1
|
Wang Y, Ai B, Jiang Y, Wang Z, Chen C, Xiao Z, Xiao G, Zhang G. Swiss roll nanoarrays for chiral plasmonic photocatalysis. J Colloid Interface Sci 2025; 678:818-826. [PMID: 39217697 DOI: 10.1016/j.jcis.2024.08.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Manipulating the chirality at nanoscale has drawn great attention among scientists, considering its pivotal role in various applications of current interest, including nano-optics, biomedicine, and photocatalysis. In this work, we delve into this arena by fabricating chiral Swiss roll nanoarray (SRNA) continuous films employing colloidal lithography. The technique permits the dimension of Swiss roll metamaterials to reduce to nanoscale, thus achieving chiroptical response (circular dichroism (CD)) in the visible region. The interplay between the CD signals and plasmon resonance modes is revealed through theoretical simulations, enabling a deep understanding of chiral plasmonic metamaterials. The polarization-sensitive photocatalytic activity of chiral SRNAs is investigated, noting a marked increase in the reaction rate when the chirality of SRNAs matches with the handedness of circularly polarized light (CPL). Notably, the SRNA continuous films based on substrate possess integration and reusability without complex recycling process, enhancing their practicality in applications like sensing and plasmonic nanochemistry, particularly toward polarization-dependent photocatalysis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044, PR China
| | - Yun Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zengyao Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Chong Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zifan Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ge Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Gang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
2
|
Zhao H, Liu Z, Fu S, Jiang T, Wu K. Synergistic enhancement mediated sensitive SERS-based immunoassay of PSA using versatile PDMS@AgNPs@ZIF-67 biomimetic substrates. Colloids Surf B Biointerfaces 2024; 239:113963. [PMID: 38759294 DOI: 10.1016/j.colsurfb.2024.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Among various biomimetic polymer materials, polydimethylsiloxane (PDMS) stands out as an ideal matrix for surface-enhanced Raman scattering (SERS) due to its unique intrinsic Raman signal and tenacity. In order to realize the precise detection of prostate-specific antigen (PSA), we proposed a sandwich-type SERS-active immunostructure composed of PDMS@silver nanoparticles (Ag NPs)@ZIF-67 biomimetic film as the immunosubstrate and gold nanorods (Au NRs) as immunoprobes. Due to the synergistic effect of electromagnetic enhancement facilitated by biomimetic surfaces and chemical enhancement achieved by ZIF-67, this structure enabled an ultrasensitive and selective detection of PSA across a broad range from 10-3 to 10-9 mg/mL. The achieved limit of detection was as low as 3.0 × 10-10 mg/mL. Particularly, the intrinsic Raman signal of PDMS matrix at 2905 cm-1 was employed as a potential internal standard (IS) in the detection, achieving a high coefficient of determination (R2) value of 0.996. This multifunctional SERS substrate-mediated immunoassay holds vast potential for early diagnosis of prostate cancer, offering promising prospects for clinical applications.
Collapse
Affiliation(s)
- Hengwei Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Zhihan Liu
- Department of Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, PR China
| | - Shijiao Fu
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| | - Kerong Wu
- Department of Urology, Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, PR China.
| |
Collapse
|
3
|
Ke X, Chen J, Chang L, Zhou Z, Zhang W. Casting liquid PDMS on self-assembled bilayer polystyrene nanospheres to prepare a SERS substrate with two layers of nanopits for detection of p-nitrophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4582-4590. [PMID: 37655547 DOI: 10.1039/d3ay00628j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
p-Nitrophenol (PNP) is widely used in pesticides, pharmaceuticals, and dyestuffs. It is vital to detect trace PNP in the environment, because it poses significant environmental hazards due to its high toxicity. In this paper, a new method was reported for preparing a SERS substrate with excellent SERS activity by combining self-assembly techniques and flexible materials. First, the three-dimensional (3D) polystyrene (PS) photonic crystal (PC) structural master was fabricated by stacking two layers of self-assembled PS nanospheres with different diameters. Polydimethylsiloxane (PDMS) with a complementary structure to the master was obtained by casting, curing and peeling off. Finally, the PDMS-Ag substrate was fabricated by sputtering a thin Ag layer on the PDMS structure. The enhancement factor (EF) of the PDMS-Ag substrate was calculated to be 2.90 × 109 by using 4-amino thiophenol (ATP) as the probe molecule, and the limit of detection (LOD) for ATP can reach 10-11 M. And the RSD of the SERS intensity for the peak at 1078 cm-1 on the PDMS-Ag substrates from batch to batch was within 2%, indicating the high reproducibility of the as-prepared substrate. The quantitative analysis of PNP was achieved with a LOD of 10-8 M. Therefore, the PDMS-Ag substrate exhibits high sensitivity and reproducibility, and it can detect PNP in trace amounts, with great potential for detecting other contaminants.
Collapse
Affiliation(s)
- Xiurui Ke
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Jinran Chen
- Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Zhou Zhou
- The University of Manchester, Department of Materials, Oxford Road, Manchester M13 9PL, UK
| | - Wei Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| |
Collapse
|
4
|
Liu K, Gong T, Luo Y, Kong W, Yue W, Wang C, Luo X. Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures. OPTICS EXPRESS 2023; 31:15848-15863. [PMID: 37157676 DOI: 10.1364/oe.488410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
High-sensitivity, reproducible, and low-cost substrate has been a major obstacle for practical sensing application of surface-enhancement Raman scattering (SERS). In this work, we report a type of simple SERS substrate which is composed of metal-insulator-metal (MIM) structure of Ag nanoisland (AgNI)-SiO2-Ag film (AgF). The substrates are fabricated by only evaporation and sputtering processes, which are simple, fast and low-cost. By combining the hotspots and interference-enhanced effects in AgNIs and the plasmonic cavity (SiO2) between AgNIs and AgF, the proposed SERS substrate shows an enhancement factor (EF) of 1.83 × 108 with limit of detection (LOD) down to 10-17 mol/L for rhodamine 6 G (R6G) molecules. The EFs are ∼18 times higher than that of conventional AgNIs without MIM structure. In addition, the MIM structure shows excellent reproducibility with relative standard deviation (RSD) less than 9%. The proposed SERS substrate is fabricated only with evaporation and sputtering technique and the conventionally used lithographic methods or chemical synthesis are not required. This work provides a simple way to fabricate ultrasensitive and reproducible SERS substrates which show great promise for developing various biochemical sensors with SERS.
Collapse
|
5
|
Wang X, Zhu X, Tao Y, Zhang E, Ren X. ZnO nanorods decorated with Ag nanoflowers as a recyclable SERS substrate for rapid detection of pesticide residue in multiple-scenes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122277. [PMID: 36592591 DOI: 10.1016/j.saa.2022.122277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Pesticide residues threaten the ecological environment and human health. Therefore, developing high performance SERS substrate to achieve highly sensitive detection of pesticide residues is meaningful. In this study, based on the strategy of combining "hot spots" engineering and material hybridization, we construct a novel hybrid SERS substrate by depositing Ag nanoflowers (NFs) on ZnO nanorods (NRs). Benefiting from the synergistic effect of electromagnetic enhancement and charge transfer effect, the Ag NFs@ZnO NRs substrate exhibits a low detection limit (10-13 M) for crystal violet molecules. This SERS substrate has good uniformity with a relative standard deviation of 7.463 %. Besides, owning to the photocatalytic property of ZnO NRs, the hybrid substrate can degrade probe molecules after SERS detection and realize recyclability. As a demonstration, we employed our SERS substrate for the trace detection of pesticide residues on apple surface and in river water. This study provides a new idea for improving the SERS performance of hybrid substrates.
Collapse
Affiliation(s)
- Xuejiao Wang
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xupeng Zhu
- School of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Yufeng Tao
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Erjin Zhang
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Xudong Ren
- Institute of Micro-Nano Optoelectronics and Terahertz Technology, Institute for Energy Research, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
6
|
Wei Q, Lu B, Yang Q, Shi C, Wei Y, Xu M, Zhang C, Yuan Y. MoS 2/Au Heterojunction Catalyst for SERS Monitoring of a Fenton-like Reaction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1169. [PMID: 36770175 PMCID: PMC9920604 DOI: 10.3390/ma16031169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Fenton technology is one of advanced oxidation process (AOP) methods to treat wastewater through chemical oxidation. Due to the limitations of classical iron-based catalysts, it is still challenging to find suitable catalysts for Fenton-like reactions. Here, MoS2/Au heterojunctions were successfully synthesized by reduction of chloroauric acid in the solution of layered MoS2 prepared by hydrothermal method. As a model molecule, methylene blue (MB) was used as the species to be degraded to evaluate the performance of the catalyst. It was determined by UV-visible spectra that the optimal catalyst can be obtained when MoS2 (mg): HAuCl4 (wt. % mL) is 2:2. The Fenton-like reaction process was monitored by introducing highly sensitive surface enhanced Raman spectroscopy (SERS). The results show that MB can be degraded by 83% in the first 10 min of the reaction, indicating that MoS2/Au has good catalytic performance. In addition, as a fingerprint spectrum, SERS was used to preliminarily analyze the molecular structure changes during the degradation process. The result showed that C-N-C bond was easier to break than the C-S-C bond. NH2 group and the fused ring were destroyed at the comparable speed at the first 30 min. In terms of application applicability, it was showed that MB degradation had exceeded 95% at all the three pH values of 1.4, 5.0, and 11.1 after the reaction was carried out for 20 min. The test and analysis of the light environment showed that the catalytic efficiency was significantly improved in the natural light of the laboratory compared to dark conditions. The possible mechanism based on ·OH and ·O2- from ESR data was proposed. In addition, it was demonstrated to be a first-order reaction from the perspective of kinetics. This study made a positive contribution to broaden of the applicable conditions and scope of Fenton-like reaction catalysts. It is expected to be used as a non-iron catalyst in practical industrial applications. From the perspective of detection method, we expect to develop SERS as a powerful tool for the in situ monitoring of Fenton-like reactions, and to further deepen our understanding of the mechanism.
Collapse
Affiliation(s)
- Qian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Beibei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qing Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Can Shi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yulan Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Minmin Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chenjie Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yaxian Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Hossain MK. Silver-Decorated Silicon Nanostructures: Fabrication and Characterization of Nanoscale Terraces as an Efficient SERS-Active Substrate. Int J Mol Sci 2022; 24:ijms24010106. [PMID: 36613545 PMCID: PMC9820282 DOI: 10.3390/ijms24010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Rich and highly dense surface-enhanced Raman (SERS) hotspots available in the SERS-active platform are highly anticipated in SERS measurements. In this work, conventional silicon wafer was treated to have wide exposure to terraces available within the silicon nanostructures (Si-NSs). High-resolution field emission scanning electron microscopic (FESEM) investigations confirmed that the terraces were several microns wide and spread over different steps. These terraces were further decorated with silver nanoparticles (Ag-NPs) of different shapes and sizes to achieve SERS-active hotspots. Based on more than 150 events, a histogram of the size distribution of Ag-NPs indicated a relatively narrow size distribution, 29.64 ± 4.66 nm. The coverage density was estimated to be ~4 × 1010 cm-2. The SERS-activity of Ag-NPs -decorated Si-NSs was found to be enhanced with reference to those obtained in pristine Si-NSs. Finite difference time domain models were developed to support experimental observations in view of electromagnetic (EM) near-field distributions. Three archetype models; (i) dimer of same constituent Ag-NPs, (ii) dimer of different constituent Ag-NPs, and (iii) linear trimer of different constituent Ag-NPs were developed. EM near-field distributions were extracted at different incident polarizations. Si-NSs are well-known to facilitate light confinement, and such confinement can be cascaded within different Ag-NPs-decorated terraces of Si-NSs.
Collapse
Affiliation(s)
- Mohammad Kamal Hossain
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
8
|
Luo S, Mancini A, Lian E, Xu W, Berté R, Li Y. Large Area Patterning of Highly Reproducible and Sensitive SERS Sensors Based on 10-nm Annular Gap Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3842. [PMID: 36364618 PMCID: PMC9655199 DOI: 10.3390/nano12213842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Applicable surface-enhanced Raman scattering (SERS) active substrates typically require low-cost patterning methodology, high reproducibility, and a high enhancement factor (EF) over a large area. However, the lack of reproducible, reliable fabrication for large area SERS substrates in a low-cost manner remains a challenge. Here, a patterning method based on nanosphere lithography and adhesion lithography is reported that allows massively parallel fabrication of 10-nm annular gap arrays on large areas. The arrays exhibit excellent reproducibility and high SERS performance, with an EF of up to 107. An effective wearable SERS contact lens for glucose detection is further demonstrated. The technique described here extends the range of SERS-active substrates that can be fabricated over large areas, and holds exciting potential for SERS-based chemical and biomedical detection.
Collapse
Affiliation(s)
- Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Andrea Mancini
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
| | - Enkui Lian
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Wenqi Xu
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Rodrigo Berté
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
| | - Yi Li
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Ge K, Hu Y, Li G. Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. BIOSENSORS 2022; 12:941. [PMID: 36354450 PMCID: PMC9687977 DOI: 10.3390/bios12110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique with distinguished features of non-destructivity, ultra-sensitivity, rapidity, and fingerprint characteristics for analysis and sensors. The SERS signals are mainly dependent on the engineering of high-quality substrates. Recently, solid SERS substrates with diverse forms have been attracting increasing attention due to their promising features, including dense hot spot, high stability, controllable morphology, and convenient portability. Here, we comprehensively review the recent advances made in the field of solid SERS substrates, including their common fabrication methods, basic categories, main features, and representative applications, respectively. Firstly, the main categories of solid SERS substrates, mainly including membrane substrate, self-assembled substrate, chip substrate, magnetic solid substrate, and other solid substrate, are introduced in detail, as well as corresponding construction strategies and main features. Secondly, the typical applications of solid SERS substrates in bio-analysis, food safety analysis, environment analysis, and other analyses are briefly reviewed. Finally, the challenges and perspectives of solid SERS substrates, including analytical performance improvement and largescale production level enhancement, are proposed.
Collapse
|
10
|
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the single-molecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
Collapse
Affiliation(s)
| | | | - Hai-Yao Yang
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| |
Collapse
|
11
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Chen M, Zhang J, Zhu X, Liu Z, Huang J, Jiang X, Fu F, Lin Z, Dong Y. Hybridizing Silver Nanoparticles in Hydrogel for High-Performance Flexible SERS Chips. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26216-26224. [PMID: 35605108 DOI: 10.1021/acsami.2c04087] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An ideal surface-enhanced Raman scattering (SERS) substrate should have high sensitivity, long-term stability, excellent repeatability, and strong anti-interference. In the present work, single-layer carbon-based dot (CD)-capped Ag nanoparticle aggregates (a-AgNPs/CDs) with high SERS activity are synthesized and hybridized with a hydrogel to prepare novel hydrogel SERS chips. Benefiting from the unique properties of a-AgNPs/CDs and the hydrogel, the constructed hydrogel SERS chips show excellent performances. Taking crystal violet detection as an example, the hydrogel SERS chips show a detection limit of around 1 × 10-16 mol/L (high sensitivity), maintain above 96.40% of SERS activity even after 14 weeks of storage (long-term stability), and display point-to-point relative standard deviation (RSD) in one chip as low as 1.43% (outstanding repeatability) and RSD in different chips as low as 2.75% (excellent reproducibility). Furthermore, the self-extraction effect of the hydrogel enables the flexible hydrogel SERS chips to be used for analyzing various real samples including soybean milk, juices, and fruits without any complex pretreatment. For instance, the hydrogel SERS chips are able to detect trace thiram and 2-(4-thiazolyl)benzimidazole with the detection limits of 1 and 5 ppb in liquid samples, respectively, and of 1 and 2.5 ng/cm2 on the peel of fruits, respectively. The self-extraction functional flexible SERS chips offer a reliable and convenient platform for the quick detection and on-site monitoring of chemical contaminants.
Collapse
Affiliation(s)
- Mingming Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Jiaxin Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Xiajun Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Zhihong Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Jianli Huang
- Institute of Grain and Oil Quality Supervision and Test of Fujian, Fuzhou 350012, China
| | - Xianchai Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350025, China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350025, China
| |
Collapse
|
13
|
Terry LR, Sanders S, Potoff RH, Kruel JW, Jain M, Guo H. Applications of surface-enhanced Raman spectroscopy in environmental detection. ANALYTICAL SCIENCE ADVANCES 2022; 3:113-145. [PMID: 38715640 PMCID: PMC10989676 DOI: 10.1002/ansa.202200003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/11/2024]
Abstract
As the human population grows, the anthropogenic impacts from various agricultural and industrial processes produce unwanted contaminants in the environment. The accurate, sensitive and rapid detection of such contaminants is vital for human health and safety. Surface-enhanced Raman spectroscopy (SERS) is a valuable analytical tool with wide applications in environmental contaminant monitoring. The aim of this review is to summarize recent advancements within SERS research as it applies to environmental detection, with a focus on research published or accessible from January 2021 through December 2021 including early-access publications. Our goal is to provide a wide breadth of information that can be used to provide background knowledge of the field, as well as inform and encourage further development of SERS techniques in protecting environmental quality and safety. Specifically, we highlight the characteristics of effective SERS nanosubstrates, and explore methods for the SERS detection of inorganic, organic, and biological contaminants including heavy metals, pharmaceuticals, plastic particles, synthetic dyes, pesticides, viruses, bacteria and mycotoxins. We also discuss the current limitations of SERS technologies in environmental detection and propose several avenues for future investigation. We encourage researchers to fill in the identified gaps so that SERS can be implemented in a real-world environment more effectively and efficiently, ultimately providing reliable and timely data to help and make science-based strategies and policies to protect environmental safety and public health.
Collapse
Affiliation(s)
- Lynn R. Terry
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Sage Sanders
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Rebecca H. Potoff
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Jacob W. Kruel
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Manan Jain
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Huiyuan Guo
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| |
Collapse
|
14
|
Wei Y, Wang C, Lei F, Liu C, Li J, Li Z, Zhang C, Gao Y, Yu J. Precise real-time quantification for photocatalytic reaction: integration of the sensitive in-situSERS sensor and high-efficiency photocatalyst. NANOTECHNOLOGY 2022; 33:225701. [PMID: 35172280 DOI: 10.1088/1361-6528/ac55d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Recently,in-situsurface-enhanced Raman spectroscopy (SERS) is gradually becoming an important method for monitoring photocatalytic reaction processes, in which the quantification potential is a vital factor in determining whether this technology can be truly applied in the future. In order to improve the quantification performance ofin-situSERS and explore a precise operando Raman detection for photocatalytic reactions, an architecture of heterostructural Cu2O/ZnO/Ag nano round brush has been designed and discussed in this work. This structure is an integration of sensitivein-situSERS sensor and high-efficiency photocatalyst, realizing real-time monitoring of photocatalytic reaction in a wide concentration range from 20 to 3 mg l-1. The coefficient of determination between different detection methods is beyond 0.86 in this range, implying the high-precise quantification of this platform. Comprehensive analysis on structure effect, SERS performance, photocatalytic property, electric filed characteristic, etc were all systematically made and discussed in detail for this platform. This work presents a precise preliminar real-time photocatalytic monitoring usingin-situSERS detection, which is a new attempt and also meaningful reference for otherin-situanalytical technology.
Collapse
Affiliation(s)
- Yisheng Wei
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Chenxi Wang
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Chundong Liu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Jia Li
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Zhen Li
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Chao Zhang
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yuanmei Gao
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Jing Yu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| |
Collapse
|
15
|
Hu W, Xia L, Hu Y, Li G. Recent progress on three-dimensional substrates for surface-enhanced Raman spectroscopic analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Wang H, Liu Y, Rao G, Wang Y, Du X, Hu A, Hu Y, Gong C, Wang X, Xiong J. Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices. Analyst 2021; 146:5008-5032. [PMID: 34296232 DOI: 10.1039/d1an00624j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has become one of the most sensitive analytical techniques for identifying the chemical components, molecular structures, molecular conformations, and the interactions between molecules. However, great challenges still need to be addressed until it can be widely accepted by the absolute quantification of analytes. Recently, many efforts have been devoted to addressing these issues via various electromagnetic (EM), chemical (CM), and EM-CM hybrid coupling enhancement strategies. In comparison with uncoupled SERS devices, they offer key advantages in terms of sensitivity, reproducibility, uniformity, stability, controllability and reliability. This review provides an in-depth analysis of coupled SERS devices, including coupling enhancement mechanisms, materials and approaches. Finally, we also discuss the remaining bottlenecks and possible strategies for the development of coupling-enhanced SERS devices in the future.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang P, Liu G, Feng S, Zhou X, Xu W, Cai W. Engineering of flexible granular Au nanocap ordered array and its surface enhanced Raman spectroscopy effect. NANOTECHNOLOGY 2020; 31:035303. [PMID: 31550688 DOI: 10.1088/1361-6528/ab477c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a new and developing analytical technology in chemical and biological detection. However, traditional hard SERS substrates are struggling to meet the growing demand for flexible devices. In this work, we introduce a simple, cost-effective and large scale preparation route to form a flexible Au nanocap (AuNC) ordered array as SERS substrates via reactive ion etching (RIE) method and then Au deposition. We find RIE is an excellent method for nanoroughening the surface of polystyrene (PS) spheres. Such flexible SERS substrates exhibit high sensitivity and uniformity for detecting organic molecules. The finite-difference time-domain simulation results revealed that a strong electric field coupling effect existed not only in the gap site between the Au nanoparticles (AuNPs), but also in the connection position between the AuNCs and the single AuNP. This study not only offers a novel way for nanoroughening of PS spheres, but also acquires flexible and cheap SERS substrates for quick and sensitive detection of organic molecules.
Collapse
Affiliation(s)
- Peng Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China. University of Science and Technology of China, Hefei 230026, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Ryu HJ, Shin H, Oh S, Joo JH, Choi Y, Lee JS. Wrapping AgCl Nanostructures with Trimetallic Nanomeshes for Plasmon-Enhanced Catalysis and in Situ SERS Monitoring of Chemical Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2842-2853. [PMID: 31887004 DOI: 10.1021/acsami.9b18364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Selective chemical control of multiple reactions is incredibly important for the fabrication of sophisticated nanostructures for functional applications. A representative example is the synthesis of plasmonic nanomaterial-silver chloride (AgCl) conjugates, where metal ions should be selectively reduced into metallic nanostructures for plasmon-enhanced catalytic activity, while the reducible AgCl nanomaterials remain intact despite the presence of a chemical reductant. In addition to the selectively controlled reduction, the plasmonic nanostructures should be appropriately designed for the high stability and photoefficiency of catalysts. In this study, we demonstrate how AgCl nanocubes and nanospheres could be comprehensively wrapped by plasmonic three-dimensional nanomesh structures consisting of gold, silver, and palladium by the selective reduction of their ionic precursors while the AgCl nanostructures remain intact. Complete trimetallic wrapping provided the absorption of visible light, while the porosity of the nanomesh structures exposed the photocatalytic AgCl surface to catalyze desired reactions. Platinum in place of palladium was examined to demonstrate the versatility of the wrapping scheme, resulting in an extraordinary catalytic activity. Importantly, the detailed chemical mechanism behind the trimetallic wrapping of the AgCl nanostructures was systematically investigated to understand the roles of each reaction component in controlling the chemical selectivity. The synthesized AgCl-trimetal nanoconjugates excellently exhibit both metal-based and plasmon-enhanced catalytic properties for the removal of environmentally harmful Cr6+. Moreover, their applications as surface-enhanced Raman-scattering (SERS) probes for the in situ monitoring of catalytic reduction in real-time and as single-nanoparticle SERS probes for molecular detection are thoroughly demonstrated.
Collapse
|