1
|
Haraguchi N, Kurosaki T, Uchida S. Small luminescent silver clusters stabilized in porous crystalline solids. Phys Chem Chem Phys 2024; 26:6512-6523. [PMID: 38229542 DOI: 10.1039/d3cp04589g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Subnanometric or small metal clusters (SMCs) have been extensively researched due to their unique electronic, optical, catalytic, and magnetic properties, which differ from those of bulk samples. Among the SMCs, silver (Ag) clusters have received significant interest due to their affordability and unique luminescent properties. Currently, two major approaches, gas-phase and liquid-phase synthesis, have been employed to obtain Ag clusters with precise control of size and structure. More recently, attention has been directed toward the utilization of porous crystalline solids such as metal-organic frameworks (MOFs), zeolites, and porous ionic crystals (PICs) to synthesize and stabilize Ag clusters. In this review, we aim to provide a comprehensive overview of the synthesis, structures, and luminescent properties of Ag clusters in porous crystalline solids.
Collapse
Affiliation(s)
- Naoya Haraguchi
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Taisei Kurosaki
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
2
|
Haraguchi N, Ogiwara N, Kumabe Y, Kikkawa S, Yamazoe S, Tachikawa T, Uchida S. Size-Controlled Synthesis of Luminescent Few-Atom Silver Clusters via Electron Transfer in Isostructural Redox-Active Porous Ionic Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300743. [PMID: 36828792 DOI: 10.1002/smll.202300743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Indexed: 06/08/2023]
Abstract
Ag clusters with a controlled number of atoms have received significant interest because they show size-dependent catalytic, optical, electronic, or magnetic properties. However, the synthesis of size-controlled, ligand-free, and air-stable Ag clusters with high yields has not been well-established. Herein, it is shown that isostructural porous ionic crystals (PICs) with redox-active polyoxometalates (POMs) can be used to synthesize Ag clusters via electron transfer from POMs to Ag+ . Ag clusters with average numbers of three, four, or six atoms emitting blue, green, or red colors, respectively, are formed and stabilized in the PICs under ambient conditions without any protecting ligands. The cluster size solely correlates with the degree of electron transfer, which is controlled by the reduction time and types of ions or elements of the PICs. Thus, advantages have been taken of POMs as electron sources and PICs as scaffolds to demonstrate a convenient method to obtain few-atom Ag clusters.
Collapse
Affiliation(s)
- Naoya Haraguchi
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yoshitaka Kumabe
- Molecular Photoscience Research Center, Kobe University, Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takashi Tachikawa
- Molecular Photoscience Research Center, Kobe University, Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
3
|
Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Smith ME. Recent progress in solid-state NMR of spin-½ low-γ nuclei applied to inorganic materials. Phys Chem Chem Phys 2022; 25:26-47. [PMID: 36421944 DOI: 10.1039/d2cp03663k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significant technological and methodological advances in solid-state NMR techniques in recent years have increased the accessibility of nuclei with small magnetic moments (hereafter termed low-γ) underpinning an increased range of applications of such nuclei. These methodological advances are briefly summarised, including improvements in hardware and pulse sequences, as well as important developments in associated computational methods (e.g. first principles calculations, spectral simulation). Here spin-½ nuclei are the focus, with this Perspective complementing a very recent review that looked at half-integer spin low-γ quadrupolar nuclei. Reference is made to some of the original reports of such spin-½ nuclei, but recent progress in the relevant methodology and applications to inorganic materials (most within the last 10 years) of these nuclei are the focus. An overview of the current state-of-the-art of studying these nuclei is thereby provided for both NMR spectroscopists and materials researchers.
Collapse
Affiliation(s)
- Mark E Smith
- Vice-Chancellor and President's Office and Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK. .,Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK.,Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Weng Z, Ogiwara N, Kitao T, Kikukawa Y, Gao Y, Yan L, Uchida S. Incorporating highly basic polyoxometalate anions comprising Nb or Ta into nanoscale reaction fields of porous ionic crystals. NANOSCALE 2021; 13:18451-18457. [PMID: 34693417 DOI: 10.1039/d1nr04762k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyoxometalates (POMs) are oxide cluster anions composed of high-valence early transition metals and are widely used as catalysts. Yet base catalysis of POMs remains an ongoing challenge; group V (V, Nb, and Ta) elements form more negatively charged POMs than group VI (Mo and W) elements, and in particular, polyoxoniobates and polyoxotantalates are known to show strong basicity in solution due to the highly negative surface oxygen atoms. Herein, we report for the first time porous ionic crystals (PICs) comprising Nb or Ta. The PICs are composed of Dawson-type Nb/W or Ta/W mixed-addenda POMs with oxo-centered trinuclear CrIII carboxylates and potassium ions as counter cations to control the crystal structure. Among the PICs, those with Nb or Ta tri-substituted POMs exhibit the highest yield (78-82%) and selectivity (99%) towards the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate (353 K, 6 h), which is a typical base-catalyzed reaction, as reusable solid catalysts, and they can also catalyze the reaction of other active methylene compounds. A detailed investigation into the crystal structures together with DFT calculations and in situ IR spectroscopy with methanol as a basic probe molecule shows that the exposure of [Nb3O13] or [Ta3O13] units with highly negative surface oxygen atoms to the pore surface of PICs is crucial to the catalytic performance. These findings based on the composition-structure-function relationships show that Nb- and Ta-containing PICs can serve as platforms for rational designing of heterogeneous base catalysts.
Collapse
Affiliation(s)
- Zhewei Weng
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yuji Kikukawa
- Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yu Gao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Likai Yan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
6
|
Ge R, Li XX, Zheng ST. Recent advances in polyoxometalate-templated high-nuclear silver clusters. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Haraguchi N, Okunaga T, Shimoyama Y, Ogiwara N, Kikkawa S, Yamazoe S, Inada M, Tachikawa T, Uchida S. Formation of Mixed‐Valence Luminescent Silver Clusters via Cation‐Coupled Electron‐Transfer in a Redox‐Active Ionic Crystal Based on a Dawson‐type Polyoxometalate with Closed Pores. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naoya Haraguchi
- Department of Basic Science School of Arts and Sciences The University of Tokyo 3-8-1 Komaba Meguro-ku, Tokyo 153-8902 Japan
| | - Tomoki Okunaga
- Department of Basic Science School of Arts and Sciences The University of Tokyo 3-8-1 Komaba Meguro-ku, Tokyo 153-8902 Japan
| | - Yuto Shimoyama
- Department of Basic Science School of Arts and Sciences The University of Tokyo 3-8-1 Komaba Meguro-ku, Tokyo 153-8902 Japan
| | - Naoki Ogiwara
- Department of Basic Science School of Arts and Sciences The University of Tokyo 3-8-1 Komaba Meguro-ku, Tokyo 153-8902 Japan
| | - Soichi Kikkawa
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University Minami-Osawa Hachioji, Tokyo 192-0397 Japan
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University Minami-Osawa Hachioji, Tokyo 192-0397 Japan
| | - Miki Inada
- Center of Advanced Instrumental Analysis Kyushu University Kasuga-koen, Kasuga, Fukuoka 816-8580 Japan
| | - Takashi Tachikawa
- Molecular Photoscience Research Center Kobe University Rokkodaicho, Nada-ku, Kobe 657-8501 Japan
| | - Sayaka Uchida
- Department of Basic Science School of Arts and Sciences The University of Tokyo 3-8-1 Komaba Meguro-ku, Tokyo 153-8902 Japan
| |
Collapse
|
8
|
Ji XY, Yu FY, Li YQ, Zhu HT, Zhao HY, Shi Y, Wang YH, Tan HQ, Li YG. Two-dimensional ultrathin surfactant-encapsulating polyoxometalate assemblies as carriers for monodispersing noble-metal nanoparticles with high catalytic activity and stability. Dalton Trans 2021; 50:1666-1671. [PMID: 33464263 DOI: 10.1039/d0dt03976d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Noble metal nanoparticles (NMNPs) with excellent catalytic activity and stability play an important role in the field of environmental governance. A uniform distribution and a strong binding force with the carriers of the noble metal nanoparticles are important, but avoidance of the use of additional reducing agents is a promising direction of research. Herein, 2D ultrathin surfactant-encapsulating polyoxometalate (SEP) nanosheets constructed by the self-assembly of dodecyldimethylammonium bromide (DODA) and molybdophosphate (H3PMo12O40, PMo12) are designed to be versatile carriers for Ag nanoparticles. Under the synergistic effect of the well-arranged PMo12 units, encapsulating hydrophobic oleic acid (OA) and reductive molybdophosphate under Xe lamp irradiation, the silver oleate (AgOA)-derived Ag nanoparticles (5 ± 2 nm) are monodispersed on the DODA-PMo12 assemblies and form the Agx/DODA-PMo12 composite. The optimized Ag4.89/DODA-PMo12 composite exhibits high catalytic activity and stability in the degradation of 4-nitrophenol (4-NP), which reaches a superior rate constant of 6.49 × 10-3 s-1 and without significant deterioration after three recycles. This technique can be facilely promoted to other noble metal nanoparticles with excellent catalytic activity and stability.
Collapse
Affiliation(s)
- Xing-Yu Ji
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Fei-Yang Yu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Ying-Qi Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Hao-Tian Zhu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Hui-Ying Zhao
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Yue Shi
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Yong-Hui Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| |
Collapse
|
9
|
Shimoyama Y, Uchida S. Structure-function Relationships of Porous Ionic Crystals (PICs) Based on Polyoxometalate Anions and Oxo-centered Trinuclear Metal Carboxylates as Counter Cations. CHEM LETT 2021. [DOI: 10.1246/cl.200603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuto Shimoyama
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
10
|
Chakraborty S, Matson EM. Reductive silylation of polyoxovanadate surfaces using Mashima's reagent. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00920f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanistic insights into the reductive silylation of metal oxide surfaces.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
11
|
Yonesato K, Ito H, Itakura H, Yokogawa D, Kikuchi T, Mizuno N, Yamaguchi K, Suzuki K. Controlled Assembly Synthesis of Atomically Precise Ultrastable Silver Nanoclusters with Polyoxometalates. J Am Chem Soc 2019; 141:19550-19554. [PMID: 31800238 DOI: 10.1021/jacs.9b10569] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silver nanoclusters have attracted scientific interest due to their properties and applications. However, practical synthetic methods to access these materials are still limited mainly due to the low stability. Here, we report a controlled assembly strategy for fabricating atomically precise silver nanoclusters using polyoxometalates (POMs) as structure-directing as well as functionalizing units. A trefoil-propeller-shaped {Ag27}17+ nanocluster was synthesized by assembling reactive nanoclusters supported by open-Dawson-type POMs [Si2W18O66]16-. The {Ag27}17+ nanocluster possessed 10 delocalized valence electrons and showed unprecedented ultrastability in solutions. The cluster showed unique {Ag27}-to-POM charge transfer bands in the visible light region.
Collapse
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Hiroyasu Ito
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Hiroyuki Itakura
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Takashi Kikuchi
- Rigaku Corporation , 3-9-12 Matsubaracho , Akishima, Tokyo 196-8666 , Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan.,Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency (JST) , 4-1-8 Honcho , Kawaguchi, Saitama 332-0012 , Japan
| |
Collapse
|
12
|
Uchida S. Frontiers and progress in cation-uptake and exchange chemistry of polyoxometalate-based compounds. Chem Sci 2019; 10:7670-7679. [PMID: 31803405 PMCID: PMC6839602 DOI: 10.1039/c9sc02823d] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Cation-uptake and exchange has been an important topic in both basic and applied chemistry relevant to life and materials science. For example, living cells contain appreciable amounts of Na+ and K+, and their concentrations are regulated by the sodium-potassium pump. Solid-state cation-exchangers such as clays and zeolites both natural and synthetic have been used widely in water softening and purification, separation of metal ions and biomolecules, etc. Polyoxometalates (POMs) are robust, discrete, and structurally well-defined metal-oxide cluster anions, and have stimulated research in broad fields of sciences. In this perspective, cation-uptake and exchange in POM and POM-based compounds are categorized and reviewed in three groups: (i) POMs as inorganic crown ethers and cryptands, (ii) POM-based ionic solids as cation-exchangers, and (iii) reduction-induced cation-uptake in POM-based ionic solids, which is based on a feature of POMs that they are redox-active and multi-electron transfer occurs reversibly in multiple steps. This method can be utilized to synthesize mixed-valence metal clusters in metal ion-exchanged POM-based ionic solids.
Collapse
Affiliation(s)
- Sayaka Uchida
- Department of Basic Science , School of Arts and Sciences , The University of Tokyo , Komaba 3-8-1, Meguro-ku , Tokyo 153-8902 , Japan .
| |
Collapse
|