1
|
Parseghian L, Esmaeili H, Rafati H, Rajabi HR, Alvand ZM. Rapid synthesis of magnetic Fe 3O 4/Ag nanocomposite based on a plant-mediated approach and its biological activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65559-65573. [PMID: 39589419 DOI: 10.1007/s11356-024-35614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
The present study described a quick, efficient, and eco-friendly method for producing Fe3O4-Ag nanocomposite (NC) using Mentha pulegium L. plant extract. Ultrasonic-assisted extraction (UAE) was employed to prepare an aqueous extract due to its speed and effectiveness. During the manufacture of Fe3O4-Ag NC, the prepared plant extracts were utilized as naturally occurring stabilizing precursors. The study also employed several methods for characterizing the synthesized NC, including X-ray diffraction patterns, which estimated the mean particle size to be 52 nm using the Deby-Scherrer equation. The successful synthesis of Fe3O4-Ag NC was approved by a broad absorption band from 400 to 425 nm in the absorption spectrum. Subsequently, the samples' antibacterial, antifungal, and antioxidant potentials (Fe3O4 NPs, Ag NPs, Fe3O4-Ag NC, and the extract) were investigated. Notably, the NP and NC samples showed higher antibacterial activity than the extract, wherein gram-negative bacteria were more significantly affected than gram-positive bacteria. The Fe3O4-Ag NC had MIC values of 0.062 mg/mL against Staphylococcus aureus and Escherichia coli. The Fe3O4-Ag NC was found to have a significant detrimental impact on the bacterial membranes of E. coli and S. aureus, as evidenced by the quick release of cytoplasmic components such as protein, nucleic acid, and potassium. The results also showed that the extract and Fe3O4-Ag NC samples exhibited strong antioxidant activity. The study recommends further investigation on the application of these metal nanoparticles in the water remediation, agriculture, and food industries due to their strong biological activity.
Collapse
Affiliation(s)
- Liana Parseghian
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hassan Esmaeili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Hasan Rafati
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Zinab Moradi Alvand
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Bekhradian A, Karami B, Rajabi HR. Green synthesis of silver/silver oxide nanostructures using the Malva sylvestris extract prior to simultaneous distillation extraction: synthesis, phytochemical and biological analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60341-60358. [PMID: 39382805 DOI: 10.1007/s11356-024-35206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Nanotechnology and nanoscience are due to their numerous uses in medicine, engineering, and water pollution sensors and their expanding research fields. In this study, the essential oil, methanolic extract, and biosynthesized silver/silver oxide nanostructures (Ag/AgO NSs) using the aqueous extract of the plant were prepared. The phytochemical compounds of the extract and essential oil were analyzed using gas chromatography/mass spectrometry (GC/MS), respectively. The GC/MS technique identified 34 compounds in the essential oil of the plant with the major constituents including oleic acid (18.5%), palmitic acid (11.08%), phytone (6.64%), p-vinylguaiacol (6.4%), and phytol (4.23%). After the phytochemical identification, the total flavonoid and polyphenol contents of the extract was determined, too. Prodelphinidin B3 compound in the Malva sylvestris extract was analyzed and detected by high-performance liquid chromatography/ultraviolet detector (HPLC-UV), at a retention time of around 10 min. In addition, M. sylvestris extract was used for green synthesis of Ag/AgO NSs. The as-prepared NPs were characterized using X-ray diffraction (XRD), UV-visible absorption spectroscopy, scanning electron microscope equipped with energy-dispersive X-ray spectroscopy (SEM/EDS), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), and Fourier transform infrared (FT-IR) analyses. Surface plasmon resonance (SPR) absorption at λmax 320 nm in the UV-vis spectra confirms the formation of Ag/AgO NSs. The crystalline structure of Ag/AgO NSs was confirmed by XRD analysis. The nanoparticles were found to have a small size, measuring 64.16 nm, 44.33 nm, and 50 nm using the Williamson-Hall, Scherrer, and SEM/EDS methods, respectively. Besides, that spherical shape of Ag NPs with good size distribution was observed in the SEM/EDS analysis. The small size, around 50 nm, and spherical shape of Ag/AgO NSs with good size distribution were observed in the SEM/EDS analysis. Besides, the antibacterial activity of the extract was evaluated against three pathogenic bacteria, by disk diffusion method. Significant antibacterial activity was observed for the prepared extracts of M. sylvestris against the bacteria (Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa), and the results were compared with the known antibiotics such as amoxicillin, cephalexin, erythromycin, and fluconazole.
Collapse
Affiliation(s)
- Ali Bekhradian
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Bahador Karami
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran.
| | | |
Collapse
|
3
|
Tungare K, Gupta J, Bhori M, Garse S, Kadam A, Jha P, Jobby R, Amanullah M, Vijayakumar S. Nanomaterial in controlling biofilms and virulence of microbial pathogens. Microb Pathog 2024; 192:106722. [PMID: 38815775 DOI: 10.1016/j.micpath.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The escalating threat of antimicrobial resistance (AMR) poses a grave concern to global public health, exacerbated by the alarming shortage of effective antibiotics in the pipeline. Biofilms, intricate populations of bacteria encased in self-produced matrices, pose a significant challenge to treatment, as they enhance resistance to antibiotics and contribute to the persistence of organisms. Amid these challenges, nanotechnology emerges as a promising domain in the fight against biofilms. Nanomaterials, with their unique properties at the nanoscale, offer innovative antibacterial modalities not present in traditional defensive mechanisms. This comprehensive review focuses on the potential of nanotechnology in combating biofilms, focusing on green-synthesized nanoparticles and their associated anti-biofilm potential. The review encompasses various aspects of nanoparticle-mediated biofilm inhibition, including mechanisms of action. The diverse mechanisms of action of green-synthesized nanoparticles offer valuable insights into their potential applications in addressing AMR and improving treatment outcomes, highlighting novel strategies in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India.
| | - Juhi Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Aayushi Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Anatek Services PVT LTD, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, Maharashtra, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia, 61421
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
4
|
Qurtulen, Ahmad A. Green tea waste-derived carbon dots: efficient degradation of RhB dye and selective sensing of Cu 2+ ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121630-121646. [PMID: 37957492 DOI: 10.1007/s11356-023-30735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Herein, we have synthesized carbon dots (CDs) using a one-step hydrothermal method from green tea waste, a biomass-derived source with high fluorescent properties and excellent solubility in water. The synthesis of CDs was confirmed through a comprehensive range of characterization techniques, including HRTEM (high-resolution transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), and EDX (energy-dispersive X-ray spectroscopy). The optical properties of the synthesized CDs were assessed using UV-Vis spectroscopy and fluorescence (FL) spectroscopy. The CDs displayed exceptional stability across a wide pH range and various concentrations. Moreover, these CDs exhibited a photoluminescence quantum yield (PLQY) of 21.6%, indicating their efficiency in emitting fluorescent light upon excitation. The CDs also showcased their prowess in fluorometrically detecting Cu2+ ions, displaying high sensitivity and selectivity. They presented two distinct linear ranges: 0.02 to 50 µM and 50 to 100 µM, with recovery rates ranging from 94.2 to 104.06%. Moreover, under visible light irradiation, the CDs exhibited significant efficiency in the photocatalytic removal of dyes. Specifically, the CDs achieved degradation rate of 97.89% for Rhodamine B (RhB) within a 30-min irradiation period. In the context of RhB adsorption, it is evident that the experimental data align more closely with the Freundlich isotherm than the Langmuir isotherm. This is substantiated by a higher R2 value (0.97) for the Freundlich isotherm model compared to the Langmuir adsorption isotherm model (0.93). Notably, the adsorption kinetics was effectively described by pseudo first-order kinetics models. Overall, these results highlight the promising potential of CDs in applications such as environmental remediation and waste treatment processes due to their photocatalytic and sensing capabilities.
Collapse
Affiliation(s)
- Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Anees Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
5
|
Rajabi HR, Alvand ZM, Mirzaei A. Sonochemical-assisted synthesis of copper oxide nanoparticles with the plant-mediated approach and comparative evaluation of some biological activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120236-120249. [PMID: 37938488 DOI: 10.1007/s11356-023-30684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023]
Abstract
The present study reported a green approach for the sonochemical-assisted synthesis (SAS) of copper oxide nanoparticles (CuO NPs) by using the aqueous extract of the Ficus johannis plant. The aqueous extract was obtained using ultrasonic-assisted extraction (15 min, 45 °C) and microwave-assisted extraction (15 min, 450 w). Next, the as-prepared extracts were used in a plant-mediated approach for the green synthesis of CuO NPs. The synthesized CuO NPs have been characterized via different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS), ultraviolet-visible absorption, photoluminescence, and Fourier-transformed infrared (FT-IR) spectroscopic techniques. As observed, a broad absorption band around 375 nm clarified the successful synthesis of CuO NPs. From the SEM analysis, the average particle size of the prepared CuO NPs was estimated below 50 nm. In addition, the antimicrobial, antioxidant, and antifungal properties of the aqueous extracts as well as the as-prepared CuO NPs were evaluated by different assays. These included the release of protein, nucleic acids, disk diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and time-killing assays.
Collapse
Affiliation(s)
| | | | - Ali Mirzaei
- Medicinal Plant Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
6
|
Kim SH, Bae IS, Lee HU, Moon JY, Lee YC. A Bioactive Compound-Loaded Zinc-Aminoclay Encapsulated, Pickering Emulsion System for Treating Acne-Inducing Microbes. Int J Mol Sci 2023; 24:9669. [PMID: 37298619 PMCID: PMC10253637 DOI: 10.3390/ijms24119669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Acne is a common skin condition caused by the growth of certain bacteria. Many plant extracts have been investigated for their potential to combat acne-inducing microbes, and one such plant extract is microwave-assisted Opuntia humifusa extract (MA-OHE). The MA-OHE was loaded onto zinc-aminoclay (ZnAC) and encapsulated in a Pickering emulsion system (MA-OHE/ZnAC PE) to evaluate its therapeutic potential against acne-inducing microbes. Dynamic light scattering and scanning electron microscopy were used to characterize MA-OHE/ZnAC PE with a mean particle diameter of 353.97 nm and a PDI of 0.629. The antimicrobial effect of MA-OHE/ZnAC was evaluated against Staphylococcus aureus (S. aureus) and Cutibacterium acnes (C. acnes), which contribute to acne inflammation. The antibacterial activity of MA-OHE/ZnAC was 0.1 and 0.025 mg/mL to S. aureus and C. acnes, respectively, which were close to naturally derived antibiotics. Additionally, the cytotoxicity of MA-OHE, ZnAC, and MA-OHE/ZnAC was tested, and the results showed that they had no cytotoxic effects on cultured human keratinocytes in a range of 10-100 μg/mL. Thus, MA-OHE/ZnAC is suggested to be a promising antimicrobial agent for treating acne-inducing microbes, while MA-OHE/ZnAC PE is a potentially advantageous dermal delivery system.
Collapse
Affiliation(s)
- Seong-Hyeon Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - In-Sun Bae
- Swsonaki Inc., Gwangyang Frontier-Valley 3rd, 30 Gaseok-ro, Incheon 22827, Republic of Korea;
| | - Hyun Uk Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea;
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116, Samseongyo-ro 16gil, Seoul 02876, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
7
|
Vinitha V, Preeyanghaa M, Anbarasu M, Neppolian B, Sivamurugan V. Chemical recycling of polyester textile wastes using silver-doped zinc oxide nanoparticles: an economical solution for circular economy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27567-0. [PMID: 37217818 DOI: 10.1007/s11356-023-27567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
The waste management of polyethylene terephthalate (PET)-derived polyester (PES) textile is a global issue, and material recovery through chemical recycling can restore a circular economy. In our investigation, microwave-induced catalytic aminolysis and glycolysis of PES textile wastes using Ag-doped ZnO nanoparticles have been proposed. Ag-doped ZnO is prepared by the sol-gel method and characterised by XRD, FT-IR, UV-Vis, SEM-EDX and TEM. The reaction parameters such as PET-to-catalyst ratio, microwave power and irradiation time, temperature and catalyst recycling have been optimised. The catalyst was found to be more stable and could be recycled up to six times without losing its activity. Both the aminolysis and glycolysis of PES showed 100% conversion and afforded of bis (2-hydroxy ethylene) terephthalamide (BHETA) and bis (2-hydroxy ethylene) terephthalate (BHET), respectively. The depolymerisation of PES wastes using Ag-doped ZnO afforded BHETA and BHET for about 95 and 90%, respectively. The monomers BHET and BHETA confirmed by FT-IR, 1H NMR and mass spectroscopy. According to the findings, 2 mol% Ag-doped ZnO has higher catalytic activity.
Collapse
Affiliation(s)
- Viswanathan Vinitha
- PG and Research Department of Chemistry, Pachaiyappa's College, Chennai, 600 030, India
| | - Mani Preeyanghaa
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Murugan Anbarasu
- PG and Research Department of Chemistry, Pachaiyappa's College, Chennai, 600 030, India
| | - Bernaurdshaw Neppolian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Vajiravelu Sivamurugan
- PG and Research Department of Chemistry, Pachaiyappa's College, Chennai, 600 030, India.
| |
Collapse
|
8
|
Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45528-45554. [PMID: 36809626 PMCID: PMC9942668 DOI: 10.1007/s11356-023-25822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Urbanization and a massive population boom have immensely increased the solid wastes (SWs) generation and are expected to reach 3.40 billion tons by 2050. In many developed and emerging nations, SWs are prevalent in both major and small cities. As a result, in the current context, the reusability of SWs through various applications has taken on added importance. Carbon-based quantum dots (Cb-QDs) and their many variants are synthesized from SWs in a straightforward and practical method. Cb-QDs are a new type of semiconductor that has attracted the interest of researchers due to their wide range of applications, which include everything from energy storage, chemical sensing, to drug delivery. This review is primarily focused on the conversion of SWs into useful materials, which is an essential aspect of waste management for pollution reduction. In this context, the goal of the current review is to investigate the sustainable synthesis routes of carbon quantum dots (CQDs), graphene quantum dots (GQDs), and graphene oxide quantum dots (GOQDs) from various types SWs. The applications of CQDs, GQDs, and GOQDs in the different areas are also been discussed. Finally, the challenges in implementing the existing synthesis methods and future research directions are highlighted.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Moonis Ali Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| |
Collapse
|
9
|
Baashen MA. Synthesis and antibacterial evaluation of novel hydrazones and bis-hydrazones containing 1,2,3-triazole moiety. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2151297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammed A. Baashen
- Department of Chemistry, College of Science and Humanities, Shaqra University, Dawadmi, Saudi Arabia
| |
Collapse
|
10
|
Zhu T, Cao L, Kou X, Liu Y, Dong WF, Ge M, Li L. Nitrogen-doped cyan-emissive carbon quantum dots for fluorescence tetracycline detection and lysosome imaging. RSC Adv 2022; 12:33761-33771. [PMID: 36505714 PMCID: PMC9685596 DOI: 10.1039/d2ra04945g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Tetracyclines (TCs) prevent the growth of peptide chains and the synthesis of proteins, and they are widely used to inhibit Gram-positive and -negative bacteria. For the detection of tetracyclines in cell and in vitro, a convenient and simple detection system based on nitrogen-doped cyan carbon quantum dots (C-CQDs) was developed. C-CQDs have excellent excitation-independent properties, the best optimal excitation peak is 360 nm and the best emission peak is 480 nm. Based on the inner filter effect (IFE), the fluorescence intensity of C-CQDs in solution decreases with the increase of tetracyclines. In the range of 0-100 μM, C-CQDs present a good linear relationship with three tetracyclines (CTC, TET, OCT), with R 2 all greater than 0.999. C-CQDs can detect tetracycline in milk samples with recovery in the range of 98.2-103.6%, which demonstrates their potential and broad application in real samples. Furthermore, C-CQDs exhibit excellent lysosomal targeting, as indicated by a Pearson's coefficient of 0.914 and an overlap of 0.985. The internalisation of C-CQDs was mainly affected by lipid raft-mediated endocytosis in endocytic pathway experiments. These experiments indicate that C-CQDs can be effectively used to detect TC content and target lysosomes as an alternative to commercial dyes.
Collapse
Affiliation(s)
- Tongtong Zhu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230026P. R. China,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Lei Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230026P. R. China,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Xinyue Kou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230026P. R. China,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Yulu Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230026P. R. China,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230026P. R. China,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Mingfeng Ge
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Li Li
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China,Chongqing Guoke Medical Technology Development Co., LtdChongqing 401122China,Zhengzhou Institute of Biomedical Engineering and TechnologyZhengzhouHenan 450001China
| |
Collapse
|
11
|
Nagore PB, Ghoti AJ, Salve AP, Mane KG. Antimicrobial and Detoxification Study of Novel Luminescent CuO Nanoparticles Synthesized by White Garland Lily Leaves Extract. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Rajamohan R, Ashokkumar S, Lee YR. Environmental free synthesis of biologically active Cu2O nanoparticles for the cytotoxicity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Kariuki BM, Mohamed HA, Abdel-Wahab BF, El-Hiti GA. 4-((5-(1-(4-Fluorophenyl)-5-methyl-1 H-1,2,3-triazol-4-yl)-1,3,4-thiadiazol-2-yl)amino)benzenesulfonic acid: unexpected synthesis, structure elucidation and antimicrobial activity. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2099858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Hanan A. Mohamed
- Chemical Industries Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Bakr F. Abdel-Wahab
- Chemical Industries Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Gamal A. El-Hiti
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Shahzad Shirazi M, Foroumadi A, Saberikia I, Moridi Farimani M. Very rapid synthesis of highly efficient and biocompatible Ag 2Se QD phytocatalysts using ultrasonic irradiation for aqueous/sustainable reduction of toxic nitroarenes to anilines with excellent yield/selectivity at room temperature. ULTRASONICS SONOCHEMISTRY 2022; 87:106037. [PMID: 35709576 PMCID: PMC9201021 DOI: 10.1016/j.ultsonch.2022.106037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
There are many problems associated with the synthesis of nanocatalysts and catalytic reduction of nitroarenes - e.g., high temperatures, costs, long reaction/synthesis process times, the toxicity of chemicals/solvents, undesirable byproducts, the toxic/harmful wastes, low efficiency/selectivity, etc. This study represents an attempt to overcome these challenges. To this purpose, biocompatible and highly efficient Ag2Se quantum dots (QDs) catalysts with antibacterial activity were synthesized in a very rapid (30 sec, rt), simple, inexpensive, sustainable/green, and one-pot strategy in water using ultrasonic irradiation. Characterization of the QDs was performed using different techniques. UV-Vis absorption and fluorescence spectroscopic studies showed an absorption peak at 480-550 nm and a maximum emission peak around 675 nm, which confirmed the successful synthesis of Ag2Se QDs via the applied biosynthetic method. Subsequently, catalytic reduction of nitroarenes by them was carried out under safe conditions (H2O, rt, air atmosphere) in ∼ 60 min with excellent yield and selectivity (>99%). Their catalytic activity in the reduction of various toxic nitroarenes to aminoarenes under green conditions was investigated. Thus, a rapid and safe ultrasound-based method was employed to prepare stable and green Ag2Se QDs phyto-catalysts with unique properties, including exquisite monodispersity in shape (orthorhombic) and size (∼7 nm), air-stability, and good purity and crystallinity. Importantly, instead of various toxic chemicals, the plant extract obtained by rapid ultrasonic method (10 min, rt) was used as natural reducing, capping, and stabilizing agents. Moreover, antibacterial assays results showed that Ag2Se-QDs catalysts at low concentrations (ppm) have high activity against all tested bacteria, especially E. coli (MIC:31.25 ppm, MBC:125 ppm) which were significantly different from those of Fig extract (MIC = MBC:500 ppm). The data reflect the role of these bio-synthesized Ag2Se-QDs catalysts in the development of versatile and very safe catalysts with biomedical properties.
Collapse
Affiliation(s)
- Maryam Shahzad Shirazi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Saberikia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran.
| |
Collapse
|
15
|
Hoang HT, Park JS, Kim SH, Moon JY, Lee YC. Microwave-Assisted Dendropanax morbifera Extract for Cosmetic Applications. Antioxidants (Basel) 2022; 11:antiox11050998. [PMID: 35624862 PMCID: PMC9137482 DOI: 10.3390/antiox11050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Recently, utilizing natural bioactive compounds for active ingredients in cosmetics has become a growing worldwide trend. More and more studies aim to identify the sources of herbal ingredients for applications in the pharmaceutical and cosmetic fields. Additionally, in order to optimize the safety of natural ingredients, choosing an environmentally friendly extraction method also plays an important role. In this work, an eco-friendly extraction technique for Dendropanax morbifera using microwave treatment and microwave-assisted Dendropanax morbifera extract (MA-DME) was investigated. The results indicate that higher yields of MA-DME were obtained than with conventional methods and that D. morbifera’s antioxidant properties were enhanced. Moreover, we found that MA-DME exhibited extraordinary antioxidant, anti-aging, and skin-whitening activities. We suggest MA-DME as a potential cosmeceutical ingredient than could be utilized for comprehensive protection of human skin.
Collapse
Affiliation(s)
- Hien Thi Hoang
- Department of BioNano Technology, Gachon University, Seongnam-Daero 1342, Sujeong-gu, Seongnam-si 13120, Korea; (H.T.H.); (S.-H.K.)
| | - Jae-Seok Park
- Nature Fairy Co., Ltd., 3F, 28-27, Dongseo-ro 857 beon-gil, Siheung-si 14983, Korea;
| | - Seong-Hyeon Kim
- Department of BioNano Technology, Gachon University, Seongnam-Daero 1342, Sujeong-gu, Seongnam-si 13120, Korea; (H.T.H.); (S.-H.K.)
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16gil, Seoul 02876, Korea
- Correspondence: (J.-Y.M.); (Y.-C.L.)
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-Daero 1342, Sujeong-gu, Seongnam-si 13120, Korea; (H.T.H.); (S.-H.K.)
- Well Scientific Laboratory Ltd., 305, 3F, Mega-center, SKnTechnopark, 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea
- Correspondence: (J.-Y.M.); (Y.-C.L.)
| |
Collapse
|
16
|
A. El-Hiti G, A. Mohamed H, F. Abdel-Wahab B, Sabry E, M. Kariuki B. Synthesis and Antimicrobial Activity of 2,5-bis(Pyrazol-3-yl or Triazol-4-yl)-1,3,4-oxadiazoles. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
A. El-Hiti G, F. Abdel-Wahab B, A. Mohamed H, A. Farahat A, M. Kariuki B. Reactivity of 4-Bromoacetyl-1,2,3-triazoles towards Amines and Phenols: Synthesis and Antimicrobial Activity of Novel Heterocycles. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Padalia H, Chanda S. Synthesis of silver nanoparticles using Ziziphus nummularia leaf extract and evaluation of their antimicrobial, antioxidant, cytotoxic and genotoxic potential (4-in-1 system). ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:354-366. [PMID: 33792441 DOI: 10.1080/21691401.2021.1903478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/07/2021] [Indexed: 01/02/2023]
Abstract
This study reports the synthesis of silver nanoparticles (AgNPs) from silver nitrate by leaf extract of a medicinal plant Ziziphus nummularia. The leaf extract acts as a reducing and stabilizing agent for the formation of nanoparticles. The green synthesized AgNPs were characterized by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FITR) spectroscopy, Thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM) analysis and evaluated their antimicrobial, antioxidant, cytotoxic and genotoxic potential. The UV-Vis spectroscopy showed a characteristic absorption peak at 430 nm due to surface plasma resonance. TEM analysis showed that synthesized AgNPs were spherical and oval with an average size of 25.96 nm. AgNPs showed effective antimicrobial activity (lowest MIC-0.625 µg/mL against Escherichia coli), synergistic antimicrobial activity (lowest ΣFIC 0.09 with chlormaphenicol against Corynebacterium rubrum) and antibiofilm activity. AgNPs showed strong DPPH activity with IC50 - 520 µg/mL and ABTS activity IC50 - 55 µg/mL and reducing capacity assessment. In vitro cytotoxic effect was evaluated by MTT assay against HeLa cells, breast cells and fibroblast cells. Genotoxic effect was evaluated by comet assay. AgNPs displayed dose-dependent cytotoxic and genotoxic effect. Our findings indicated that synthesized AgNPs could be considered as multifunctional and have great potential for use in biomedical applications.HighlightsSilver nanoparticles were synthesized using leaf extract of Ziziphus nummulariaCharacterization was done by various spectral techniquesAntimicrobial efficacy was demonstrated against an array of bacteriaAgNPs exhibited significant cytotoxic effect against HeLa cell lineAgNPs showed cytotoxicity and genotoxicity in a dose-dependent manner.
Collapse
Affiliation(s)
- Hemali Padalia
- Department of Microbiology, School of Science, RK University, Rajkot, India
| | - Sumitra Chanda
- Department of Biosciences (UGC-CAS), Saurashtra University, Rajkot, India
| |
Collapse
|
19
|
Alvand ZM, Rahimi M, Rafati H. A microfluidic chip for visual investigation of the interaction of nanoemulsion of Satureja Khuzistanica essential oil and a model gram-negative bacteria. Int J Pharm 2021; 607:121032. [PMID: 34419590 DOI: 10.1016/j.ijpharm.2021.121032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/08/2023]
Abstract
Nanotechnology has provided novel approaches against food born and pathogenic bacteria. Within the present study, the effects of pure and nanoemulsified essential oil derived from Satureja Khuzistanica essential oil (SKEO) on Escherichia coli (E. coli ATCC 25922) as a human pathogen has been studied using a microfluidic chip. The morphology and antibacterial activity of E. coli at disparate residence durations (from 2 to 30 min) and various nanoemulsified or pure essential oil concentrations (8.0-62.5 μg mL-1) and numerous nanoemulsion's droplet sizes from 32 to 124 nm, have been investigated in the microfluidic system. Also, the quantitative analysis including optical density, time killing assay, protein, nucleic acid and potassium release were employed to confirm the effects of bacterial inhibition taking advantage of the chip apparatus. It was revealed that the prepared nanoemulsion left a considerable destructive effect on E. coli bacterial membrane, confirmed by fast release of cytoplasmic elements including protein, nucleic acid and potassium. However, this process was remarkably intensified for both nanoemulsion and pure essential oil using the microfluidic chip versus the conventional methods. The results also revealed that after 4 min of bacterium treatment by 12.5 μg mL-1 nanoemulsion with 32 nm mean particle size, the bacterial membrane wall began to degrade rapidly, and bacterial activity was almost completely inhibited in a 20-min period. These findings may have implications in the similarly structured and phospholipid-encapsulated bacteria and viruses, like COVID-19.
Collapse
Affiliation(s)
- Zinab Moradi Alvand
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran; Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Masoud Rahimi
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hasan Rafati
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
20
|
Velidandi A, Pabbathi NPP, Baadhe RR. Study of parameters affecting the degradation of rhodamine-B and methyl orange dyes by Annona muricata leaf extract synthesized nanoparticles as well as their recyclability. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Xing J, Li N, Liang Y, Zhu F. Microwave-assisted synthesis of magnetic Pb(II)-imprinted-poly(schiff base-co-MAA) for selective recognition and extraction of Pb(II) from industrial wastewater. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1930033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Junde Xing
- School of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, P. R. China
| | - Na Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, P. R. China
| | - Yukun Liang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, P. R. China
| | - Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, P. R. China
| |
Collapse
|
22
|
Enhancement of multifunctional properties of leather surface decorated with silver nanoparticles (Ag NPs). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130130] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Chen L, Hu H, Chen Y, Gao J, Li G. Metal Cation Valency Dependence in Morphology Evolution of Cu 2-x S Nanodisk Seeds and Their Pseudomorphic Cation Exchanges. Chemistry 2021; 27:7444-7452. [PMID: 33686735 DOI: 10.1002/chem.202100006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/02/2021] [Indexed: 12/18/2022]
Abstract
A crucial parameter in the design of semiconductor nanoparticles (NPs) with controllable optical, magnetic, electronic, and catalytic properties is the morphology. Herein, we demonstrate the potential of additive metal cations with variable valency to direct the morphology evolution of copper-deficient Cu2-x S nanoparticles in the process of seed-mediated growth. In particular, the djurleite Cu1.94 S seed could evolve from disk into tetradecahedron in the presence of tin(IV) cations, whereas they merely formed sharp hexagonal nanodisks with tin(II) cations. In addition to djurleite Cu1.94 S, the tin(IV) cations could be generalized to direct the growth of roxbyite Cu1.8 S and covellite CuS nanodisk seeds into tetradecahedra. We further perform pseudomorphic cation exchanges of Cu1.94 S tetradecahedra with Zn2+ and Cd2+ to produce polyhedral zinc sulfide (ZnS) and cadmium sulfide (CdS) NPs. Moreover, we achieve Cu1.8 S/ZnS and Cu1.94 S/CdS tetradecahedral heterostructures via partial cation exchange, which are otherwise inaccessible by traditional synthetic approaches.
Collapse
Affiliation(s)
- Lihui Chen
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Haifeng Hu
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Yuzhou Chen
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
| | - Guohua Li
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310014, P. R. China
- State Key Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, 310032, P. R. China
| |
Collapse
|
24
|
Evaluation of Phytotoxicity of Bimetallic Ag/Au Nanoparticles Synthesized Using Geum urbanum L. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01814-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThe growing production and wider application of metal nanoparticles gives rise to many concerns about their release to natural ecosystems. It is very important to be aware of the harmful impact of nanoparticles on living organisms, including plants. Therefore, it is of vital significance to explore the impact of metal nanoparticles on plants. This work assessed the phytotoxicity of bimetallic Ag/Au nanoparticles and Geum urbanum L. extract. The obtained bimetallic Ag/Au nanoparticles were characterized by UV–vis spectrophotometry (UV–vis), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The microscopic studies enabled the determination of the size of the obtained nanoparticles, which was 50 nm. The wide range of concentrations evaluated in the course of the study made it possible to observe changes in selected plants (seeds of Lepidium sativum, Linum flavum, Zea mays, Solanum lycopersicum var. Cerasiforme and Salvia hispanica-Chia) caused by a stress factor. The studies showed that the solution of Ag/Au nanoparticles was most toxic to flax (IC50 = 9.83 × 10–6/9.25 × 10–6 mg/ml), and least toxic to lupine (IC50 = 1.23 × 10–3/1.16 × 10–3 mg/ml). Moreover, we studied the toxicity of Geum urbanum extract. The extracts diluted to 0.00875 mg/ml stimulated the growth of lupine, flax and garden cress; extracts diluted to 0.175 mg/ml stimulated the growth of Chia and tomatoes; and extracts diluted to 0.00875 mg/ml stimulated the growth of corn. G. urbanum extract was most toxic to lupine (IC50 = 0.374 mg/ml), and least toxic to corn (IC50 = 4.635 mg/ml).
Collapse
|
25
|
Taha ZA, Hijazi AK, Al Momani WM. Lanthanide complexes of the tridentate Schiff base ligand salicylaldehyde-2- picolinoylhydrazone: Synthesis, characterization, photophysical properties, biological activities and catalytic oxidation of aniline. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Hafidh A, Touati F, Sediri F. Synthesis, charaterization and optical properties of nanostructured silica hybrid materials obtained by soft chemistry from perhydropolysilazane/1,2,4-triazole precursors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Abdelhameed RM, Darwesh OM, El-Shahat M. Synthesis of arylidene hydrazinylpyrido[2,3- d]pyrimidin-4-ones as potent anti-microbial agents. Heliyon 2020; 6:e04956. [PMID: 32995633 PMCID: PMC7511821 DOI: 10.1016/j.heliyon.2020.e04956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/15/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
Combination of arylidene hydrazinyl moiety with pyrido[2,3-d]pyrimidin-4-one skeleton in compounds 7‒26 results in the output of unprecedented anti-microbial agents. Arylidene hydrazinyl based on Pyrido[2,3-d]pyrimidin-4-one analoges 7‒26 prepared by the treatment of [2,3-d]pyrimidin-4-ones 6a,b with various aromatic aldehydes. The antimicrobial action for recently synthesized compounds was considered towards gram positive bacterial species (Staphylococcus aurous ATCC- 47077; Bacillus cereus ATCC-12228), gram negative bacterial species (Escherichia coli ATCC-25922; Salmonella typhi ATCC-15566) and Candida albicans ATCC-10231 as fungal strains. The antimicrobial action expanded by expanding the electron donating group in position 2 and 5 for Pyrido[2,3-d]pyrimidin-4-one core. Derivatives 13, 14, 15, 16 and 12; individually appeared hopeful anti-microbial action towards all strains utilized with inhibition zone higher than that of standard reference drug with lowest MIC.
Collapse
Affiliation(s)
- Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Osama M Darwesh
- Department of Agricultural Microbiology, Agricultural Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
28
|
Nagore PB, Ghoti AJ, Salve AP, Mane KG. RETRACTED ARTICLE: Green Synthesis of Luminescent Copper Oxide Nanoparticles Using Ginger Lily Leaves Extract. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01614-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Olajire A, Mohammed A. Green synthesis of bimetallic PdcoreAushell nanoparticles for enhanced solid-phase photodegradation of low-density polyethylene film. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Moon JY, Ngoc LTN, Chae M, Tran VV, Lee YC. Effects of Microwave-Assisted Opuntia Humifusa Extract in Inhibiting the Impacts of Particulate Matter on Human Keratinocyte Skin Cell. Antioxidants (Basel) 2020; 9:antiox9040271. [PMID: 32218135 PMCID: PMC7222191 DOI: 10.3390/antiox9040271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Particulate matter (PM) is one of the most important factors causing serious skin diseases, due to its generation of reactive oxygen species (ROS) over the course of long-term exposure. As a source of natural antioxidants, Opuntia humifusa (O. humifusa) is a potential candidate for the design of advanced formulations to prevent PM’s harmful effects. Unfortunately, its high viscosity does not allow it to be utilized in these formulations. In this present study, a new approach to the extract of O. humifusa using high-power microwave treatment, namely microwave-assisted O. humifusa extract (MA-OHE), was investigated. The results indicated that MA-OHE not only is a reasonable viscosity extract, but also enhances O. humifusa’s antioxidant properties. Additionally, this study also found that MA-OHE exhibited outstanding antioxidant and anti-inflammatory activities in eliminating PM’s effects, due to suppression of AhR degradation, ROS production, and COX-2 and MMP-9 expression in HaCaT keratinocytes. It is believed that MA-OHE is a potential cosmeceutical ingredient that could be utilized to prevent PM-induced skin oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ju-Young Moon
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea; (J.-Y.M.); (L.T.N.N.)
| | - Le Thi Nhu Ngoc
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea; (J.-Y.M.); (L.T.N.N.)
| | - Minhe Chae
- Biocell Korea Co., Ltd., 1-2FJanghan B/D, 54 Bongeunsa-ro 30-gil, Gangnam-gu, Seoul 04631, Korea;
| | - Vinh Van Tran
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea; (J.-Y.M.); (L.T.N.N.)
- Correspondence: (V.V.T.); (Y.-C.L.)
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Korea; (J.-Y.M.); (L.T.N.N.)
- Correspondence: (V.V.T.); (Y.-C.L.)
| |
Collapse
|