxycholate compounds were found to be −446.99, −500.52, −398.13 kcal mol−1 individually.
Collapse
|
12
|
Utilization and simulation of innovative new binuclear Co(ii), Ni(ii), Cu(ii), and Zn(ii) diimine Schiff base complexes in sterilization and coronavirus resistance (Covid-19). OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This article aimed at the synthesis and molecular docking assessment of new diimine Schiff base ligand, namely 2-((E)-(2-((Z)-2-(4-chlorophenyl)-2-hydroxyvinyl)hydrazono) methyl)-6-methoxyphenol (methoxy-diim), via the condensation of 1-(4-chloro-phenyl)-2-hydrazino-ethenol compound with 2-((E)-(2-((Z)-2-(4-chlorophenyl)-2-hydroxy vinyl) hydrazono)methyl)-6-methoxyphenol in acetic acid as well as the preparation of new binuclear complexes of Co(ii), Ni(ii), Cu(ii), and Zn(ii). The following synthesized complexes were prepared in a ratio of 2:1 (metal/ligand). The 1H-NMR, UV-Vis, and FTIR spectroscopic data; molar conductivity measurements; and microanalytical, XRD, TGA/DTG, and biological studies were carried out to determine the molecular structure of these complexes. According to the spectroscopic analysis, the two central metal ions were coordinated with the diamine ligand via the nitrogen of the hydrazine and oxygen of the hydroxyl groups for the first metal ions and via the nitrogen of the hydrazine and oxygen of the phenol group for the second metal ions. Molecular docking for the free ligand was carried out against the breast cancer 3hb5-oxidoreductase and the 4o1v-protein binding kidney cancer and COVID-19 protease, and good results were obtained.
Collapse
|
13
|
Enudi OC, Louis H, Edim MM, Agwupuye JA, Ekpen FO, Bisong EA, Utsu PM. Understanding the aqueous chemistry of quinoline and the diazanaphthalenes: insight from DFT study. Heliyon 2021; 7:e07531. [PMID: 34296019 PMCID: PMC8282981 DOI: 10.1016/j.heliyon.2021.e07531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
The inter-fragment interactions at various binding sites and the overall cluster stability of quinolone (QNOL), cinnoline (CNOL), quinazoline (QNAZ), and quinoxaline (QNOX) complexes with H2O were studied using the density functional theory (DFT) approach. The adsorption and H-bond binding energies, and the energy decomposition mechanism was considered to determine the relative stabilization status of the studied clusters. Scanning tunneling microscopy (STM), natural bonding orbitals (NBO) and charge decomposition were studied to expose the electronic distribution and interaction between fragments. The feasibility of formations of the various complexes were also studied by considering their thermodynamic properties. Results from adsorption studies confirmed the actual adsorption of H2O molecules on the various binding sites studied, with QNOX clusters exhibiting the best adsorptions. Charge decomposition analysis (CDA) revealed significant charge transfer from substrate to H2O fragment in most complexes, except in QNOL, CNOL and QNAZ clusters with H2O at binding position 4, where much charges are back-donated to substrate. The O---H inter-fragment bonds was discovered to be stronger than counterpart N---H bonds in the complexes, whilst polarity indices confirmed N---H as more polar covalent than O---H bonds. Thermodynamic considerations revealed that the formation process of all studied complexes are endothermic (+ve ΔH f ) and non-spontaneous (+ve ΔG f ).
Collapse
Affiliation(s)
- Obieze C. Enudi
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Moses M. Edim
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - John A. Agwupuye
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Francis O. Ekpen
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Emmanuel A. Bisong
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Patrick M. Utsu
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| |
Collapse
|
14
|
Shakya S, Khan IM. Charge transfer complexes: Emerging and promising colorimetric real-time chemosensors for hazardous materials. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123537. [PMID: 32823028 DOI: 10.1016/j.jhazmat.2020.123537] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
After introducing the concept of charge transfer (CT) complex formation by Mulliken and the discovery of crystalline picrate (association of picric acid and aromatic hydrocarbons) by Fritzsches, a large interest has been drawn in this field. CT complexes have been explored and exploited for different applications for several decades. The research has been aimed mostly for discovering and characterizing new CT materials and exploring applications mainly in the field of optoelectronic properties, antimicrobial activities and DNA/protein binding properties for the last six years. However, nowadays, CT complexes are exploited for their photocatalytic activities and designing chemosensors for the colorimetric real-time detection of hazardous materials like nitro explosives, anions and toxic heavy metal ions in an aqueous medium. This review sheds light on updates on CT complexes, their types, synthesis and applications. The brief discussion on the emergence of CT complexes as highly potential chemosensors along with the explanation of sensing mechanism through article summarization is the centerpiece of this review. The final outcomes are discussed and concluded.
Collapse
Affiliation(s)
- Sonam Shakya
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Ishaat M Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
15
|
In Situ Spectrophotometric Investigation of Charge Transfer Complexes Between Triamterene, a Management of Hypertension Drug, and Four Kinds of Nitro Acceptors in Different Organic Solvents. J SOLUTION CHEM 2021. [DOI: 10.1007/s10953-021-01060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Shojaipour M, Ghaemy M. Highly efficient and antibacterial ion exchanger based on graphene oxide for removal of chromate and nitrate from water: synthesis, characterization and application. NEW J CHEM 2021. [DOI: 10.1039/d0nj04277c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel recyclable antibacterial anion exchanger based on graphene oxide (GO) and quaternary ammonium chloride (TMSQA) as a crosslinker/ion exchanger was prepared and used for the removal of chromate and nitrate from water.
Collapse
Affiliation(s)
- Maryam Shojaipour
- Polymer Research Laboratory
- Faculty of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| | - Mousa Ghaemy
- Polymer Research Laboratory
- Faculty of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| |
Collapse
|
17
|
Tajiki A, Abdouss M, Sadjadi S, Mazinani S. Voltammetric Detection of Nitrite Anions Employing Imidazole Functionalized Reduced Graphene Oxide as an Electrocatalyst. ELECTROANAL 2020. [DOI: 10.1002/elan.202060187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alireza Tajiki
- Department of Chemistry Amirkabir University of Technology No. 350, Hafez Ave., Valiasr Square Tehran 1591634311 Iran
| | - Majid Abdouss
- Department of Chemistry Amirkabir University of Technology No. 350, Hafez Ave., Valiasr Square Tehran 1591634311 Iran
| | - Sodeh Sadjadi
- Radiation Application Research School Nuclear Science and Technology Research Institute Tehran Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC) Amirkabir University of Technology Tehran Iran
| |
Collapse
|
18
|
Efficient and selective adsorption and separation of methylene blue (MB) from mixture of dyes in aqueous environment employing a Cu(II) based metal organic framework. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119787] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Bifunctional Imidazole-Benzenesulfonic Acid Deep Eutectic Solvent for Fructose Dehydration to 5-Hydroxymethylfurfural. Catal Letters 2020. [DOI: 10.1007/s10562-020-03309-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Exploring interaction dynamics of designed organic cocrystal charge transfer complex of 2-hydroxypyridine and oxalic acid with human serum albumin: Single crystal, spectrophotometric, theoretical and antimicrobial studies. Bioorg Chem 2020; 100:103872. [DOI: 10.1016/j.bioorg.2020.103872] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 01/29/2023]
|
21
|
Basha MT, Alghanmi RM, Soliman SM, Alharby WJ. Synthesis, spectroscopic, thermal, structural characterization and DFT/TD-DFT computational studies for charge transfer complexes of 2,4-diamino pyrimidine with some benzoquinone acceptors. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113210] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Khan IM, Alam K, Alam MJ. Exploring charge transfer dynamics and photocatalytic behavior of designed donor-acceptor complex: Characterization, spectrophotometric and theoretical studies (DFT/TD-DFT). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Khan IM, Alam K, Afshan M, Shakya S, Islam M. Thermodynamic and structural studies of newly prepared CT complex between pyrazole as a donor and salicylic acid as acceptor at various temperatures in ethanol. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Electron-transfer complexation of morpholine donor molecule with some π – acceptors: Synthesis and spectroscopic characterizations. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2019. [DOI: 10.2478/pjct-2019-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Morpholine is an interesting moiety that used widely in several organic syntheses. The intermolecular charge-transfer (CT) complexity associated between morpholine (Morp) donor with (monoiodobromide “IBr”, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone “DDQ”, 2,6-dichloroquinone-4-chloroimide “DCQ” and 2,6-dibromoquinone-4-chloroimide “DBQ”) π–acceptors have been spectrophotometrically investigated in CHCl3 and/or MeOH solvents. The structures of the intermolecular charge-transfer (CT) were elucidated by spectroscopic methods like, infrared spectroscopy. Also, different analyses techniques such as UV-Vis and elemental analyses were performed to characterize the four morpholine [(Morp)(IBr)], [(Morp)(DDQ)], [(Morp)(DCQ)] and [(Morp)(DBQ)] CT-complexes which reveals that the stoichiometry of the reactions is 1:1. The modified Benesi-Hildebrand equation was utilized to determine the physical spectroscopic parameters such as association constant (K) and the molar extinction coefficient (ε).
Collapse
|
25
|
Preparation, characterization, in vitro and in vivo evaluation of metronidazole–gallic acid cocrystal: A combined experimental and theoretical investigation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Venkatesh N, Naveen B, Venugopal A, Suresh G, Mahipal V, Manojkumar P, Parthasarathy T. Donor-acceptor complex of 1-benzoylpiperazine with p-chloranil: Synthesis, spectroscopic, thermodynamic and computational DFT gas phase/PCM analysis. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|