1
|
Kaczmarek DK, Klejdysz T, Pacholak A, Kaczorek E, Pernak J. Environmental impact assessment of dicationic ionic liquids with ammonium-phosphonium cations and amino acid anions. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134793. [PMID: 38850954 DOI: 10.1016/j.jhazmat.2024.134793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Progress in the development of biodegradable or biobased ionic liquids (ILs) has led to the design of green compounds for several applications. Herein, four biocompatible dicationic ionic liquids (DILs) with ammonium-phosphonium cations and amino acid anions were synthesized and investigated their environmental impact. The structures of the DILs were confirmed by spectral analyses (1H, 13C and 31P NMR). Furthermore, physicochemical properties such as density, viscosity and refractive index were determined. Water content, bromide content and solubility were thereafter determined as the parameters needed for further studies. Subsequently, their antifeedant activity towards economically important pests of grain in storage warehouses: the granary weevil, the confused flour beetle, and the khapra beetle was examined, showing the dependence on structure. Moreover, selected DILs were investigated for toxicity towards white mustard, Daphnia magna, and Artemia franciscana to specify the environmental impact. These studies were complemented by understand the biodegradation of DILs by bacterial communities derived from soil at the agricultural land. The result was DILs with limited environmental footprints that have great potential for further application studies.
Collapse
Affiliation(s)
- Damian Krystian Kaczmarek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland.
| | - Tomasz Klejdysz
- Institute of Plant Protection - National Research Institute, Węgorka 20, Poznan 60-318, Poland
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| | - Juliusz Pernak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland
| |
Collapse
|
2
|
Yuan Y, Zhang S, Duan K, Xu Y, Guo K, Chen C, Chaemchuen S, Cao D, Verpoort F. Multifunctional Biomass-Based Ionic Liquids/CuCl-Catalyzed CO 2-Promoted Hydration of Propargylic Alcohols: A Green Synthesis of α-Hydroxy Ketones. Int J Mol Sci 2024; 25:1937. [PMID: 38339215 PMCID: PMC10856482 DOI: 10.3390/ijms25031937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
α-Hydroxy ketones are a class of vital organic skeletons that generally exist in a variety of natural products and high-value chemicals. However, the traditional synthetic route for their production involves toxic Hg salts and corrosive H2SO4 as catalysts, resulting in harsh conditions and the undesired side reaction of Meyer-Schuster rearrangement. In this study, CO2-promoted hydration of propargylic alcohols was achieved for the synthesis of various α-hydroxy ketones. Notably, this process was catalyzed using an environmentally friendly and cost-effective biomass-based ionic liquids/CuCl system, which effectively eliminated the side reaction. The ionic liquids utilized in this system are derived from natural biomass materials, which exhibited recyclability and catalytic activity under 1 bar of CO2 pressure without volatile organic solvents or additives. Evaluation of the green metrics revealed the superiority of this CuCl/ionic liquid system in terms of environmental sustainability. Further mechanistic investigation attributed the excellent performance to the ionic liquid component, which exhibited multifunctionality in activating substrates, CO2 and the Cu component.
Collapse
Affiliation(s)
- Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.C.); (S.C.); (D.C.)
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Siqi Zhang
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Kang Duan
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Yong Xu
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Kaixuan Guo
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.C.); (S.C.); (D.C.)
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.C.); (S.C.); (D.C.)
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Dongfeng Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.C.); (S.C.); (D.C.)
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.C.); (S.C.); (D.C.)
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
- Research School of Chemical and Biomedical Technologies, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia
| |
Collapse
|
3
|
Niemczak M, Stachowiak W, Kaczmarek DK, Grzanka M, Sobiech Ł. A comprehensive study demonstrating the influence of the solvent composition on the phytotoxicity of compounds, as exemplified by 2,4-D-based ILs with a choline-type cation. PEST MANAGEMENT SCIENCE 2023; 79:3602-3610. [PMID: 37183344 DOI: 10.1002/ps.7543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Growing concern for the protection of the environment and existing ecosystems has resulted in increasing consideration of phytotoxicity tests as valid ecotoxicological indicators of the potential hazards of the use of ionic liquids (ILs) or any other chemical. The objective of this study was to gain a detailed understanding of the influence of the solvent composition of spray solutions on the phytotoxic effect of foliar application of ionic pairs with weak (choline 2,4-dichlorophenoxyacetate, [Chol][2,4-D]), medium (N-hexylcholine 2,4-dichlorophenoxyacetate, [C6 Chol][2,4-D]) and good (N-dodecylcholine 2,4-dichlorophenoxyacetate, [C12 Chol][2,4-D]) surface-active properties. RESULTS Experimental results unambiguously demonstrated that the biological activity of the test salt solutions, particularly [Chol][2,4-D] and [C6 Chol][2,4-D], can be strongly affected by the addition of an organic solvent, such as methanol, ethanol, dimethylformamide (DMF) or dimethylsulfoxide (DMSO) compared to solutions in pure water. However, the observed tendency is less pronounced for the compound exhibiting good surface activity, [C12 Chol][2,4-D]. CONCLUSIONS The collected findings show that caution is warranted in the exploitation or modification of methodologies for assessing phytotoxicity to ensure the reliable interpretation of obtained results for environmental risk assessment or building quantitative structure-activity relationship (QSAR) models. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Witold Stachowiak
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | | | - Monika Grzanka
- Department of Agronomy, Poznan University of Life Sciences, Poznan, Poland
| | - Łukasz Sobiech
- Department of Agronomy, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
4
|
Toxicity of ionic liquids in marine and freshwater microorganisms and invertebrates: state of the art. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39288-39318. [PMID: 36745344 DOI: 10.1007/s11356-023-25562-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
The variety of applications and expected growth in ionic liquid production are raising concerns about the release of these compounds into aquatic systems. Up to date, 103 studies have provided ecotoxicological data regarding the exposure effects of Ionic Liquids towards aquatic microorganisms and invertebrate species: 61 were devoted to freshwater species (n = 28), while marine species (n = 12) were mentioned in 42. The aim of this review, by gathering published studies on ionic liquids and model aquatic organisms, was to present the toxic effects described in distinct species and to understand which are the main factors influencing the toxicity of some ionic liquids. In accordance with the most recognized pattern, freshwater species were featured in a higher number of publications than marine ones. After literature analysis, algal species were the most represented organisms in aquatic toxicity assessments. Among tested compounds, the imidazolium cations in combination with long alkyl-chain anions, showed to be the most toxic one. In analytical terms, it is not straightforward to find the undissociated compound in a natural compartment, as ionic liquids are composed of ionic components, easily subjected to dissociation. Given the aforementioned, the present review paper points out the need of increasing the number of organisms being assessed in ionic liquids toxicity assays, in order to start defining monitoring procedures. Moreover, such would allow a better understanding of ionic liquids contamination status and, also, the opportunity to remark the effectiveness of new in silico methods for the ecotoxicity assessment of this kind of substances.
Collapse
|
5
|
Abstract
Cellulose-based materials have attracted great attention due to the demand for eco-friendly materials and renewable energy alternatives. An increase in the use of these materials is expected in the coming years due to progressive decline in the supply of petrochemicals. Based on the limitations of cellulose in terms of dissolution/processing, and focused on green chemistry, new cellulose production techniques are emerging, such as dissolution and functionalization in ionic liquids which are known as green solvents. This review summarizes the recent ionic liquids used in processing cellulose, including pretreatment, hydrolysis, functionalization, and conversion into bio-based platform chemicals. The recent literatures investigating the progress that ILs have made in their transition from academia to commercial application of cellulosic biomass are also reviewed.
Collapse
|
6
|
Dielectric Study of Tetraalkylammonium and Tetraalkylphosphonium Levulinate Ionic Liquids. Int J Mol Sci 2022; 23:ijms23105642. [PMID: 35628452 PMCID: PMC9145921 DOI: 10.3390/ijms23105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
Broadband dielectric spectroscopy in a broad temperature range was employed to study ionic conductivity and dynamics in tetraalkylammonium- and tetraalkylphosphonium-based ionic liquids (ILs) having levulinate as a common anion. Combining data for ionic conductivity with data obtained for viscosity in a Walden plot, we show that ionic conductivity is controlled by viscosity while a strong association of ions takes place. Higher values for ionic conductivities in a broad temperature range were found for the tetraalkylphosphonium-based IL compared to its ammonium homolog in accordance with its lower viscosity. Levulinate used in the present study as anion was found to interact and associate stronger with the cations forming ion-pairs or other complexes compared to the NTf2 anion studied in literature. In order to analyze dielectric data, different fitting approaches were employed. The original random barrier model cannot well describe the conductivity especially at the higher frequencies region. In electric modulus representation, two overlapping mechanisms contribute to the broad low frequencies peak. The slower process is related to the conduction mechanism and the faster to the main polarization process of the complex dielectric permittivity representation. The correlation of the characteristic time scales of the previous relaxation processes was discussed in terms of ionic interactions.
Collapse
|
7
|
Mero A, Guglielmero L, D'Andrea F, Pomelli CS, Guazzelli L, Koutsoumpos S, Tsonos G, Stavrakas I, Moutzouris K, Mezzetta A. Influence of the cation partner on levulinate ionic liquids properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Measurement of evaporation entropy, evaporation enthalpy, and Gibbs free energy for the [C4Dmim]Gly and [C4Dmim]Ala. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Kumer A, Khan MW. Synthesis, characterization, antimicrobial activity and computational exploration of ortho toludinium carboxylate ionic liquids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Filippi S, Cinelli P, Mezzetta A, Carlozzi P, Seggiani M. Extraction of Polyhydroxyalkanoates from Purple Non-Sulfur Bacteria by Non-Chlorinated Solvents. Polymers (Basel) 2021; 13:polym13234163. [PMID: 34883666 PMCID: PMC8659763 DOI: 10.3390/polym13234163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, non-chlorinated solvents such as cyclohexanone (CYC) and three ionic liquids, (ILs) (1-ethyl-3-methylimidazolium dimethylphosphate, [EMIM][DMP], 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][DEP] and 1-ethyl-3-methylimidazolium methylphosphite, [EMIM][MP]) were tested to extract polyhydroxyalkanoates (PHAs) from the purple non-sulfur photosynthetic bacterium (PNSB) Rhodovulumsulfidophilum DSM-1374. The photosynthetic bacterium was cultured in a new generation photobioreactor with 4 L of working volume using a lactate-rich medium. The extracted PHAs were characterized using a thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, proton nuclear magnetic resonance and gel permeation chromatography. The most promising results were obtained with CYC at 125 °C with an extraction time of above 10 min, obtaining extraction yields higher than 95% and a highly pure poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV) with around 2.7 mol% of hydroxylvalerate (HV). A similar yield and purity were obtained with chloroform (CHL) at 10 °C for 24 h, which was used as the referent solvent Although the three investigated ILs at 60 °C for 4 and 24 h with biomass/IL up to 1/30 (w/w) obtained PHAs strongly contaminated by cellular membrane residues, they were not completely solubilized by the investigated ILs.
Collapse
Affiliation(s)
- Sara Filippi
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy; (P.C.); (M.S.)
- Correspondence:
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy; (P.C.); (M.S.)
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy;
| | - Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, CNR, Via Madonna del Piano 10, 50019 Florence, Italy;
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy; (P.C.); (M.S.)
| |
Collapse
|
11
|
He F, Chen J, Gong Z, Xu Q, Yue W, Xie H. Dissolution pretreatment of cellulose by using levulinic acid-based protic ionic liquids towards enhanced enzymatic hydrolysis. Carbohydr Polym 2021; 269:118271. [PMID: 34294303 DOI: 10.1016/j.carbpol.2021.118271] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
In this study, an economically competitive and sustainable levulinic acid-based protic ionic liquids were identified to be good solvents for the dissolution pretreatment of cellulose towards enhanced enzymatic hydrolysis. The influences of protic ionic liquids species, dissolution pretreatment time, and pretreatment temperature on the physico-chemical structures of cellulose were systematically investigated by various analytical techniques. The findings indicate that the pretreatment efficiency was correlated to the basicity of the organic bases, and the presence of ketone group in the levulinate anion with particular hydrogen bonding forming ability via keto-enol tautomerism. The DBN derived protic ionic liquids exhibited best performance at 100 °C in 1 h, as evidenced by a 94% glucose yield. This solvent system was also suitable for the dissolution pretreatment of corn stover-based lignocellulosic biomass for sugars production, although a higher temperature and longer pretreatment time was required. Furthermore, the solvent system could be recycled and reused.
Collapse
Affiliation(s)
- Feng He
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jinhui Chen
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science & Technology, 947 Heping Road, Wuhan 430081, China
| | - Qinqin Xu
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Wang Yue
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Haibo Xie
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|
12
|
Guglielmero L, Mero A, Mezzetta A, Tofani G, D'Andrea F, Pomelli C, Guazzelli L. Novel access to ionic liquids based on trivalent metal–EDTA complexes and their thermal and electrochemical characterization. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Ivanov MY, Prikhod’ko SA, Bakulina OD, Kiryutin AS, Adonin NY, Fedin MV. Validation of Structural Grounds for Anomalous Molecular Mobility in Ionic Liquid Glasses. Molecules 2021; 26:5828. [PMID: 34641371 PMCID: PMC8510339 DOI: 10.3390/molecules26195828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Ionic liquid (IL) glasses have recently drawn much interest as unusual media with unique physicochemical properties. In particular, anomalous suppression of molecular mobility in imidazolium IL glasses vs. increasing temperature was evidenced by pulse Electron Paramagnetic Resonance (EPR) spectroscopy. Although such behavior has been proven to originate from dynamics of alkyl chains of IL cations, the role of electron spin relaxation induced by surrounding protons still remains unclear. In this work we synthesized two deuterated imidazolium-based ILs to reduce electron-nuclear couplings between radical probe and alkyl chains of IL, and investigated molecular mobility in these glasses. The obtained trends were found closely similar for deuterated and protonated analogs, thus excluding the relaxation-induced artifacts and reliably demonstrating structural grounds of the observed anomalies in heterogeneous IL glasses.
Collapse
Affiliation(s)
- Mikhail Yu. Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Sergey A. Prikhod’ko
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Olga D. Bakulina
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Alexey S. Kiryutin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Nicolay Yu. Adonin
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| |
Collapse
|
14
|
Mezzetta A, Ascrizzi R, Martinelli M, Pelosi F, Chiappe C, Guazzelli L, Flamini G. Influence of the Use of an Ionic Liquid as Pre-Hydrodistillation Maceration Medium on the Composition and Yield of Cannabis sativa L. Essential Oil. Molecules 2021; 26:5654. [PMID: 34577125 PMCID: PMC8467452 DOI: 10.3390/molecules26185654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/27/2022] Open
Abstract
Cannabis sativa L. is a multi-purpose crop, whose resilience, adaptability and soil-enriching properties make it a low-impact production. In the last years, the cultivation of the "industrial" hemp varieties (THC < 0.2%) has been promoted by many Countries, opening a whole new market of hemp-derived products, such as its essential oil (EO). Its distillation might represent an effective method to exploit a residue of the hemp fiber production (flowers), complying with the guidelines of the circular economy. In the present work, different concentrations of an ionic liquid (IL; 1,3-dimethyl-1H-imidazol-3-ium dimethylphosphate) have been studied as a pre-hydrodistillation maceration medium. The EO yields have been evaluated, and their compositions have been analyzed by GC-EIMS. The use of 100% and 90% IL concentrations gave a hydrodistillation yield increment of 250% and 200%, respectively. The 200% yield increase was maintained when the 100% IL was recycled after the hydrodistillation. The lower IL concentrations incremented the cannabinoid and oxygenated sesquiterpene contents, while the opposite was true for sesquiterpene hydrocarbons. The proposed IL-enhanced hydrodistillation medium applied to hemp, studied for the first time in the present work, might be used to both (i) noteworthy increment the hydrodistillation yield and (ii) modulate the obtained EO composition based on the desired final product.
Collapse
Affiliation(s)
- Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| | - Marco Martinelli
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Guidiccioni 8-10, 56010 San Giuliano Terme (PI), Italy;
| | - Filomena Pelosi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| | - Cinzia Chiappe
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| |
Collapse
|
15
|
Jiang S, Zhou S, Du B. A Method for Preparing Superhydrophobic Paper with High Stability and Ionic Liquid-Induced Wettability Transition. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4638. [PMID: 34443161 PMCID: PMC8399005 DOI: 10.3390/ma14164638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
In this study, the polymer PTSPM-PMETAC with anion adsorption properties was prepared by a one-step method, then the amino-modified nano-SiO2 was grafted onto the polymer to improve the roughness of the surface and enhance the stability of superhydrophobic properties, and a high-stability superhydrophobic paper with ion-induced wettability transition properties was successfully prepared. The study found that the paper can realize the reversible control of surface wettability through the exchange between the anions PF6- and Cl- adsorbed on the surface of PMETAC, and further investigation of the effect of different solvents on the ion exchange properties found that water was the poor solvent for ion exchange, while the mixtures of methanol, acetone, and methanol & water were the good solvent. On the whole, the preparation of superhydrophobic paper by this method not only simple in preparation process, low in cost and strong in universality, but also the prepared superhydrophobic paper has high transparency and good stability, which has great application potential in industrial production.
Collapse
Affiliation(s)
- Shangjie Jiang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (S.Z.); (B.D.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Shisheng Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (S.Z.); (B.D.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Bin Du
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (S.Z.); (B.D.)
- Shaanxi Provincial Key Laboratory of Printing and Packaging Engineering, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
16
|
Mezzetta A, Guglielmero L, Mero A, Tofani G, D’Andrea F, Pomelli CS, Guazzelli L. Expanding the Chemical Space of Benzimidazole Dicationic Ionic Liquids. Molecules 2021; 26:4211. [PMID: 34299487 PMCID: PMC8303995 DOI: 10.3390/molecules26144211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Benzimidazole dicationic ionic liquids (BDILs) have not yet been widely explored in spite of their potential. Therefore, two structurally related families of BDILs, paired with either bromide or bistriflimide anions and bearing alkyl spacers ranging from C3 to C6, have been prepared. Their thermal properties have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), while their electrical properties have been assessed by cyclic voltammetry (CV). TG analysis confirmed the higher stability of the bistriflimide BDILs over the bromide BDILs, with minor variation within the two families. Conversely, DSC and CV allowed for ascertaining the role played by the spacer length. In particular, the thermal behavior changed dramatically among the members of the bistriflimide family, and all three possible thermal behavior types of ILs were observed. Furthermore, cyclic voltammetry showed different electrochemical window (C3(C1BenzIm)2/2Tf2N < C4(C1BenzIm)2/2Tf2N, C5(C1BenzIm)2/2Tf2N < C6(C1BenzIm)2/2Tf2N) as well as a reduction peak potential, shape, and intensity as a function of the spacer length. The results obtained highlight the benefit of accessing a more structurally diverse pool of compounds offered by dicationic ILs when compared to the parent monocationic ILs. In particular, gains are to be found in the ease of fine-tuning their properties, which translates in facilitating further investigations toward BDILs as designer solvents and catalysts.
Collapse
Affiliation(s)
- Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Luca Guglielmero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
- DESTEC, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Angelica Mero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Giorgio Tofani
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Felicia D’Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Christian Silvio Pomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (L.G.); (A.M.); (G.T.); (F.D.); (C.S.P.); (L.G.)
| |
Collapse
|
17
|
Betaine and l-carnitine ester bromides: Synthesis and comparative study of their thermal behaviour and surface activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Synthesis, thermal behavior and kinetic study of N-morpholinium dicationic ionic liquids by thermogravimetry. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Koók L, Lajtai-Szabó P, Bakonyi P, Bélafi-Bakó K, Nemestóthy N. Investigating the Proton and Ion Transfer Properties of Supported Ionic Liquid Membranes Prepared for Bioelectrochemical Applications Using Hydrophobic Imidazolium-Type Ionic Liquids. MEMBRANES 2021; 11:membranes11050359. [PMID: 34068877 PMCID: PMC8156054 DOI: 10.3390/membranes11050359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Hydrophobic ionic liquids (IL) may offer a special electrolyte in the form of supported ionic liquid membranes (SILM) for microbial fuel cells (MFC) due to their advantageous mass transfer characteristics. In this work, the proton and ion transfer properties of SILMs made with IL containing imidazolium cation and [PF6]− and [NTf2]− anions were studied and compared to Nafion. It resulted that both ILs show better proton mass transfer and diffusion coefficient than Nafion. The data implied the presence of water microclusters permeating through [hmim][PF6]-SILM to assist the proton transfer. This mechanism could not be assumed in the case of [NTf2]− containing IL. Ion transport numbers of K+, Na+, and H+ showed that the IL with [PF6]− anion could be beneficial in terms of reducing ion transfer losses in MFCs. Moreover, the conductivity of [bmim][PF6]-SILM at low electrolyte concentration (such as in MFCs) was comparable to Nafion.
Collapse
|
20
|
Zullo V, Iuliano A, Guazzelli L. Sugar-Based Ionic Liquids: Multifaceted Challenges and Intriguing Potential. Molecules 2021; 26:2052. [PMID: 33916695 PMCID: PMC8038380 DOI: 10.3390/molecules26072052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/29/2023] Open
Abstract
Carbohydrates represent a promising option in transitioning from oil-based chemical resources to renewable ones, with the goal of developing chemistries for a sustainable future. Cellulose, hemicellulose, and largely available monosaccharides already provide useful chemical building blocks, so-called platform chemicals, such as levulinic acid and hydroxymethyl furfural, as well as solvents like cyrene or gamma-valerolactone. Therefore, there is great anticipation for novel applications involving materials and chemicals derived from sugars. In the field of ionic liquids (ILs), sugar-based ILs have been overlooked for a long time, mainly on account of their multistep demanding preparation. However, exploring new strategies for accessing sugar-based ILs, their study, and their exploitation, are attracting increasing interest. This is due to the growing concerns about the negative (eco)toxicity profile of most ILs in conjunction with their non-sustainable nature. In the present review, a literature survey concerning the development of sugar-based ILs since 2011 is presented. Their preparation strategies and thermal behavior analyses, sorted by sugar type, make up the first two sections with the intention to provide the reader with a useful guide. A final overview of the potential applications of sugar-based ILs and their future perspectives complement the present analysis.
Collapse
Affiliation(s)
- Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (V.Z.); (A.I.)
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (V.Z.); (A.I.)
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
21
|
Guglielmero L, Langroudi MM, Khatib MA, de Oliveira MAC, Mecheri B, De Leo M, Mezzetta A, Guazzelli L, Giglioli R, Epifanio AD, Pogni R, Chiappe C, Pomelli C. Electrochemical and spectroscopic study of vanadyl acetylacetonate–ionic liquids interactions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Morais ES, Lopes AMDC, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD. Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules 2020; 25:E3652. [PMID: 32796649 PMCID: PMC7465760 DOI: 10.3390/molecules25163652] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
A shift to a bioeconomy development model has been evolving, conducting the scientific community to investigate new ways of producing chemicals, materials and fuels from renewable resources, i.e., biomass. Specifically, technologies that provide high performance and maximal use of biomass feedstocks into commodities with reduced environmental impact have been highly pursued. A key example comprises the extraction and/or dissolution of polysaccharides, one of the most abundant fractions of biomass, which still need to be improved regarding these processes' efficiency and selectivity parameters. In this context, the use of alternative solvents and the application of less energy-intensive processes in the extraction of polysaccharides might play an important role to reach higher efficiency and sustainability in biomass valorization. This review debates the latest achievements in sustainable processes for the extraction of polysaccharides from a myriad of biomass resources, including lignocellulosic materials and food residues. Particularly, the ability of ionic liquids (ILs) and deep eutectic solvents (DESs) to dissolve and extract the most abundant polysaccharides from natural sources, namely cellulose, chitin, starch, hemicelluloses and pectins, is scrutinized and the efficiencies between solvents are compared. The interaction mechanisms between solvent and polysaccharide are described, paving the way for the design of selective extraction processes. A detailed discussion of the work developed for each polysaccharide as well as the innovation degree and the development stage of dissolution and extraction technologies is presented. Their advantages and disadvantages are also identified, and possible synergies by integrating microwave- and ultrasound-assisted extraction (MAE and UAE) or a combination of both (UMAE) are briefly described. Overall, this review provides key information towards the design of more efficient, selective and sustainable extraction and dissolution processes of polysaccharides from biomass.
Collapse
Affiliation(s)
| | | | | | | | | | - Armando J. D. Silvestre
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (E.S.M.); (A.M.d.C.L.); (M.G.F.); (C.S.R.F.); (J.A.P.C.)
| |
Collapse
|
23
|
1-Octyl-3-(3-(1-methylpyrrolidiniumyl)propyl)imidazolium Bis(trifluoromethane)sulfonimide. MOLBANK 2019. [DOI: 10.3390/m1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The title compound 1-octyl-3-(3-(1-methylpyrrolidiniumyl)propyl)imidazolium bis(trifluoromethane)sulfonimide was prepared in three steps. This asymmetrical dicationic ionic liquid (ADIL) is composed of two different positively charged head groups (1-octylimidazolium and methylpyrrolidinium cations), which are linked through a propyl alkyl chain and by two bis(trifluoromethane)sulfonimide anions. The final ADIL was obtained by a simple metathesis reaction of the corresponding dibromide ionic liquid, in turn prepared by alkylation of 3-(3-bromopropyl)-1-propylimidazolium bromide. The ADIL structure and those of its precursors were confirmed through NMR and infrared spectroscopy, and the thermal properties of all compounds were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Density, solubility, and viscosity were measured for the prepared compounds.
Collapse
|