1
|
Khatiebi S, Kiprotich K, Onyando Z, Mwaura J, Wekesa C, Chi CN, Mulambalah C, Okoth P. High-Throughput Shotgun Metagenomics of Microbial Footprints Uncovers a Cocktail of Noxious Antibiotic Resistance Genes in the Winam Gulf of Lake Victoria, Kenya. J Trop Med 2024; 2024:7857069. [PMID: 39741524 PMCID: PMC11685326 DOI: 10.1155/jotm/7857069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Background: A diverse range of pollutants, including heavy metals, agrochemicals, pharmaceutical residues, illicit drugs, personal care products, and other anthropogenic contaminants, pose a significant threat to aquatic ecosystems. The Winam Gulf of Lake Victoria, heavily impacted by surrounding human activities, faces potential contamination from these pollutants. However, studies exploring the presence of antibiotic resistance genes (ARGs) in the lake remain limited. In the current study, a shotgun metagenomics approach was employed to identify ARGs and related pathways. Genomic DNA was extracted from water and sediment samples and sequenced using the high-throughput Illumina NovaSeq platform. Additionally, phenotypic antibiotic resistance was assessed using the disk diffusion method with commonly used antibiotics. Results: The analysis of metagenomes sequences from the Gulf ecosystem and Comprehensive Antibiotic Resistance Database (CARD) revealed worrying levels of ARGs in the lake. The study reported nine ARGs from the 37 high-risk resistant gene families previously documented by the World Health Organization (WHO). Proteobacteria had the highest relative abundance of antibiotic resistance (53%), Bacteriodes (4%), Verrucomicrobia (2%), Planctomycetes Chloroflexi, Firmicutes (2%), and other unclassified bacteria (39%). Genes that target protection, replacement, change, and antibiotic-resistant efflux were listed in order of dominance. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed antibiotic resistance to beta-lactamase and vancomycin. Phenotypic resistance to vancomycin, tetracycline, sulfamethoxazole, erythromycin, trimethoprim, tetracycline, and penicillin was reported through the zone of inhibition. Conclusions: This study highlights that the Winam Gulf of Lake Victoria in Kenya harbors a diverse array of antibiotic-resistant genes, including those conferring multidrug resistance. These findings suggest that the Gulf could be serving as a reservoir for more antibiotic-resistant genes, posing potential risks to both human health and aquatic biodiversity. The insights gained from this research can guide policy development for managing antibiotic resistance in Kenya.
Collapse
Affiliation(s)
- Sandra Khatiebi
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Kelvin Kiprotich
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
- Department of Soil Sciences, Faculty of Agrisciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Zedekiah Onyando
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - John Mwaura
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Clabe Wekesa
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena 8 07745, Germany
| | - Celestine N. Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O. Box 582751 23, Uppsala, Sweden
| | - Chrispinus Mulambalah
- Department of Medical Microbiology and Parasitology, School of Medicine, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Patrick Okoth
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| |
Collapse
|
2
|
Chen T, Deng C, Li S, Li B, Liang Y, Zhang Y, Li J, Xu N, Yu K. Multi-omics illuminates the functional significance of previously unknown species in a full-scale landfill leachate treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135669. [PMID: 39208627 DOI: 10.1016/j.jhazmat.2024.135669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Landfill leachate treatment plants (LLTPs) harbor a vast reservoir of uncultured microbes, yet limited studies have systematically unraveled their functional potentials within LLTPs. Combining 36 metagenomic and 18 metatranscriptomic datasets from a full-scale LLTP, we unveiled a double-edged sword role of unknown species in leachate biotreatment and environmental implication. We identified 655 species-level genome bins (SGBs) spanning 47 bacterial and 3 archaeal phyla, with 75.9 % unassigned to any known species. Over 90 % of up-regulated functional genes in biotreatment units, compared to the leachate influent, were carried by unknown species and actively participated in carbon, nitrogen, and sulfur cycles. Approximately 79 % of the 37,366 carbohydrate active enzymes (CAZymes), with ∼90 % novelty and high expression, were encoded by unknown species, exhibiting great potential in biodegrading carbohydrate compounds linked to human meat-rich diets. Unknown species offered a valuable genetic resource of thousands of versatile, abundant, and actively expressed metabolic gene clusters (MGCs) and biosynthetic gene clusters (BGCs) for enhancing leachate treatment. However, unknown species may contribute to the emission of hazardous N2O/H2S and represented significant reservoirs for antibiotic-resistant pathogens that posed environmental safety risks. This study highlighted the significance of considering both positive and adverse effects of LLTP microbes to optimize LLTP performance.
Collapse
Affiliation(s)
- Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China.
| | - Shaoyang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuanmei Liang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, PR China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Nan Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| |
Collapse
|
3
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
4
|
Choudhary G, Kumari S, Anu K, Devi S. Deciphering the microbial communities of alkaline hot spring in Panamik, Ladakh, India using a high-throughput sequencing approach. Braz J Microbiol 2024; 55:1465-1476. [PMID: 38662153 PMCID: PMC11153388 DOI: 10.1007/s42770-024-01346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Due to their distinctive physicochemical characteristics, hot springs are extremely important. The whole genome metagenomic sequencing technology can be utilized to analyze the diverse microbial community that thrives in this habitat due to the particular selection pressure that prevails there. The current investigation emphasizes on culture-independent metagenomic study of the Panamik hot spring and its nearby areas from Ladakh, India. Based on different diversity indices, sequence analysis of the soil reservoir showed higher species richness and diversity in comparison to water and sediment samples. The mineral content and various physicochemical pameters like temperature, pH had an impact on the composition of the microbial community of the geothermal springs. The phyla Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacter, Firmicutes, and Verrucomicrobia in bacterial domain dominate the thermos-alkaline spring at Panamik in different concentrations. Economically significant microbes from the genera Actinobacter, Thermosynechoccus, Candidatus Solibacter, Chthoniobacter, Synechoccus, Pseudomonas and Sphingomonas, were prevalent in hot spring. In the archaeal domain, the most dominant phylum and genera were Euryarchaeota and Thermococcus in all the samples. Further, the most abundant species were Methanosarcina barkeri, Nitrospumilus maritimus and Methanosarcina acetivorans. The present study which only examined one of the several thermal springs present in the Himalayan geothermal area, should be regarded as a preliminary investigation of the microbiota that live in the hot springs on these remote areas. These findings suggest that further investigations should be undertaken to characterize the ecosystems of the Panamik hot spring, which serve as a repository for unidentified microbial lineages.
Collapse
Affiliation(s)
- Geetanjli Choudhary
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Shalini Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumari Anu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarita Devi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Kang Y, Wu H, Guan Q, Zhang Z. Responses of soil greenhouse gas emissions to soil mesofauna invasions and its driving mechanisms in the alpine tundra: A microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168255. [PMID: 37935268 DOI: 10.1016/j.scitotenv.2023.168255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Climate change is resulting in significant modifications of the altitudinal patterns of soil fauna in mountains, leading to their upward invasion and alteration of soil ecological processes. However, the effects of soil greenhouse gas (GHG) emissions from soil mesofauna invasion and their driving mechanisms have not been clearly understood. To address this knowledge gap, we simulated a soil mesofauna invasion from an Erman's birch forest (EB) to the alpine tundra (AT) of the Changbai Mountain in Northeast China. Four treatments were established: no soil mesofauna (S0), native species (SN), invasive species (SI), and invasive species superposed native species (SS). We conducted a 79-day microcosm experiment, utilizing gas chromatography and high-throughput sequencing, to explore the variations in soil greenhouse gas emissions and their driving factors. Results showed that the cumulative CO2 emissions under SN, SI, and SS, compared with S0, increased by 34.13 %, 73.93 %, and 107.64 % and cumulative N2O emissions increased by 59.05 %, 101.18 %, and 183.88 %, respectively. Compared to SN, the cumulative emissions of CO2 and N2O increased by 29.89 % and 26.31 % under SI and by 54.91 % and 78.59 % under SS, respectively. The impacts of invasive species and native species on greenhouse gases were not a simple additive effect. Abiotic (soil variables) and biotic (soil mesofauna and microbial diversity) factors explained 37.76 % and 44.41 % of the total variations in CO2 and N2O emissions, respectively, in which NH4+-N and C: N ratios contributed the largest variations. The contribution of soil mesofauna diversity to the variations in CO2 and N2O emissions was higher than that of microbial diversity. The bacterial network graph density was correlated with soil CO2 and N2O emissions. Our findings highlight that soil mesofauna invasions increased GHG emissions, and these variations were predominantly explained by biotic rather than abiotic factors.
Collapse
Affiliation(s)
- Yujuan Kang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Qiang Guan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhongsheng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
6
|
Bawane P, Deshpande S, Yele S. Industrial and Pharmaceutical Applications of Microbial Diversity of Hypersaline Ecology from Lonar Soda Crater. Curr Pharm Biotechnol 2024; 25:1564-1584. [PMID: 38258768 DOI: 10.2174/0113892010265978231109085224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/24/2024]
Abstract
The unidentified geochemical and physiochemical characteristics of Soda Lakes across the globe make it a novel reservoir and bring attention to scientific civic for its conceivable industrial and pharmaceutical applications. In India, in the Maharashtra state, Lonar Lake is a naturally created Soda Lake by a meteorite impact. Phylogenetic data from this lake explored a diverse array of microorganisms like haloalkaliphilic bacteria and Archaea. Previously reported studies postulated the major microbial communities present in this lake ecosystem are Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. Furthermore, it also contains Bacteroidetes, Nitrospirae, and Verrucomicrobia. This lake is also rich in phytoplankton, with the predominant presence of the Spirulina plantensis. Unique microbial strains from Lonar Lake ecosystems have fascinated consideration as a source of biological molecules with medicinal, industrial, and biotechnological potential. Recent literature revealed the isolation of antibioticproducing bacteria and alkaline proteases-producing alkaliphilic bacterium, as well as novel species of rare methylotrophs, other bacterial strains involved in producing vital enzymes, and unique actinomycetes are also reported. It indicates that the novel bacterial assemblage not reached hitherto may exist in this modified and unique ecology. This comprehensive review provides information about microbial diversity and its industrial and pharmaceutical interests that exist in Lonar Lake, which could be the future source of bioactive enzymes, biosurfactants, and biofuel and also useful in bioremediation. Furthermore, the novel species of microorganisms isolated from Lonar Lake have applications in the biosynthesis of medicines like antibiotics, antivirals, antifungals, anti-inflammatory agents, and precursors for synthesising valuable products. Data consolidated in the present review will cater to the needs of emerging industrial sectors for their commercial and therapeutic applications.
Collapse
Affiliation(s)
- Pradip Bawane
- Department of Pharmacognosy, SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, 400056, India
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shirish Deshpande
- Department of Pharmaceutical Chemistry, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| |
Collapse
|
7
|
Alker AT, Farrell MV, Aspiras AE, Dunbar TL, Fedoriouk A, Jones JE, Mikhail SR, Salcedo GY, Moore BS, Shikuma NJ. A modular plasmid toolkit applied in marine bacteria reveals functional insights during bacteria-stimulated metamorphosis. mBio 2023; 14:e0150223. [PMID: 37530556 PMCID: PMC10470607 DOI: 10.1128/mbio.01502-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
A conspicuous roadblock to studying marine bacteria for fundamental research and biotechnology is a lack of modular synthetic biology tools for their genetic manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit to study marine bacteria in the context of symbioses and host-microbe interactions. To demonstrate the utility of this plasmid system, we genetically manipulated the marine bacterium Pseudoalteromonas luteoviolacea, which stimulates the metamorphosis of the model tubeworm, Hydroides elegans. Using these tools, we quantified constitutive and native promoter expression, developed reporter strains that enable the imaging of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a secondary metabolite and a host-associated gene. We demonstrate the broader utility of this modular system for testing the genetic tractability of marine bacteria that are known to be associated with diverse host-microbe symbioses. These efforts resulted in the successful conjugation of 12 marine strains from the Alphaproteobacteria and Gammaproteobacteria classes. Altogether, the present study demonstrates how synthetic biology strategies enable the investigation of marine microbes and marine host-microbe symbioses with potential implications for environmental restoration and biotechnology. IMPORTANCE Marine Proteobacteria are attractive targets for genetic engineering due to their ability to produce a diversity of bioactive metabolites and their involvement in host-microbe symbioses. Modular cloning toolkits have become a standard for engineering model microbes, such as Escherichia coli, because they enable innumerable mix-and-match DNA assembly and engineering options. However, such modular tools have not yet been applied to most marine bacterial species. In this work, we adapt a modular plasmid toolkit for use in a set of 12 marine bacteria from the Gammaproteobacteria and Alphaproteobacteria classes. We demonstrate the utility of this genetic toolkit by engineering a marine Pseudoalteromonas bacterium to study their association with its host animal Hydroides elegans. This work provides a proof of concept that modular genetic tools can be applied to diverse marine bacteria to address basic science questions and for biotechnology innovations.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Morgan V. Farrell
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Alpher E. Aspiras
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Tiffany L. Dunbar
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Andriy Fedoriouk
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Jeffrey E. Jones
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Sama R. Mikhail
- Department of Biology, San Diego State University, San Diego, California, USA
| | | | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Nicholas J. Shikuma
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
8
|
Huang CC, Lo YH, Hsu YJ, Cheng YB, Kung CC, Liang CW, Chang DC, Wang KL, Hung CF. Anti-Atopic Dermatitis Activity of Epi-Oxyzoanthamine Isolated from Zoanthid. Mar Drugs 2023; 21:447. [PMID: 37623728 PMCID: PMC10456062 DOI: 10.3390/md21080447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Atopic dermatitis (AD, eczema) is a condition that causes dry, itchy, and inflamed skin and occurs most frequently in children but also affects adults. However, common clinical treatments provide limited relief and have some side effects. Therefore, there is a need to develop new effective therapies to treat AD. Epi-oxyzoanthamine is a small molecule alkaloid isolated from Formosan zoanthid. Relevant studies have shown that zoanthamine alkaloids have many pharmacological and biological activities, including anti-lymphangiogenic functions. However, there are no studies on the use of epi-oxyzoanthamine on the skin. In this paper, epi-oxyzoanthamine has been shown to have potential in the treatment of atopic dermatitis. Through in vitro studies, it was found that epi-oxyzoanthamine inhibited the expression of cytokines in TNF-α/IFN-γ-stimulated human keratinocyte (HaCaT) cells, and it reduced the phosphorylation of MAPK and the NF-κB signaling pathway. Atopic dermatitis-like skin inflammation was induced in a mouse model using 2,4-dinitrochlorobenzene (DNCB) in vivo. The results showed that epi-oxyzoanthamine significantly decreased skin barrier damage, scratching responses, and epidermal hyperplasia induced by DNCB. It significantly reduced transepidermal water loss (TEWL), erythema, ear thickness, and spleen weight, while also increasing surface skin hydration. These results indicate that epi-oxyzoanthamine from zoanthid has good potential as an alternative medicine for treating atopic dermatitis or other skin-related inflammatory diseases.
Collapse
Affiliation(s)
- Chieh-Chen Huang
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (C.-C.H.); (Y.-H.L.); (C.-C.K.); (C.-W.L.)
- Department of Dermatology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Yuan-Hsin Lo
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (C.-C.H.); (Y.-H.L.); (C.-C.K.); (C.-W.L.)
- Department of Dermatology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| | - Chia-Chi Kung
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (C.-C.H.); (Y.-H.L.); (C.-C.K.); (C.-W.L.)
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Cher-Wei Liang
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (C.-C.H.); (Y.-H.L.); (C.-C.K.); (C.-W.L.)
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Der-Chen Chang
- Department of Mathematics and Statistics, Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Kang-Ling Wang
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (C.-C.H.); (Y.-H.L.); (C.-C.K.); (C.-W.L.)
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
10
|
Jiang Z, Shen Y, Niu Z, Li X. Effects of cadmium and diethylhexyl phthalate on skin microbiota of Rana chinensis tadpoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64285-64299. [PMID: 37067706 DOI: 10.1007/s11356-023-26853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Skin microbiotas play a crucial role in the health, homeostasis, and immune function of amphibians. The contaminants in water could affect the structure and composition of microbial communities. The effects of coexisting pollutants on frogs cannot be adequately explained by a single exposure due to the coexistence of Cd and DEHP in the environment. Following exposure to Cd and/or DEHP, we examined the histological characteristics of Rana chensinensis tadpoles. We also used the 16S rRNA gene sequencing technique to assess the relative abundance of skin microbial communities among tadpoles from each treatment group. Our findings indicate that R. chensinensis' skin experienced some degree of injury due to exposure to Cd and DEHP, which led to the imbalance of their skin microbial community homeostasis and thus interfered with the normal trial status of the host. That may eventually lead to the decline of the amphibian population.
Collapse
Affiliation(s)
- Zhaoyang Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Yujia Shen
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Ziyi Niu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Xinyi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
11
|
Chen LJ, Tan FH, Li ZZ, Liu W, Lyu B. Contrasting responses of cuticular bacteria of Pardosa pseudoannulata under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114832. [PMID: 36989947 DOI: 10.1016/j.ecoenv.2023.114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Although research into how spiders respond to cadmium (Cd)-induced toxicity is ongoing, little is known about the effects of Cd contamination on the exogenous microorganisms of spiders. The current study used 16 S rRNA gene sequencing to evaluate the richness and structure of external bacterial communities in the wolf spider Pardosa pseudoannulata under long- and short-term Cd stress. Our results showed that Proteobacteria and Acidibacter were the dominating bacterial phylum and genus. The alpha diversity analysis showed that the high background of Cd concentration (Cd) reduced bacterial alpha diversity, and short-term Cd (SCd) stress elevated bacterial richness and diversity. Hub bacterial genera, including Stenotrophobacter, Hymenobacter, Chitinophaga, and Bryobacter, were identified by co-occurrence network analysis and showed high connectance with other bacterial genera. Further investigation revealed 15 and 14 bacterial taxa that were classified distinctively under SCd and Cd stresses. Interestingly, functional prediction analysis showed that Cd stress enhanced some crucial pathways involved in specialized functions, including manganese oxidation and aromatic compound degradation. Random forest and correlation analyses found that the spider's molting time was the dominant driver affecting bacterial phyla (i.e., Proteobacteria and Planctomycetes) and genera (e.g., Acidibacter, Reyranella, and Haliangium). Collectively, this comprehensive analysis creates new perspectives to investigate the divergent responses of microbial communities in the spiders' external habitat under Cd stress, and provides valuable viewpoints for Cd pollution evaluation and control.
Collapse
Affiliation(s)
- Li-Jun Chen
- College of Urban and Rural Construction, Shaoyang University, 422099 Shaoyang, China.
| | - Feng-Hua Tan
- Translational Medicine Institute, the First People's Hospital of ChenZhou, Hengyang Medical School, University of South China, Chenzhou 423000, Hunan, China
| | - Zhe-Zhi Li
- College of Urban and Rural Construction, Shaoyang University, 422099 Shaoyang, China
| | - Wei Liu
- College of Urban and Environment Sciences, Hunan University of Technology, 412007 Zhuzhou, China
| | - Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
12
|
Hong Y, Chen B, Zhai X, Qian Q, Gui R, Jiang C. Integrated analysis of the gut microbiome and metabolome in a mouse model of inflammation-induced colorectal tumors. Front Microbiol 2023; 13:1082835. [PMID: 36713186 PMCID: PMC9880073 DOI: 10.3389/fmicb.2022.1082835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide, and the gut microbiota and metabolites play an important role in its initiation and progression. In this study, we constructed a mouse model of inflammation-induced colorectal tumors, with fixed doses of azoxymethane/dextran sulfate sodium (AOM/DSS). We found that colorectal tumors only formed in some mice treated with certain concentrations of AOM/DSS (tumor group), whereas other mice did not develop tumors (non-tumor group). 16S rDNA amplicon sequencing and liquid chromatography-mass spectrometry (LC-MS)/MS analyses were performed to investigate the microbes and metabolites in the fecal samples. As a result, 1189 operational taxonomic units (OTUs) were obtained from the fecal samples, and the non-tumor group had a relatively higher OTU richness and diversity. Moreover, 53 different microbes were identified at the phylum and genus levels, including Proteobacteria, Cyanobacteria, and Prevotella. Furthermore, four bacterial taxa were obviously enriched in the non-tumor group, according to linear discriminant analysis scores (log10) > 4. The untargeted metabolomics analysis revealed significant differences between the fecal samples and metabolic phenotypes. Further, the heatmaps and volcano plots revealed 53 and 19 dysregulated metabolites between the groups, in positive and negative ion modes, respectively. Styrene degradation and amino sugar-nucleotide sugar metabolism pathways were significantly different in positive and negative ion modes, respectively. Moreover, a correlation analysis between the metabolome and microbiome was further conducted, which revealed the key microbiota and metabolites. In conclusion, we successfully established a tumor model using a certain dose of AOM/DSS and identified the differential intestinal microbiota and characteristic metabolites that might modulate tumorigenesis, thereby providing new concepts for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Yuntian Hong
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China,Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China,Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Xiang Zhai
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China,Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China,Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China
| | - Rui Gui
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China,Rui Gui,
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China,Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, China,*Correspondence: Congqing Jiang,
| |
Collapse
|
13
|
Effects of Black Soldier Fly Larvae Oil on Growth Performance, Immunity and Antioxidant Capacity, and Intestinal Function and Microbiota of Broilers. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Liao H, Liu S, Junaid M, Gao D, Ai W, Chen G, Wang J. Di-(2-ethylhexyl) phthalate exacerbated the toxicity of polystyrene nanoplastics through histological damage and intestinal microbiota dysbiosis in freshwater Micropterus salmoides. WATER RESEARCH 2022; 219:118608. [PMID: 35605397 DOI: 10.1016/j.watres.2022.118608] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 05/20/2023]
Abstract
Organic pollutants such as di-(2-ethylhexyl) phthalate (DEHP) interact with nanoplastics (NPs) and change their bioavailability and toxicity to aquatic organisms. This study aims to assess the ecotoxicological impacts of NPs in the presence and absence of DEHP on juvenile largemouth bass (LMB) Micropterus salmoides. Therefore, LMB was fed with diets containing various concentrations (0, 2, 10, and 40 mg/g) of polystyrene nanoplastics (PSNPs) by the weight of diets. After a 21-day of PSNPs dietary exposure, LMB was treated with DEHP at 450 μg/L through waterborne exposure for three days. Our results showed that PSNPs were accumulated in the intestinal tissues, which significantly decreased the feeding and growth rates in LMB. The histopathological analysis showed the intestine and liver of LMB were subjected to various degrees of structural damage caused by PSNPs, and DEHP-PSNP co-exposure enhanced those histopathological damages in both tissues. Additionally, the co-exposure induced oxidative stress in terms of increased activities of glutathione S-transferase, catalase, and superoxide dismutase enzymes in the liver, intestine, spleen, and serum. Furthermore, the co-exposure significantly changed the intestinal microbial composition, i.e., the decrease in the abundance of probiotics (Bacteroidetes and Proteobacteria) and the increase in pathogenic bacteria (Firmicutes) posed a great threat to fish metabolism and health. Therefore, this study highlights that the presence of DEHP enhances the toxicity of NPs on LMB in freshwater and suggests the regulated use of plastic and its additives for improving the health status of aquaculture fish for food safety in humans.
Collapse
Affiliation(s)
- Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Ai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
15
|
Functional and Seasonal Changes in the Structure of Microbiome Inhabiting Bottom Sediments of a Pond Intended for Ecological King Carp Farming. BIOLOGY 2022; 11:biology11060913. [PMID: 35741434 PMCID: PMC9220171 DOI: 10.3390/biology11060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Bottom sediments are usually classified as extreme habitats for microorganisms. They are defined as matter deposited on the bottom of water bodies through the sedimentation process. The quality of sediments is extremely important for the good environmental status of water, because they are an integral part of the surface water environment. Microorganisms living in sediments are involved in biogeochemical transformations and play a fundamental role in maintaining water purity, decomposition of organic matter, and primary production. As a rule, studies on bottom sediments focus on monitoring their chemistry and pollution, while little is known about the structure of bacterial communities inhabiting this extreme environment. In this study, Next-Generation Sequencing (NGS) was combined with the Community-Level Physiological Profiling (CLPP) technique to obtain a holistic picture of bacterial biodiversity in the bottom sediments from Cardinal Pond intended for ecological king carp farming. It was evident that the bottom sediments of the studied pond were characterized by a rich microbiota composition, whose structure and activity depended on the season, and the most extensive modifications of the biodiversity and functionality of microorganisms were noted in summer. Abstract The main goal of the study was to determine changes in the bacterial structure in bottom sediments occurring over the seasons of the year and to estimate microbial metabolic activity. Bottom sediments were collected four times in the year (spring, summer, autumn, and winter) from 10 different measurement points in Cardinal Pond (Ślesin, NW Poland). The Next-Generation Sequencing (MiSeq Illumina) and Community-Level Physiological Profiling techniques were used for identification of the bacterial diversity structure and bacterial metabolic and functional activities over the four seasons. It was evident that Proteobacteria, Acidobacteria, and Bacteroidetes were the dominant phyla, while representatives of Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria predominated at the class level in the bottom sediments. An impact of the season on biodiversity and metabolic activity was revealed with the emphasis that the environmental conditions in summer modified the studied parameters most strongly. Carboxylic and acetic acids and carbohydrates were metabolized most frequently, whereas aerobic respiration I with the use of cytochrome C was the main pathway used by the microbiome of the studied bottom sediments.
Collapse
|
16
|
Gavriilidou A, Kautsar SA, Zaburannyi N, Krug D, Müller R, Medema MH, Ziemert N. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat Microbiol 2022; 7:726-735. [PMID: 35505244 DOI: 10.1038/s41564-022-01110-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/24/2022] [Indexed: 12/27/2022]
Abstract
Bacterial specialized metabolites are a proven source of antibiotics and cancer therapies, but whether we have sampled all the secondary metabolite chemical diversity of cultivated bacteria is not known. We analysed ~170,000 bacterial genomes and ~47,000 metagenome assembled genomes (MAGs) using a modified BiG-SLiCE and the new clust-o-matic algorithm. We estimate that only 3% of the natural products potentially encoded in bacterial genomes have been experimentally characterized. We show that the variation in secondary metabolite biosynthetic diversity drops significantly at the genus level, identifying it as an appropriate taxonomic rank for comparison. Equal comparison of genera based on relative evolutionary distance revealed that Streptomyces bacteria encode the largest biosynthetic diversity by far, with Amycolatopsis, Kutzneria and Micromonospora also encoding substantial diversity. Finally, we find that several less-well-studied taxa, such as Weeksellaceae (Bacteroidota), Myxococcaceae (Myxococcota), Pleurocapsa and Nostocaceae (Cyanobacteria), have potential to produce highly diverse sets of secondary metabolites that warrant further investigation.
Collapse
Affiliation(s)
- Athina Gavriilidou
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Satria A Kautsar
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands.,Chemistry Department, Scripps Research Florida, Jupiter, FL, USA
| | - Nestor Zaburannyi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Daniel Krug
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands.
| | - Nadine Ziemert
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany. .,Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partnersite Tübingen, Tübingen, Germany.
| |
Collapse
|
17
|
Wang L, Linares-Otoya V, Liu Y, Mettal U, Marner M, Armas-Mantilla L, Willbold S, Kurtán T, Linares-Otoya L, Schäberle TF. Discovery and Biosynthesis of Antimicrobial Phenethylamine Alkaloids from the Marine Flavobacterium Tenacibaculum discolor sv11. JOURNAL OF NATURAL PRODUCTS 2022; 85:1039-1051. [PMID: 35416664 DOI: 10.1021/acs.jnatprod.1c01173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bacterial genus Tenacibaculum has been associated with various ecological roles in marine environments. Members of this genus can act, for example, as pathogens, predators, or episymbionts. However, natural products produced by these bacteria are still unknown. In the present work, we investigated a Tenacibaculum strain for the production of antimicrobial metabolites. Six new phenethylamine (PEA)-containing alkaloids, discolins A and B (1 and 2), dispyridine (3), dispyrrolopyridine A and B (4 and 5), and dispyrrole (6), were isolated from media produced by the predatory bacterium Tenacibaculum discolor sv11. Chemical structures were elucidated by analysis of spectroscopic data. Alkaloids 4 and 5 exhibited strong activity against Gram-positive Bacillus subtilis DSM10, Mycobacterium smegmatis ATCC607, Listeria monocytogenes DSM20600, and Staphylococcus aureus ATCC25923, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 4 μg/mL, and moderate activity against Candida albicans FH2173 and Aspergillus flavus ATCC9170. Compound 6 displayed moderate antibacterial activities against Gram-positive bacteria. Dispyrrolopyridine A (4) was active against efflux pump deficient Escherichia coli ATCC25922 ΔtolC, with an MIC value of 8 μg/mL, as well as against Caenorhabditis elegans N2 with an MIC value of 32 μg/mL. Other compounds were inactive against these microorganisms. The biosynthetic route toward discolins A and B (1 and 2) was investigated using in vivo and in vitro experiments. It comprises an enzymatic decarboxylation of phenylalanine to PEA catalyzed by DisA, followed by a nonenzymatic condensation to form the central imidazolium ring. This spontaneous formation of the imidazolium core was verified by means of a synthetic one-pot reaction using the respective building blocks. Six additional strains belonging to three Tenacibaculum species were able to produce discolins, and several DisA analogues were identified in various marine flavobacterial genera, suggesting the widespread presence of PEA-derived compounds in marine ecosystems.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Virginia Linares-Otoya
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru
- Research Centre for Sustainable Development Uku Pacha, 13011 Trujillo, Peru
| | - Yang Liu
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Lizbeth Armas-Mantilla
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru
- Research Centre for Sustainable Development Uku Pacha, 13011 Trujillo, Peru
| | - Sabine Willbold
- Central Institute for Engineering, Electronics and Analytics, Analytics, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, H-4002 Debrecen, Hungary
| | - Luis Linares-Otoya
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| |
Collapse
|
18
|
Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022; 10:microorganisms10020417. [PMID: 35208871 PMCID: PMC8874722 DOI: 10.3390/microorganisms10020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and ‘omics’ approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.
Collapse
|
19
|
Zhou P, Chen W, Zhu Z, Zhou K, Luo S, Hu S, Xia L, Ding X. Comparative Study of Bacillus amyloliquefaciens X030 on the Intestinal Flora and Antibacterial Activity Against Aeromonas of Grass Carp. Front Cell Infect Microbiol 2022; 12:815436. [PMID: 35145928 PMCID: PMC8821659 DOI: 10.3389/fcimb.2022.815436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 01/16/2023] Open
Abstract
Beneficial microorganisms to control bacterial diseases has been widely used in aquaculture, Bacillus amyloliquefaciens (BaX030) as a probiotic feed additive was a commonly biological control method. Added sucrose promoted the growth of BaX030, and the yield of its antibacterial substance macrolactin A was enhanced by 1.46-fold. A total of 2055 proteins were screened through proteomics, with 143 upregulated and 307 downregulated. Differential protein expression analysis and qRT-PCR verification showed that the pentose phosphate pathway and the fatty acid synthesis pathway were upregulated, thereby providing sufficient energy and precursors for the synthesis of macrolactin A. The influence of some potential regulatory factors (SecG, LiaI, MecG and ComG) on macrolactin A was discovered. After grass carp were fed with BaX030, the abundance of probiotics (Fusobacterium, Proteobacteria, Gemmobacter) were higher than the control group, and the abundance of potential pathogenic bacteria (Planctomycetes, Aeromonas) were significantly lower than the control group. The cell and challenge experiments showed that BaX030 can significantly increase the expression of C3 and IL8 in the liver and kidney, which decreases the risk of immune organ disease. Moreover, BaX030 effectively reduced the mortality of grass carp. The results revealed that BaX030 can significantly improve the structure of the intestinal flora, enhance immunity and it is beneficial to the control of grass carp Aeromonas.
Collapse
|
20
|
Assembly of 97 Novel Bacterial Genomes in the Microbial Community Affiliated with Polyvinyl Alcohol in Soil of Northern China. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2229147. [PMID: 35087906 PMCID: PMC8789413 DOI: 10.1155/2022/2229147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Background Undeveloped ecosystems belong to rich source of microbial population, of which resources remain unearthed. A kind of polymeric compound system with high polyvinyl alcohol (PVA) content has been reported and named Taisui. Marker gene amplification showed that Taisui harbored little-explored microbial communities. Aim To address this issue, our study attempted to recover draft genomes and functional potential from microbial communities in Taisui using the metagenomic approach. Material and Methods. Taisui communities provided 97 novel bacterial genomes from 13 bacterial phyla, including bacteria candidate phylum. Two novel genus-level lineages were recovered from Planctomycetes and Chloroflexi. Based on the draft genomes, we expanded the number of taxa with potential productions of PKS and NRPS in phyla including Candidatus Dadabacteria, Chloroflexi, and Planctomycetes. Results A rich diversity of PVA dehydrogenase genes from 4 phyla, involving Proteobacteria, Acidobacteria, Acitinobacteria, and Planctomycetes, were identified. The phylogenetic tree of PVA dehydrogenase showed the possibility of horizontal gene transfer between microbes. Conclusion Our study underscores the substantial microbial diversity and PVA degradation potential in the previously unexplored Taisui system.
Collapse
|
21
|
The natural product biosynthesis potential of the microbiomes of Earth – Bioprospecting for novel anti-microbial agents in the meta-omics era. Comput Struct Biotechnol J 2022; 20:343-352. [PMID: 35035787 PMCID: PMC8733032 DOI: 10.1016/j.csbj.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
As we stand on the brink of the post-antibiotic era, we are in dire need of novel antimicrobial compounds. Microorganisms produce a wealth of so-called secondary metabolites and have been our most prolific source of antibiotics so far. However, rediscovery of known antibiotics from well-studied cultured microorganisms, and the fact that the majority of microorganisms in the environment are out of reach by means of conventional cultivation techniques, have led to the exploration of the biosynthetic potential in natural microbial communities by novel approaches. In this mini review we discuss how sequence-based analyses have exposed an unprecedented wealth of potential for secondary metabolite production in soil, marine, and host-associated microbiomes, with a focus on the biosynthesis of non-ribosomal peptides and polyketides. Furthermore, we discuss how the complexity of natural microbiomes and the lack of standardized methodology has complicated comparisons across biomes. Yet, as even the most commonly sampled microbiomes hold promise of providing novel classes of natural products, we lastly discuss the development of approaches applied in the translation of the immense biosynthetic diversity of natural microbiomes to the procurement of novel antibiotics.
Collapse
|
22
|
Advances in Biosynthesis of Natural Products from Marine Microorganisms. Microorganisms 2021; 9:microorganisms9122551. [PMID: 34946152 PMCID: PMC8706298 DOI: 10.3390/microorganisms9122551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.
Collapse
|
23
|
Li Z, Hu W, Huang S, Huang Y, Li F, Wang Q, Tao Z, Pan X. Acuticoccus mangrovi sp. nov., with an antibacterial property, isolated from mangrove sediment. Int J Syst Evol Microbiol 2021; 71. [PMID: 34874250 DOI: 10.1099/ijsem.0.005137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A Gram-stain-negative, aerobic, milky white bacterium, designated B2012T, was isolated from mangrove sediment collected at Beibu Gulf, South China Sea. Antimicrobial activity assay revealed that the isolate possesses the capability of producing antibacterial compounds. Strain B2012T shared the highest 16S rRNA gene sequence relatedness (96.9-95.5 %) with members of the genus Acuticoccus. The isolate and all known Acuticoccus species contain Q-10 as the main respiratory quinone and have the same polar lipid components (phosphatidylcholine, unidentified glycolipid, unidentified lipid, unidentified amino lipid and phosphatidylglycerol). However, genomic relatedness referred by values of average nucleotide identity, digital DNA-DNA hybridization, average amino acid identity and the percentage of conserved proteins between strain B2012T and other type strains of the genus Acuticoccus were below the proposed thresholds for species discrimination. The genome of strain B2012T was assembled into 65 scaffolds with an N50 size of 244239 bp, resulting in a 5.5 Mb genome size. Eight secondary metabolite biosynthetic gene clusters were detected in this genome, including three non-ribosomal peptide biosynthetic loci encoding yet unknown natural products. Strain B2012T displayed moderately halophilic and alkaliphilic properties, growing optimally at 2-3 % (w/v) NaCl concentration and at pH 8-9. The major cellular fatty acids (>10 %) were anteiso-C15 : 0, C16 : 0 dimethyl aldehyde (DMA) and C16 : 0. Combined data from phenotypic, genotypic and chemotaxonomic analyses suggested that strain B2012T represents a novel species of the genus Acuticoccus, for which the name Acuticoccus mangrovi sp. nov. is proposed. The type strain of the type species is B2012T (=MCCC 1K04418T=KCTC 72962T).
Collapse
Affiliation(s)
- Zhe Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Wenjin Hu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Yuanlin Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Fei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Qiaozhen Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Zhanhua Tao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| |
Collapse
|
24
|
Wei B, Du AQ, Zhou ZY, Lai C, Yu WC, Yu JB, Yu YL, Chen JW, Zhang HW, Xu XW, Wang H. An atlas of bacterial secondary metabolite biosynthesis gene clusters. Environ Microbiol 2021; 23:6981-6992. [PMID: 34490968 DOI: 10.1111/1462-2920.15761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/04/2021] [Indexed: 11/28/2022]
Abstract
Bacterial secondary metabolites are rich sources of novel drug leads. The diversity of secondary metabolite biosynthetic gene clusters (BGCs) in genome-sequenced bacteria, which will provide crucial information for the efficient discovery of novel natural products, has not been systematically investigated. Here, the distribution and genetic diversity of BGCs in 10 121 prokaryotic genomes (across 68 phyla) were obtained from their PRISM4 outputs using a custom python script. A total of 18 043 BGCs are detected from 5743 genomes with non-ribosomal peptide synthetases (25.4%) and polyketides (15.9%) as the dominant classes of BGCs. Bacterial strains harbouring the largest number of BGCs are revealed and BGC count in strains of some genera vary greatly, suggesting the necessity of individually evaluating the secondary metabolism potential. Additional analysis against 102 strains of discovered bacterial genera with abundant amounts of BGCs confirms that Kutzneria, Kibdelosporangium, Moorea, Saccharothrix, Cystobacter, Archangium, Actinosynnema, Kitasatospora, and Nocardia, may also be important sources of natural products and worthy of priority investigation. Comparative analysis of BGCs within these genera indicates the great diversity and novelty of the BGCs. This study presents an atlas of bacterial secondary metabolite BGCs that provides a lot of key information for the targeted discovery of novel natural products.
Collapse
Affiliation(s)
- Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
| | - Ao-Qi Du
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cong Lai
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen-Chao Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jin-Biao Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan-Lei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jian-Wei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hua-Wei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
| |
Collapse
|
25
|
Rational construction of genome-reduced Burkholderiales chassis facilitates efficient heterologous production of natural products from proteobacteria. Nat Commun 2021; 12:4347. [PMID: 34301933 PMCID: PMC8302735 DOI: 10.1038/s41467-021-24645-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Heterologous expression of biosynthetic gene clusters (BGCs) avails yield improvements and mining of natural products, but it is limited by lacking of more efficient Gram-negative chassis. The proteobacterium Schlegelella brevitalea DSM 7029 exhibits potential for heterologous BGC expression, but its cells undergo early autolysis, hindering further applications. Herein, we rationally construct DC and DT series genome-reduced S. brevitalea mutants by sequential deletions of endogenous BGCs and the nonessential genomic regions, respectively. The DC5 to DC7 mutants affect growth, while the DT series mutants show improved growth characteristics with alleviated cell autolysis. The yield improvements of six proteobacterial natural products and successful identification of chitinimides from Chitinimonas koreensis via heterologous expression in DT mutants demonstrate their superiority to wild-type DSM 7029 and two commonly used Gram-negative chassis Escherichia coli and Pseudomonas putida. Our study expands the panel of Gram-negative chassis and facilitates the discovery of natural products by heterologous expression.
Collapse
|
26
|
Panigrahi A, Esakkiraj P, Das RR, Saranya C, Vinay TN, Otta SK, Shekhar MS. Bioaugmentation of biofloc system with enzymatic bacterial strains for high health and production performance of Penaeus indicus. Sci Rep 2021; 11:13633. [PMID: 34211034 PMCID: PMC8249640 DOI: 10.1038/s41598-021-93065-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/18/2021] [Indexed: 02/01/2023] Open
Abstract
The beneficial effects of two probiotic bacterial strains Marinilactibacillus piezotolerans and Novosphingobium sp. during the culture of Indian white shrimp, Penaeus indicus, under biofloc and clear water system were evaluated. The experimental variation were CW1 (M. piezotolerans in clear water), BFT1 (biofloc + M. piezotolerans), CW2 (Novosphingobium sp. in clear water), BFT2 (biofloc + Novosphingobium sp.) and control (without bacterial strains and biofloc). Growth and survival considerably increased in probiotic bio-augmented treatments. Probiotic incorporation significantly improved water quality, especially ammonia reduction. Microbiota analysis from gut samples taken from different treatments revealed varied microbial population structure among clear water culture, biofloc culture and control. Proteobacteria and Firmicutes were the top phyla observed in the treatments which were significantly higher in bio-augmented systems than the control. Vibrio genera were predominantly observed in control and clear water system compared to that of biofloc systems. Immune genes were significantly altered in response to probiotic gut microbial supplementation than the control. Higher gene expression profile of important immune genes was observed in the biofloc reared shrimps. Expression of digestive enzyme related genes such as trypsin, chymotrypsin, cathepsin L, cathepsin B and alpha amylase were also upregulated significantly in probiotic supplementation especially in the biofloc treatments. Proteomic analysis of hepatopancreas of shrimps from different treatments was carried out by using 2D gel electrophoresis and MALDI-TOF analysis. The proteins were mostly related to growth and stress tolerance. Eukaryotic initiation factor 4E binding protein was expressed in all the groups and it was high in biofloc treated animals followed by animals treated solely with probiotics compared to those of control groups. The results concludes that biofloc already proved as an effective culture method for healthy shrimp production and supplementation of probiotic bacterial strains registered additional benefit for growth, survival, microbial, immunological status of P, indicus culture.
Collapse
Affiliation(s)
- A Panigrahi
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, Raja Annamalaipuram, Chennai, 600 028, India.
| | - P Esakkiraj
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, Raja Annamalaipuram, Chennai, 600 028, India
| | - Rashmi Ranjan Das
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, Raja Annamalaipuram, Chennai, 600 028, India
| | - C Saranya
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, Raja Annamalaipuram, Chennai, 600 028, India
| | - T N Vinay
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, Raja Annamalaipuram, Chennai, 600 028, India
| | - S K Otta
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, Raja Annamalaipuram, Chennai, 600 028, India
| | - M Shashi Shekhar
- ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, Raja Annamalaipuram, Chennai, 600 028, India
| |
Collapse
|
27
|
Ho XY, Katermeran NP, Deignan LK, Phyo MY, Ong JFM, Goh JX, Ng JY, Tun K, Tan LT. Assessing the Diversity and Biomedical Potential of Microbes Associated With the Neptune's Cup Sponge, Cliona patera. Front Microbiol 2021; 12:631445. [PMID: 34267732 PMCID: PMC8277423 DOI: 10.3389/fmicb.2021.631445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.
Collapse
Affiliation(s)
- Xin Yi Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nursheena Parveen Katermeran
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Lindsey Kane Deignan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ma Yadanar Phyo
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Ji Fa Marshall Ong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Jun Xian Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Juat Ying Ng
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Karenne Tun
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
28
|
Ruocco N, Esposito R, Bertolino M, Zazo G, Sonnessa M, Andreani F, Coppola D, Giordano D, Nuzzo G, Lauritano C, Fontana A, Ianora A, Verde C, Costantini M. A Metataxonomic Approach Reveals Diversified Bacterial Communities in Antarctic Sponges. Mar Drugs 2021; 19:173. [PMID: 33810171 PMCID: PMC8004616 DOI: 10.3390/md19030173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Marine sponges commonly host a repertoire of bacterial-associated organisms, which significantly contribute to their health and survival by producing several anti-predatory molecules. Many of these compounds are produced by sponge-associated bacteria and represent an incredible source of novel bioactive metabolites with biotechnological relevance. Although most investigations are focused on tropical and temperate species, to date, few studies have described the composition of microbiota hosted by Antarctic sponges and the secondary metabolites that they produce. The investigation was conducted on four sponges collected from two different sites in the framework of the XXXIV Italian National Antarctic Research Program (PNRA) in November-December 2018. Collected species were characterized as Mycale (Oxymycale) acerata, Haliclona (Rhizoniera) dancoi, Hemigellius pilosus and Microxina sarai by morphological analysis of spicules and amplification of four molecular markers. Metataxonomic analysis of these four Antarctic sponges revealed a considerable abundance of Amplicon Sequence Variants (ASVs) belonging to the phyla Proteobacteria, Bacteroidetes, Actinobacteria and Verrucomicrobia. In particular, M. (Oxymycale) acerata, displayed several genera of great interest, such as Endozoicomonas, Rubritalea, Ulvibacter, Fulvivirga and Colwellia. On the other hand, the sponges H. pilosus and H. (Rhizoniera) dancoi hosted bacteria belonging to the genera Pseudhongella, Roseobacter and Bdellovibrio, whereas M. sarai was the sole species showing some strains affiliated to the genus Polaribacter. Considering that most of the bacteria identified in the present study are known to produce valuable secondary metabolites, the four Antarctic sponges could be proposed as potential tools for the discovery of novel pharmacologically active compounds.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Roberta Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Marco Bertolino
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Gianluca Zazo
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Michele Sonnessa
- Bio-Fab Research srl, Via Mario Beltrami, 5, 00135 Roma, Italy; (M.S.); (F.A.)
| | - Federico Andreani
- Bio-Fab Research srl, Via Mario Beltrami, 5, 00135 Roma, Italy; (M.S.); (F.A.)
| | - Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Daniela Giordano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Genoveffa Nuzzo
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy; (G.N.); (A.F.)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Angelo Fontana
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy; (G.N.); (A.F.)
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Cinzia Verde
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
29
|
Yu G, Liu Y, Ou W, Dai J, Ai Q, Zhang W, Mai K, Zhang Y. The protective role of daidzein in intestinal health of turbot (Scophthalmus maximus L.) fed soybean meal-based diets. Sci Rep 2021; 11:3352. [PMID: 33558631 PMCID: PMC7870896 DOI: 10.1038/s41598-021-82866-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Soybean meal-induced enteropathy (SBMIE) is prevalent in aquaculture. The aim of this study is to evaluate the role of daidzein on SBMIE of juvenile turbot (Scophthalmus maximus L.) by feeding with fish meal diet (FM), soybean meal diet (SBM, 40% fish meal protein in FM replaced by soybean meal protein) and daidzein diet (DAID, 40 mg/kg daidzein supplemented to SBM) for 12 weeks. We found that daidzein supplementation elevated the gene expression of anti-inflammatory cytokine TGF-β, decreased gene expression of pro-inflammatory cytokines TNF-α and signal molecules p38, JNK and NF-κB. SBM up-regulated the genes expression related to oxidative stress and apoptosis, but dietary daidzein restored it to the similar level with that in FM group. Moreover, dietary daidzein up-regulated gene expression of tight junction protein, and modified the intestinal microbial profiles with boosted relative abundance of phylum Proteobacteria and Deinococcus-Thermus, genera Sphingomonas and Thermus, species Lactococcus lactis, and decreased abundance of some potential pathogenic bacteria. In conclusion, dietary daidzein could ameliorate SBM-induced intestinal inflammatory response, oxidative stress, mucosal barrier injury and microbiota community disorder of turbot. Moreover, p38, JNK and NF-κB signaling might be involved in the anti-inflammatory process of daidzein, and daidzein itself might act as an antioxidant to resist SBM-induced oxidative damage.
Collapse
Affiliation(s)
- Guijuan Yu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yang Liu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Jihong Dai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), and the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
30
|
Freitas-Silva J, de Oliveira BFR, Vigoder FDM, Muricy G, Dobson ADW, Laport MS. Peeling the Layers Away: The Genomic Characterization of Bacillus pumilus 64-1, an Isolate With Antimicrobial Activity From the Marine Sponge Plakina cyanorosea (Porifera, Homoscleromorpha). Front Microbiol 2021; 11:592735. [PMID: 33488540 PMCID: PMC7820076 DOI: 10.3389/fmicb.2020.592735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022] Open
Abstract
Bacillus pumilus 64-1, a bacterial strain isolated from the marine sponge Plakina cyanorosea, which exhibits antimicrobial activity against both pathogenic and drug-resistant Gram-positive and Gram-negative bacteria. This study aimed to conduct an in-depth genomic analysis of this bioactive sponge-derived strain. The nearly complete genome of strain 64-1 consists of 3.6 Mbp (41.5% GC), which includes 3,705 coding sequences (CDS). An open pangenome was observed when limiting to the type strains of the B. pumilus group and aquatic-derived B. pumilus representatives. The genome appears to encode for at least 12 potential biosynthetic gene clusters (BGCs), including both types I and III polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and one NRPS-T1PKS hybrid, among others. In particular, bacilysin and other bacteriocin-coding genes were found and may be associated with the detected antimicrobial activity. Strain 64-1 also appears to possess a broad repertoire of genes encoding for plant cell wall-degrading carbohydrate-active enzymes (CAZymes). A myriad of genes which may be involved in various process required by the strain in its marine habitat, such as those encoding for osmoprotectory transport systems and the biosynthesis of compatible solutes were also present. Several heavy metal tolerance genes are also present, together with various mobile elements including a region encoding for a type III-B Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) region, four prophage segments and transposase elements. This is the first report on the genomic characterization of a cultivable bacterial member of the Plakina cyanorosea holobiont.
Collapse
Affiliation(s)
- Jéssyca Freitas-Silva
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Francesco Rodrigues de Oliveira
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,School of Microbiology, University College Cork, Cork, Ireland
| | - Felipe de Mello Vigoder
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Muricy
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
32
|
Liu H, Chen S, Zhang X, Dong C, Chen Y, Liu Z, Tan H, Zhang W. Structural elucidation, total synthesis, and cytotoxic activity of effphenol A. Org Biomol Chem 2020; 18:9035-9038. [PMID: 33135037 DOI: 10.1039/d0ob01985b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly substituted phenol derivative, effphenol A (1), was isolated from the deep-sea-derived fungus Trichobotrys effuse FS524. Its complete structural assignment was established through a combination of spectroscopic analysis together with single-crystal X-ray diffraction experiments and further unequivocally confirmed by a biomimetic total synthesis. Structurally, effphenol A possesses a poly-substituted 6-5/6/6 tetracyclic ring system, which represents the first case of such a skeleton found in nature. Furthermore, the cytotoxic activity of effphenol A (1) toward four human cancer cell lines was assayed.
Collapse
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Shanchong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xiao Zhang
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Chunmao Dong
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. and Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Haibo Tan
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. and Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
33
|
Raiyani NM, Singh SP. Taxonomic and functional profiling of the microbial communities of Arabian Sea: A metagenomics approach. Genomics 2020; 112:4361-4369. [PMID: 32712295 DOI: 10.1016/j.ygeno.2020.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/13/2020] [Accepted: 07/11/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Nirali M Raiyani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
34
|
Chen S, Liu Z, Tan H, Chen Y, Zhu S, Liu H, Zhang W. Photeroids A and B, unique phenol–sesquiterpene meroterpenoids from the deep-sea-derived fungus Phomopsis tersa. Org Biomol Chem 2020; 18:642-645. [DOI: 10.1039/c9ob02625h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photeroids A (1) and B (2), two structurally fascinating meroterpenoids, were isolated from the deep-sea-derived fungus Phomopsis tersa FS441.
Collapse
Affiliation(s)
- Shanchong Chen
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangdong Academy of Science
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangdong Academy of Science
| | - Haibo Tan
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- Guangdong Provincial Key Laboratory of Applied Botany
- South China Botanical Garden
- Chinese Academy of Sciences
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangdong Academy of Science
| | - Shuang Zhu
- School of Biosciences and Biopharmaceutics
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangdong Academy of Science
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Open Laboratory of Applied Microbiology
- Guangdong Institute of Microbiology
- Guangdong Academy of Science
| |
Collapse
|