1
|
Ghosh R, Pradhan D, Debnath S, Mansingh A, Nagesh N, Chatterjee PB. A Hydrogen Bonded Non-Porous Organic-Inorganic Framework for Measuring Cysteine in Blood Plasma and Endogenous Cancer Cell. Chemistry 2024; 30:e202401255. [PMID: 39162779 DOI: 10.1002/chem.202401255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 08/21/2024]
Abstract
An imbalance in cysteine (Cys) levels in the cells and plasma has been identified as the risk indicator for various human diseases. The structural similarity of cysteine with its congener homocysteine and glutathione offers challenges in its measurement. Herein, we report a hydrogen-bonded organic-inorganic framework of Cu(II) (HOIF) for the selective detection of cysteine over other biothiols. The non-fluorescent HOIF showed 12-fold green emission in the presence of cysteine. The monomeric unit of HOIF is stabilized via intermolecular hydrogen bonds, resulting in a non-porous network structure. Non-interference from homocysteine, glutathione, and other competitive bio-analytes revealed explicit affinity of HOIF for cysteine. Fluorimetric titration showed a wide working concentration window (650 nM-800 μM) for measuring cysteine in an aqueous medium. The mechanistic investigation involving HRMS, EPR, and UV-vis spectroscopic studies revealed the decomplexation of HOIF with Cys, resulting in a fluorescence turn-on response from the luminescent ligand. Validation using a commercial dye, "Cysteine Green", confirmed the prospect of HOIF for early diagnostic purposes. Utilizing the fluorescence turn-on property of HOIF in the presence of cysteine, we measured cysteine quantitatively in the blood plasma samples. Bio-imaging of endogenous cysteine in cancer cells indicated the ability of HOIF to monitor the intracellular cysteine.
Collapse
Affiliation(s)
- Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Debjani Pradhan
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Arushi Mansingh
- Medical Biotechnology Complex, CSIR-CCMB, ANNEXE II, Hyderabad, India
| | - Narayana Nagesh
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
- Medical Biotechnology Complex, CSIR-CCMB, ANNEXE II, Hyderabad, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Zhang W, Chen W, Fu F, Li MJ. Mitochondria-targeted ruthenium(II) complexes for photodynamic therapy and GSH detection in living cells. Dalton Trans 2024; 53:5957-5965. [PMID: 38456809 DOI: 10.1039/d3dt03701k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Photodynamic therapy is an emerging tumor therapy that kills tumor cells by activating reactive oxygen species (ROS) produced by photosensitizers. Mitochondria, as an important organelle, are the main generator of cellular ROS. Therefore, the development of photosensitizers capable of targeting mitochondria could significantly enhance the efficacy of photodynamic therapy. In this study, two novel ruthenium(II) complexes, Ru-1 and Ru-2, were designed and synthesized, both of which were functionalized with α,β-unsaturated ketones for sensing of glutathione (GSH). The crystal structures of the two complexes were determined and they exhibited good recognition of GSH by off-on luminescence signals. The complex Ru-2 containing aromatic naphthalene can enter the cells and react with GSH to generate a strong luminescence signal that can be used to monitor intracellular GSH levels through imaging. Ru-2 also has an excellent mitochondrial localization ability with a Pearson's coefficient of 0.95, which demonstrates that it can efficiently target the mitochondria of tumor cells to enhance the effectiveness of photodynamic therapy as a photosensitizer.
Collapse
Affiliation(s)
- Wanqing Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| | - Weibin Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| | - Fengfu Fu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| | - Mei-Jin Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
4
|
Kavitha V, Viswanathamurthi P, Haribabu J, Echeverria C. An aqueous mediated ultrasensitive facile probe incorporated with acrylate moiety to monitor cysteine in food samples and live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122447. [PMID: 36764167 DOI: 10.1016/j.saa.2023.122447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
A colorimetric probe TQA ((E)-4-(((8-(sec-butoxy)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)amino)benzylacrylate) possessing greater potent towards the sensing of cysteine was successfully synthesized and characterized. The aqueous soluble probe TQA detects Cys based on "ON-OFF" effect with excellent absorbance and emission properties. The probe TQA detects Cys up to its ultra-low level concentration of 1.5 nM and also quantifies the Cys up to 5.05 nM with the quicker response time of 140 s (2.3 min). In addition, the color change produced by the probe TQA on integrated with Cys was also identified easily via paper strip, cotton wool buds and RGB color picker app in smart mobiles. Further, the admirable selectivity and sensitivity of the probe TQA towards Cys extends its utility towards food samples and imaging of live HeLa cells.
Collapse
Affiliation(s)
| | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| |
Collapse
|
5
|
Wang J, Jin Y, Li M, Liu S, Lo KKW, Zhao Q. Time-Resolved Luminescent Sensing and Imaging for Enzyme Catalytic Activity Based on Responsive Probes. Chem Asian J 2022; 17:e202200429. [PMID: 35819359 DOI: 10.1002/asia.202200429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Enzymes, as a kind of biomacromolecules, play an important role in many physiological processes and relate directly to various diseases. Developing an efficient detection method for enzyme activity is important to achieve early diagnosis of enzyme-relevant diseases and high throughput screening of potential enzyme-relevant drugs. Time-resolved luminescence assay provide a high accuracy and signal-to-noise ratios detection methods for enzyme activity, which has been widely used in high throughput screening of enzyme-relevant drugs and diagnosis of enzyme-relevant diseases. Inspired by these advantages, various responsive probes based on metal complexes and metal-free organic compounds have been developed for time-resolved bioimaging and biosensing of enzyme activity owing to their long luminescence lifetimes, high quantum yields and photostability. In this review, we comprehensively reviewed metal complex- and metal-free organic compound-based responsive probes applied to detect enzyme activity through time-resolved imaging, including their design strategies and sensing principles. Current challenges and future prospects in this rapidly growing field are also discussed.
Collapse
Affiliation(s)
- Jiawei Wang
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Yibiao Jin
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Mingdang Li
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Kenneth Kam-Wing Lo
- City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, Hong Kong, CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, CHINA
| |
Collapse
|
6
|
Wu M, Zhang Z, Yong J, Schenk PM, Tian D, Xu ZP, Zhang R. Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors. Top Curr Chem (Cham) 2022; 380:29. [PMID: 35695976 PMCID: PMC9192387 DOI: 10.1007/s41061-022-00392-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
Luminescence chemosensors are one of the most useful tools for the determination and imaging of small biomolecules and ions in situ in real time. Based on the unique photo-physical/-chemical properties of ruthenium(II) (Ru(II)) complexes, the development of Ru(II) complex-based chemosensors has attracted increasing attention in recent years, and thus many Ru(II) complexes have been designed and synthesized for the detection of ions and small biomolecules in biological and environmental samples. In this work, we summarize the research advances in the development of Ru(II) complex-based chemosensors for the determination of ions and small biomolecules, including anions, metal ions, reactive biomolecules and amino acids, with a particular focus on binding/reaction-based chemosensors for the investigation of intracellular analytes' evolution through luminescence analysis and imaging. The advances, challenges and future research directions in the development of Ru(II) complex-based chemosensors are also discussed.
Collapse
Affiliation(s)
- Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Jiang D, Zhang X, Chen Y, Zhang P, Gong P, Cai L, Wang Y. An α-naphtholphthalein-derived colorimetric fluorescent chemoprobe for the portable and visualized monitoring of Hg 2+ by the hydrolysis mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj01051h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An ɑ-naphtholphthalein-derived colorimetric fluorescent chemoprobe was elaborately designed for the portable and visual monitoring of Hg2+ in environmental and biological samples.
Collapse
Affiliation(s)
- Daoyong Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuwen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhao Chen
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Wang
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
8
|
|
9
|
Liu C, Liu J, Zhang W, Wang Y, Liu Q, Song B, Yuan J, Zhang R. "Two Birds with One Stone" Ruthenium(II) Complex Probe for Biothiols Discrimination and Detection In Vitro and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000458. [PMID: 32714756 PMCID: PMC7375222 DOI: 10.1002/advs.202000458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/18/2020] [Indexed: 05/21/2023]
Abstract
In this work, a "two birds with one stone" ruthenium(II) complex probe, Ru-NBD, is proposed as an effective tool for biothiols detection and discrimination in vitro and in vivo. Ru-NBD is nonluminescent due to the quenching of Ru(II) complex emission by photoinduced electron transfer (PET) from Ru(II) center to NBD and the quenching of NBD emission through 4-substitution with "O" ether bond. Ru-NBD is capable of reacting with Cys/Hcy to form long-lived red-emitting Ru-OH and short-lived green-emitting NBD-NR, while reacting with GSH to produce Ru-OH and nonemissive NBD-SR. The long lifetime emission of Ru(II) complex allows elimination of short lifetime background and NBD-NR fluorescence for total biothiols detection ("bird" one) by time-gated luminescence (TGL) analysis, and the remarkable difference in luminescence color response allows discrimination GSH and Cys/Hcy ("bird" two) through steady-state luminescence analysis. Ru-NBD features high sensitivity and selectivity, rapid luminescence response, and low cytotoxicity, which enables it to be used as the probe for luminescence and background-free TGL detection and visualization of biothiols in live cells, zebrafish, and mice. The successful development of this probe is anticipated to contribute to the future biological studies of biothiols roles in various diseases.
Collapse
Affiliation(s)
- Chaolong Liu
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jianping Liu
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland, St. LuciaBrisbaneQLD4072Australia
| | - Wenzhu Zhang
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yong‐Lei Wang
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐10691Sweden
| | - Qi Liu
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Bo Song
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jingli Yuan
- State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland, St. LuciaBrisbaneQLD4072Australia
| |
Collapse
|