1
|
Hagheh Kavousi Z, Abdallah L, Ghorbanloo M, Bonniol V, Rebiere B, Cornu D, Bechelany M, Holade Y. Galvanostatic Electroshock Synthesis of Low Loading Au-Pt Nanoalloys Onto Gas Diffusion Electrodes as Multifunctional Electrocatalysts for a Glycerol-Fed Electrolyzer. CHEMSUSCHEM 2024; 17:e202400996. [PMID: 38965888 PMCID: PMC11660746 DOI: 10.1002/cssc.202400996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
Water electrolysis is increasingly considered a viable solution for meeting the world's growing energy demands and mitigating environmental issues. An inventive strategy to mitigate the energy requirements involves substituting the energy-intensive oxygen evolution reaction (OER) with biomass-derived glycerol electrooxidation. Nonetheless, the synthesis of electrocatalysts for controlling the selectivity towards added-value chemicals at the anode and efficient H2 generation at the cathode remains a critical bottleneck. Herein, we implemented a galvanostatic electroshock synthesis approach to control the reduction kinetics of Au(III) and Pt(IV) to grow ultra-low amount of gold-platinum alloys on a gas diffusion electrode (12-26 μgmetal cm-2) for glycerol-fed hydroxide anion exchange membrane based electrolyzer. The symmetric GDE-Au100-xPtx||GDE-Au100-xPtx systems showed a notable improvement in electrolyzer performance (GDE-Au64Pt36=201 mA cm-2) as compared to monometallic versions (GDE-Au100Pt0=18 mA cm-2, GDE-Au0Pt100=81 mA cm-2). Chromatography (HPLC) analysis underscores the critical importance of bulk electrolysis methodology (galvanostatic vs potentiostatic) for the efficient conversion of glycerol into high-value-added products. Regarding the electrical energy required to produce 1 kg of H2 for such an electrolyzer fed at the anode with glycerol, our results confirm a drastic decrease by a factor of at least two compared with conventional water electrolysis.
Collapse
Affiliation(s)
- Zahra Hagheh Kavousi
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
- Department of Chemistry, Faculty of SciencesUniversity of ZanjanP.O. BoxZanjan4537138791Iran
| | - Layal Abdallah
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
| | - Massomeh Ghorbanloo
- Department of Chemistry, Faculty of SciencesUniversity of ZanjanP.O. BoxZanjan4537138791Iran
| | - Valerie Bonniol
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
| | - Bertrand Rebiere
- Institut Charles Gerhardt, ICGM, UMR 5253Univ Montpellier, ENSCM, CNRSMontpellierFrance
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
- French Research Network on Hydrogen (FRH2)Research Federation No. 2044 CNRS CNRS BP32229Nantes CEDEX 3 44322France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
- Functional Materials GroupGulf University for Science and Technology (GUST)Mubarak Al-Abdullah32093Kuwait
| | - Yaovi Holade
- Institut Européen des Membranes, IEM, UMR 5635Univ Montpellier, ENSCM, CNRSMontpellierFrance
- French Research Network on Hydrogen (FRH2)Research Federation No. 2044 CNRS CNRS BP32229Nantes CEDEX 3 44322France
| |
Collapse
|
2
|
Du S, Zhou Y, Tao L, Wang S, Liu ZQ. Hydrogen Electrode Reactions in Energy-Related Electrocatalysis Systems. CHEMSUSCHEM 2024; 17:e202400714. [PMID: 38859756 DOI: 10.1002/cssc.202400714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Hydrogen electrode reactions, including hydrogen evolution reactions and hydrogen oxidation reactions, are fundamental and crucial within aqueous electrochemistry. Particularly in energy-related electrocatalysis processes, there is a consistent involvement of hydrogen-related electrochemical processes, underscoring the need for in-depth study. This review encompasses significant reports, delving into elementary steps and reaction mechanisms of hydrogen electrode reactions, as well as catalyst design strategies. In addition, we focus on the application of hydrogen electrode reaction mechanism in different energy-related electrocatalytic reactions, and the significance of the promotion and suppression of reaction kinetics in different reaction systems. It thoroughly elucidated the significance of these reactions and the need for a deeper understanding, offering a novel perspective for the future development of this field.
Collapse
Affiliation(s)
- Shiqian Du
- Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Yangyang Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Zhao-Qing Liu
- Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, P. R. China
| |
Collapse
|
3
|
Hou X, Liang C, Zhao R, Wang L, Chen T, Yang J, Guo X, Xue N, Wang T, Peng L, Zhao X, Ding W. Integrated Catalyst ZnNC⊂PtZn for High-Performance Ethanol Electrooxidation and DEFC. Angew Chem Int Ed Engl 2024:e202417406. [PMID: 39587447 DOI: 10.1002/anie.202417406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
We report here an electrocatalyst that exhibits superior performance in the electrooxidation of ethanol. The reactive centers of the catalyst have a nest-type configuration with outer Zn-NxC nest covering inner PtZn intermetallic compound nanoparticles loaded on carbon support (ZnNC⊂PtZn/C). The high-energy stepped facets of the inner PtZn nanoparticles confined and shaped by the outer Zn-NxC nest is highly active for the critical C-C bond cleavage of ethanol in oxidation, confirmed by experimental characterizations and density functional theory calculations. The catalyst shows a rare high-performance and demonstrates a mass activity of 3.7 A mgPt -1 and a Faradaic efficiency of 78.2 %, following the C1 pathway of reaction and the retention of initial activity remains 97 % after 5,000 cycles. The unique configuration, also mitigating the concentration polarization, endows the catalyst with innate ethanol electrooxidation property by inner-outer synergic interactions, leading to unexpected power output of an acidic direct ethanol fuel cell.
Collapse
Affiliation(s)
- Xiaoxia Hou
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chenjia Liang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ruiyao Zhao
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Liwen Wang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Teng Chen
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Yang
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiangke Guo
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Nianhua Xue
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tao Wang
- Jiangsu Meso Catalytic Materials Technology Co., Ltd, Science and Technology Innovation Park, 36 Huada Road, Zhangjiagang Free Trade Zone, Jiangsu, 215634, China
| | - Luming Peng
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaomei Zhao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
van der Ham MJM, Creus J, Bitter JH, Koper MTM, Pescarmona PP. Electrochemical and Non-Electrochemical Pathways in the Electrocatalytic Oxidation of Monosaccharides and Related Sugar Alcohols into Valuable Products. Chem Rev 2024; 124:11915-11961. [PMID: 39480753 PMCID: PMC11565578 DOI: 10.1021/acs.chemrev.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
In this contribution, we review the electrochemical upgrading of saccharides (e.g., glucose) and sugar alcohols (e.g., glycerol) on metal and metal-oxide electrodes by drawing conclusions on common trends and differences between these two important classes of biobased compounds. For this purpose, we critically review the literature on the electrocatalytic oxidation of saccharides and sugar alcohols, seeking trends in the effect of reaction conditions and electrocatalyst design on the selectivity for the oxidation of specific functional groups toward value-added compounds. Importantly, we highlight and discuss the competition between electrochemical and non-electrochemical pathways. This is a crucial and yet often neglected aspect that should be taken into account and optimized for achieving the efficient electrocatalytic conversion of monosaccharides and related sugar alcohols into valuable products, which is a target of growing interest in the context of the electrification of the chemical industry combined with the utilization of renewable feedstock.
Collapse
Affiliation(s)
- Matthijs
P. J. M. van der Ham
- Biobased
Chemistry and Technology, Wageningen Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jordi Creus
- Chemical
Engineering Group, Engineering and Technology Institute Groningen
(ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- TNO, Westerduinweg 3, 1755 LE Petten, The Netherlands
| | - Johannes H. Bitter
- Biobased
Chemistry and Technology, Wageningen Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Paolo P. Pescarmona
- Chemical
Engineering Group, Engineering and Technology Institute Groningen
(ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Cao J, Zhao F, Li C, Zhao Q, Gao L, Ma T, Xu H, Ren X, Liu A. Electrocatalytic Synthesis of Urea: An In-depth Investigation from Material Modification to Mechanism Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403412. [PMID: 38934550 DOI: 10.1002/smll.202403412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Industrial urea synthesis production uses NH3 from the Haber-Bosch method, followed by the reaction of NH3 with CO2, which is an energy-consuming technique. More thorough evaluations of the electrocatalytic C-N coupling reaction are needed for the urea synthesis development process, catalyst design, and the underlying reaction mechanisms. However, challenges of adsorption and activation of reactant and suppression of side reactions still hinder its development, making the systematic review necessary. This review meticulously outlines the progress in electrochemical urea synthesis by utilizing different nitrogen (NO3 -, N2, NO2 -, and N2O) and carbon (CO2 and CO) sources. Additionally, it delves into advanced methods in materials design, such as doping, facet engineering, alloying, and vacancy introduction. Furthermore, the existing classes of urea synthesis catalysts are clearly defined, which include 2D nanomaterials, materials with Mott-Schottky structure, materials with artificially frustrated Lewis pairs, single-atom catalysts (SACs), and heteronuclear dual-atom catalysts (HDACs). A comprehensive analysis of the benefits, drawbacks, and latest developments in modern urea detection techniques is discussed. It is aspired that this review will serve as a valuable reference for subsequent designs of highly efficient electrocatalysts and the development of strategies to enhance the performance of electrochemical urea synthesis.
Collapse
Affiliation(s)
- Jianghui Cao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Chengjie Li
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Weifang, 262700, China
| | - Qidong Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Hao Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| |
Collapse
|
6
|
Luo H, Ouyang M, Li H, Nie S, Xu D, Zhao T. Concave Gold Nanocubes Exhibit Growth-Etching Behavior: Unexpected Morphological Transformations. Inorg Chem 2024; 63:13110-13116. [PMID: 38940642 DOI: 10.1021/acs.inorgchem.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Chemical equilibrium stands as a fundamental principle governing the dynamics of chemical systems. However, it may become intricate when it refers to nanomaterials because of their unique properties. Here, we invesitigated concave gold nanocubes (CGNs) subjected to an akaline Au3+/H2O2 solution, which exhibit both etching and growth in a monotonic solution. When CGNs were subjected to an increasingly alkaline Au3+/H2O2 solution, their dimensions increased from 107 to 199 nm and then decreased to 125 nm. Transmission electron microscopy (TEM) demonstrated that their morphology undergoes intricate alternations from concave to mutibranch and finally to concave again. Real-time ultraviolet-visible spectroscopy and time-dependent TEM also demonstrated reduction first and then oxidation in one solution. Among the nanomaterials, the obtained carpenterworm-like gold nanoparticles revealed the best catalytic performance in p-nitrophenol reduction by NaBH4, with a chemical rate that continues to increase until the reaction reaches completion. Growth leading to atomic dislocation, distortion, and exposure on nanoparticles and the redox of H2O2 plausibly account for the further etching due to the Ostwald ripening effect. Our study may spur more interest in the tuning of the properties, engineering, investigation, and design of new kinds of nanomaterials.
Collapse
Affiliation(s)
- Hongmei Luo
- National Engineering Laboratory for Rice and Byproducts Further Processing, Central South University of Forestry & Technology, Changsha 410004, China
| | - Min Ouyang
- National Engineering Laboratory for Rice and Byproducts Further Processing, Central South University of Forestry & Technology, Changsha 410004, China
| | - Hongchen Li
- National Engineering Laboratory for Rice and Byproducts Further Processing, Central South University of Forestry & Technology, Changsha 410004, China
| | - Saiqun Nie
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Dong Xu
- National Engineering Laboratory for Rice and Byproducts Further Processing, Central South University of Forestry & Technology, Changsha 410004, China
| | - Tian Zhao
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
7
|
Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, Gu N. Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211210. [PMID: 36840985 DOI: 10.1002/adma.202211210] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials with more than one enzyme-like activity are termed multienzymic nanozymes, and they have received increasing attention in recent years and hold huge potential to be applied in diverse fields, especially for biosensing and therapeutics. Compared to single enzyme-like nanozymes, multienzymic nanozymes offer various unique advantages, including synergistic effects, cascaded reactions, and environmentally responsive selectivity. Nevertheless, along with these merits, the catalytic mechanism and rational design of multienzymic nanozymes are more complicated and elusive as compared to single-enzymic nanozymes. In this review, the multienzymic nanozymes classification scheme based on the numbers/types of activities, the internal and external factors regulating the multienzymatic activities, the rational design based on chemical, biomimetic, and computer-aided strategies, and recent progress in applications attributed to the advantages of multicatalytic activities are systematically discussed. Finally, current challenges and future perspectives regarding the development and application of multienzymatic nanozymes are suggested. This review aims to deepen the understanding and inspire the research in multienzymic nanozymes to a greater extent.
Collapse
Affiliation(s)
- Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yuehuang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Kaizheng Feng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yu Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
8
|
Ratwani CR, Karunarathne S, Kamali AR, Abdelkader AM. Transforming Nature's Bath Sponge into Stacking Faults-Enhanced Ag Nanorings-Decorated Catalyst for Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5847-5856. [PMID: 38284621 DOI: 10.1021/acsami.3c16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The rational design of cost-effective and efficient electrocatalysts for electrochemical water splitting is essential for green hydrogen production. Utilizing nanocatalysts with abundant active sites, high surface area, and deliberate stacking faults is a promising approach for enhancing catalytic efficiency. In this study, we report a simple strategy to synthesize a highly efficient electrocatalyst for the hydrogen evolution reaction (HER) using carbonized luffa cylindrica as a conductive N-doped carbon skeleton decorated with Ag nanorings that are activated by introducing stacking faults. The introduction of stacking faults and the resulting tensile strain into the Ag nanorings results in a significant decrease in the HER overpotential, enabling the use of Ag as an efficient HER electrocatalyst. Our findings demonstrate that manipulating the crystal properties of electrocatalysts, even for materials with intrinsically poor catalytic activity such as Ag, can result in highly efficient catalysts. Further, applying a conductive carbon backbone can lower the quantities of metal needed without compromising the HER activity. This approach opens up new avenues for designing high-performance electrocatalysts with very low metallic content, which could significantly impact the development of sustainable and cost-effective electrochemical water-splitting systems.
Collapse
Affiliation(s)
- Chirag R Ratwani
- Department of Design and Engineering, Faculty of Science & Technology, Bournemouth University, Poole, Dorset BH12 5BB, U.K
| | - Shadeepa Karunarathne
- Department of Design and Engineering, Faculty of Science & Technology, Bournemouth University, Poole, Dorset BH12 5BB, U.K
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Amr M Abdelkader
- Department of Design and Engineering, Faculty of Science & Technology, Bournemouth University, Poole, Dorset BH12 5BB, U.K
| |
Collapse
|
9
|
Zhao F, Yuan Q. Abundant Exterior/Interior Active Sites Enable Three-Dimensional PdPtBiTe Dumbbells C-C Cleavage Electrocatalysts for Actual Alcohol Fuel Cells. Inorg Chem 2023; 62:14815-14822. [PMID: 37647605 DOI: 10.1021/acs.inorgchem.3c02642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Developing high-activity electrocatalysts is of great significance for the commercialization of direct alcohol fuel cells (DAFCs), but it still faces challenges. Herein, three-dimensional (3D) porous PdPtBiTe dumbbells (DBs) were successfully fabricated via the visible photoassisted method. The alloying effect, defect-rich surface/interface and nanoscale cavity, and open pores make the 3D PdPtBiTe DBs a comprehensive and remarkable electrocatalyst for the C1-C3 alcohol (ethanol, ethylene glycol, glycerol, and methanol) oxidation reaction (EOR, EGOR, GOR, and MOR, respectively) in an alkaline electrolyte, and the results of in situ Fourier transform infrared spectra revealed a superior C-C bond cleavage ability. The 3D PdPtBiTe DBs exhibit ultrahigh EOR, EGOR, GOR, and MOR mass activities of 25.4, 23.2, 16.8, and 18.3 A mgPd + Pt-1, respectively, considerably surpassing those of the commercial Pt/C and Pd/C. Moreover, the mass peak power densities of 3D PdPtBiTe DBs in actual ethanol, ethylene glycol, glycerol, or methanol fuel cells increase to 409.5, 501.5, 558.0, or 601.3 mW mgPd + Pt-1 in O2, respectively. This study provides a new class of multimetallic nanomaterials as state-of-the-art multifunctional anode electrocatalysts for actual DAFCs.
Collapse
Affiliation(s)
- Fengling Zhao
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, P. R. China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, P. R. China
| |
Collapse
|
10
|
Hayat A, Sohail M, Moussa SB, Al-Muhanna MK, Iqbal W, Ajmal Z, Raza S, Al-Hadeethi Y, Orooji Y. State, synthesis, perspective applications, and challenges of Graphdiyne and its analogues: A review of recent research. Adv Colloid Interface Sci 2023; 319:102969. [PMID: 37598456 DOI: 10.1016/j.cis.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Carbon materials technology provides the possibility of synthesizing low-cost, outstanding performance replacements to noble-metal catalysts for long-term use. Graphdiyne (GDY) is a carbon allotrope with an extremely thin atomic thickness. It consists of carbon elements, that are hybridized with both sp. and sp2, resulting in a multilayered two-dimensional (2D) configuration. Several functional models suggest, that GDY contains spontaneously existing band structure with Dirac poles. This is due to the non-uniform interaction among carbon atoms, which results from various fusions and overlapping of the 2pz subshell. Unlike other carbon allotropes, GDY has Dirac cone arrangements, that in turn give it inimitable physiochemical characteristics. These properties include an adjustable intrinsic energy gap, high speeds charging transport modulation efficiency, and exceptional conductance. Many scientists are interested in such novel, linear, stacked materials, including GDY. As a result, organized synthesis of GDY has been pursued, making it one of the first synthesized GDY materials. There are several methods to manipulate the band structure of GDY, including applying stresses, introducing boron/nitrogen loading, utilizing nanowires, and hydrogenations. The flexibility of GDY can be effectively demonstrated through the formation of nano walls, nanostructures, nanotube patterns, nanorods, or structured striped clusters. GDY, being a carbon material, has a wide range of applications owing to its remarkable structural and electrical characteristics. According to subsequent research, the GDY can be utilized in numerous energy generation processes, such as electrochemical water splitting (ECWS), photoelectrochemical water splitting (PEC WS), nitrogen reduction reaction (NRR), overall water splitting (OWS), oxygen reduction reaction (ORR), energy storage materials, lithium-Ion batteries (LiBs) and solar cell applications. These studies suggested that the use of GDY holds significant potential for the development and implementation of efficient, multimodal, and intelligent catalysts with realistic applications. However, the limitation of GDY and GDY-based composites for forthcoming studies are similarly acknowledged. The objective of these studies is to deliver a comprehensive knowledge of GDY and inspire further advancement and utilization of these unique carbon materials.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Sana Ben Moussa
- Faculty of Science and Arts, Mohail Asser, King Khalid University, Saudi Arabia
| | - Muhanna K Al-Muhanna
- The Material Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Zeeshan Ajmal
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Saleem Raza
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
11
|
Mu C, Li H, Zhou L, Ye H, Wang R, Sun Y. Construction of the Heterostructure of NiPt Truncated Octahedral Nanoparticle/MoS 2 and Its Interfacial Structure Evolution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111777. [PMID: 37299680 DOI: 10.3390/nano13111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Interfacial atomic configuration plays a vital role in the structural stability and functionality of nanocomposites composed of metal nanoparticles (NPs) and two-dimensional semiconductors. In situ transmission electron microscope (TEM) provides a real-time technique to observe the interface structure at atomic resolution. Herein, we loaded bimetallic NiPt truncated octahedral NPs (TONPs) on MoS2 nanosheets and constructed a NiPt TONPs/MoS2 heterostructure. The interfacial structure evolution of NiPt TONPs on MoS2 was in situ investigated using aberration-corrected TEM. It was observed that some NiPt TONPs exhibited lattice matching with MoS2 and displayed remarkable stability under electron beam irradiation. Intriguingly, the rotation of an individual NiPt TONP can be triggered by the electron beam to match the MoS2 lattice underneath. Furthermore, the coalescence kinetics of NiPt TONPs can be quantitatively described by the relationship between neck radius (r) and time (t), expressed as rn = Kt. Our work offers a detailed analysis of the lattice alignment relationship of NiPt TONPs on MoS2, which may enlighten the design and preparation of stable bimetallic metal NPs/MoS2 heterostructures.
Collapse
Affiliation(s)
- Congyan Mu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinghui Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
12
|
He Z, Duan Q, Wang C, Liao L. Atom-stepped surface-regulated Pd nanowires for boosting alcohol oxidation activity. J Colloid Interface Sci 2023; 646:529-537. [PMID: 37210900 DOI: 10.1016/j.jcis.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
A highly active surface can endow the electrocatalysts with extraordinary catalytic performances. However, it remains challenging to tailor the atomic packing characteristics and thus the physical and chemical characteristics of the electrocatalysts. Herein, penta-twinned Pd nanowires (NWs) with abundant high-energy atomic steps (i.e., stepped Pd) are synthesized by seeded synthesis on Pd NWs enclosed by (100) facets. Benefiting from the catalytically active atomic steps, such as [n(100) × m(111)] on the surface, the resultant stepped Pd NWs can work as an effective electrocatalyst for the ethanol oxidation reaction (EOR) and ethylene glycol oxidation reaction (EGOR), which are essential anode reactions in direct alcohol fuel cells (DAFCs). Compared with commercial Pd/C, the Pd nanowires bound by (100) facets and atomic steps both display enhanced catalytic activity and stability towards the EOR and EGOR. Importantly, the mass activities of the stepped Pd NWs toward the EOR and EGOR are 6.38 and 7.98 A mgPd-1, which are 3.1 and 2.6 times those of Pd NWs enclosed by (100) facets, respectively. Besides, our synthetic strategy also enables the formation of bimetallic Pd-Cu nanowires with abundant atomic steps. This work not only demonstrates a simple yet effective strategy to obtain mono- or bi-metallic nanowires with abundant atomic steps, but also highlights the significant role of atomic steps for boosting the activity of electrocatalysts.
Collapse
Affiliation(s)
- Zhen He
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Qiaohui Duan
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R, China
| | - Chengming Wang
- Instruments' Center for Physical Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Lingwen Liao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
13
|
Electrodeposition of nanoporous Ni0.85Se arrays anchored on rGO promotes high-efficiency oxygen evolution reaction. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
14
|
Electrolyte Effects on the Shape-Controlled Synthesis of Pt Nanocrystals by Electrochemical Square-Wave Potential Method. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
15
|
Lu Z, Zou L, Song W. Hierarchical Pt-In Nanowires for Efficient Methanol Oxidation Electrocatalysis. Molecules 2023; 28:molecules28031502. [PMID: 36771164 PMCID: PMC9920629 DOI: 10.3390/molecules28031502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Direct methanol fuel cells (DMFC) have attracted increasing research interest recently; however, their output performance is severely hindered by the sluggish kinetics of the methanol oxidation reaction (MOR) at the anode. Herein, unique hierarchical Pt-In NWs with uneven surface and abundant high-index facets are developed as efficient MOR electrocatalysts in acidic electrolytes. The developed hierarchical Pt89In11 NWs exhibit high MOR mass activity and specific activity of 1.42 A mgPt-1 and 6.2 mA cm-2, which are 5.2 and 14.4 times those of Pt/C, respectively, outperforming most of the reported MORs. In chronoamperometry tests, the hierarchical Pt89In11 NWs demonstrate a longer half-life time than Pt/C, suggesting the better CO tolerance of Pt89In11 NWs. After stability, the MOR activity can be recovered by cycling. XPS, CV measurement and CO stripping voltammetry measurements demonstrate that the outstanding catalytic activity may be attributed to the facile removal of CO due to the presence of In site-adsorbing hydroxyl species.
Collapse
Affiliation(s)
- Zhao Lu
- Analytical and Testing Center of Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Zou
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Wulin Song
- Analytical and Testing Center of Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- Correspondence: ; Tel.: +86-027-875592025
| |
Collapse
|
16
|
Ji L, Luo S, Li L, Qian N, Li X, Li J, Huang J, Wu X, Zhang H, Yang D. Facile synthesis of defect-rich RuCu nanoflowers for efficient hydrogen evolution reaction in alkaline media. NANOSCALE ADVANCES 2023; 5:861-868. [PMID: 36756518 PMCID: PMC9890511 DOI: 10.1039/d2na00840h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Developing high-performance electrocatalysts toward hydrogen evolution reaction (HER) in alkaline media is highly desirable for industrial applications in the field of water splitting but is still challenging. Herein, we successfully synthesized RuCu nanoflowers (NFs) with tunable atomic ratios using a facile wet chemistry method. The Ru3Cu NFs need only 55 mV to achieve a current density of 10 mA cm-2, which shows ideal durability with only 4 mV decay after 2000 cycles, largely outperforming the catalytic properties of commercial Pt/C. The Ru3Cu NFs comprise many nanosheets that can provide more active sites for HER. In addition, the introduction of Cu can modulate the electronic structure of Ru, facilitate water dissociation, and optimize H adsorption/desorption ability. Thus, the flower-like structure together with the proper incorporation of Cu boosts HER performance.
Collapse
Affiliation(s)
- Liang Ji
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Sai Luo
- Sunrise Power Co., Ltd Dalian Liaoning 116024 People's Republic of China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 People's Republic of China
| | - Lei Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Xiao Li
- Sunrise Power Co., Ltd Dalian Liaoning 116024 People's Republic of China
| | - Junjie Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Jingbo Huang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Xingqiao Wu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou Zhejiang 311200 People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou Zhejiang 311200 People's Republic of China
| |
Collapse
|
17
|
Boucher A, Jones G, Roldan A. Toward a new definition of surface energy for late transition metals. Phys Chem Chem Phys 2023; 25:1977-1986. [PMID: 36541443 DOI: 10.1039/d2cp04024g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Surface energy is a top-importance stability descriptor of transition metal-based catalysts. Here, we combined density functional theory (DFT) calculations and a tiling scheme measuring surface areas of metal structures to develop a simple computational model predicting the average surface energy of metal structures independently of their shape. The metals considered are W, Ru, Co, Ir, Ni, Pd, Pt, Cu, Ag and Au. Lorentzian trends derived from the DFT data proved effective at predicting the surface energy of metallic surfaces but not for metal clusters. We used machine-learning protocols to build an algorithm that improves the Lorentzian trend's accuracy and is able to predict the surface energies of metal surfaces of any crystal structure, i.e., face-centred cubic, hexagonal close-packed, and body-centred cubic, but also of nanostructures and sub-nanometer clusters. The machine-learning neural network takes easy-to-compute geometric features to predict metallic moieties surface energies with a mean absolute error of 0.091 J m-2 and an R2 score of 0.97.
Collapse
Affiliation(s)
- Alexandre Boucher
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Wales, UK.
| | - Glenn Jones
- Johnson Matthey Technology Center, Blounts Ct Rd, Sonning Common, Reading, RG4 9NH, UK
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
18
|
Su Y, Wang S, Ji L, Zhang C, Cai H, Zhang H, Sun W. High surface area siloxene for photothermal and electrochemical catalysis. NANOSCALE 2022; 15:154-161. [PMID: 36478182 DOI: 10.1039/d2nr05140k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Catalysis based on two-dimensional silicon has been under intense investigation recently. However, its substandard catalytic activity is far from industrialization. In this work, we demonstrate a new solution to this problem formulated on the batch synthesis of siloxene with an enhanced specific surface area (217.8 m2 g-1). A two-dimensional porous structure was prepared, enabling great support and dispersion of metal nanoparticles. Catalytic evaluations of such hybrid structures for the (photo)thermal CO2 hydrogenation reaction and the electrochemical hydrogen evolution reaction revealed a significant performance advantage over the benchmark two-dimensional silicon structures synthesized via the conventional method. This work may confer notable viability on two-dimensional silicon for advanced energy, catalytic, and environmental applications.
Collapse
Affiliation(s)
- Yize Su
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Shenghua Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Liang Ji
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Chengcheng Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Haiting Cai
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Wei Sun
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| |
Collapse
|
19
|
Xu B, Liu T, Liang X, Dou W, Geng H, Yu Z, Li Y, Zhang Y, Shao Q, Fan J, Huang X. Pd-Sb Rhombohedra with an Unconventional Rhombohedral Phase as a Trifunctional Electrocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206528. [PMID: 36120846 DOI: 10.1002/adma.202206528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Crystal phase engineering is an important strategy for designing noble-metal-based catalysts with optimized activity and stability. From the thermodynamic point of view, it remains a great challenge to synthesize unconventional phases of noble metals. Here, a new class of Pd-based nanostructure with unconventional rhombohedral Pd20 Sb7 phase is successfully synthesized. Benefiting from the high proportion of the unique exposed Pd20 Sb7 (003) surface, Pd20 Sb7 rhombohedra display much enhanced ethanol oxidation reaction (EOR) and oxygen reduction reaction performance compared with commercial Pd/C. Moreover, Pd20 Sb7 rhombohedra are also demonstrated as an effective air cathode in non-aqueous Li-air batteries with an overpotential of only 0.24 V. Density functional theory calculations reveal that the unique exposed facets of Pd20 Sb7 rhombohedra can not only reduce the excessive adsorption of CH3 CO* to CH3 COOH on Pd for promoting EOR process, but also weaken CO binding and CO poisoning. This work provides a new class of unconventional intermetallic nanomaterials with enhanced electrocatalytic activity.
Collapse
Affiliation(s)
- Bingyan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaocong Liang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Wenjie Dou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Zhang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Jingmin Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
20
|
Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2022; 5:13. [PMID: 36212026 PMCID: PMC9536324 DOI: 10.1007/s41918-022-00173-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 10/26/2022]
Abstract
AbstractProton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans. However, their performance, cost, and durability are significantly related to Pt-based electrocatalysts, hampering their large-scale commercial application. Hence, considerable efforts have been devoted to improving the activity and durability of Pt-based electrocatalysts by controlled synthesis in recent years as an effective method for decreasing Pt use, and consequently, the cost. Therefore, this review article focuses on the synthesis processes of carbon-supported Pt-based electrocatalysts, which significantly affect the nanoparticle size, shape, and dispersion on supports and thus the activity and durability of the prepared electrocatalysts. The reviewed processes include (i) the functionalization of a commercial carbon support for enhanced catalyst–support interaction and additional catalytic effects, (ii) the methods for loading Pt-based electrocatalysts onto a carbon support that impact the manufacturing costs of electrocatalysts, (iii) the preparation of spherical and nonspherical Pt-based electrocatalysts (polyhedrons, nanocages, nanoframes, one- and two-dimensional nanostructures), and (iv) the postsynthesis treatments of supported electrocatalysts. The influences of the supports, key experimental parameters, and postsynthesis treatments on Pt-based electrocatalysts are scrutinized in detail. Future research directions are outlined, including (i) the full exploitation of the potential functionalization of commercial carbon supports, (ii) scaled-up one-pot synthesis of carbon-supported Pt-based electrocatalysts, and (iii) simplification of postsynthesis treatments. One-pot synthesis in aqueous instead of organic reaction systems and the minimal use of organic ligands are preferred to simplify the synthesis and postsynthesis treatment processes and to promote the mass production of commercial carbon-supported Pt-based electrocatalysts.
Graphical Abstract
This review focuses on the synthesis process of Pt-based electrocatalysts/C to develop aqueous one-pot synthesis at large-scale production for PEMFC stack application.
Collapse
|
21
|
Xu X, Ma Z, Su Z, Li D, Dong X, Huang H, Qi M. The Synthesis of Carbon Black-Loaded Pt Concave Nanocubes with High-Index Facets and Their Enhanced Electrocatalytic Properties toward Glucose Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3761. [PMID: 36364535 PMCID: PMC9657639 DOI: 10.3390/nano12213761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Catalysts with high catalytic activity and good stability are desirable in the electrocatalytic oxidation of glucose. Herein, Pt concave nanocubes with high-index facets (HIFs) supported by carbon black (Pt CNC/CB) are prepared through a hydrothermal method. The experimental results demonstrate that the peak current densities in different potential regions on the Pt CNC/CB anode are 0.22, 0.20, and 0.60 mA cm-2. The catalytic process of the glucose oxidation reaction is investigated in electrolytes with different pH values. Better stability is achieved by Pt CNC/CB than by Pt concave nanocubes (Pt CNCs). Abundant surface defects with low-coordinated atom numbers, such as steps, kinks, and edges, served as active sites in the electrocatalytic oxidation of glucose. With the addition of carbon black, the catalytic activity can be improved by facilitating the full exposure of the active surface defects on the HIFs of the Pt CNCs. Moreover, to address the aggregation of Pt CNCs, caused by the high surface energy of HIFs, the introduction of carbon material is an effective way to preserve the HIFs and thus enhance the stability of the catalyst. Hence, the prepared Pt CNC/CB electrocatalyst has great potential to be applied in the electrooxidation of glucose.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ze Ma
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zekun Su
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Danqing Li
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xufeng Dong
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Huang
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Min Qi
- Key Laboratory of Energy Materials and Devices (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Single-atom catalysts on metal-based supports for solar photoreduction catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Pd-Ru anchored on CaO derived from waste-eggshells for ethanol oxidation electrocatalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Lin F, Lv F, Zhang Q, Luo H, Wang K, Zhou J, Zhang W, Zhang W, Wang D, Gu L, Guo S. Local Coordination Regulation through Tuning Atomic-Scale Cavities of Pd Metallene toward Efficient Oxygen Reduction Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202084. [PMID: 35484940 DOI: 10.1002/adma.202202084] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Moderate adsorption of oxygenated intermediates takes a significant role in rational design of high-efficiency oxygen reduction reaction (ORR) electrocatalysts. Long-serving as a reliable strategy to tune geometric structure of nanomaterials, defect engineering enjoys the great ability of adjusting the coordination environment of catalytic active sites, which enables dominant regulation of adsorption energy and kinetics of ORR catalysis. However, limited to controllable nanocrystals fabrication, inducing uniformly dispersed high-coordinated defects into ultrathin 2D nanosheets remains challenging. Herein, atomic-scale cavities (ASCs) are proposed as a new kind of high-coordinated active site and successfully introduced into suprathin Pd (111)-exposed metallene. Due to its atomic concave architecture, leading to elevated CN and moderately downshifted d-band center, the as-made Pd metallene with ASCs (c-Pd M) exhibits excellent ORR performance with mass activity of 2.76 A mgPd -1 at 0.9 V versus reversible hydrogen electrode (RHE) and half-wave potential as high as 0.947 V, which is 18.9 (2.7) times higher and 104 (46) mV larger than that of commercial Pt/C (Pd metallene without ASCs). Besides, the durability of c-Pd M exceeds its commercial counterpart with ≈30% loss after 5000 cycles. This work highlights a new-style mentality of designing fancy active sites toward efficient ORR electrocatalysis.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jinhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Weiyu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenshu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Dawei Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
25
|
Ramadhan ZR, Poerwoprajitno AR, Cheong S, Webster RF, Kumar PV, Cychy S, Gloag L, Benedetti TM, Marjo CE, Muhler M, Wang DW, Gooding JJ, Schuhmann W, Tilley RD. Introducing Stacking Faults into Three-Dimensional Branched Nickel Nanoparticles for Improved Catalytic Activity. J Am Chem Soc 2022; 144:11094-11098. [PMID: 35713612 DOI: 10.1021/jacs.2c04911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Creating high surface area nanocatalysts that contain stacking faults is a promising strategy to improve catalytic activity. Stacking faults can tune the reactivity of the active sites, leading to improved catalytic performance. The formation of branched metal nanoparticles with control of the stacking fault density is synthetically challenging. In this work, we demonstrate that varying the branch width by altering the size of the seed that the branch grows off is an effective method to precisely tune the stacking fault density in branched Ni nanoparticles. A high density of stacking faults across the Ni branches was found to lower the energy barrier for Ni2+/Ni3+ oxidation and result in enhanced activity for electrocatalytic oxidation of 5-hydroxylmethylfurfural. These results show the ability to synthetically control the stacking fault density in branched nanoparticles as a basis for enhanced catalytic activity.
Collapse
Affiliation(s)
- Zeno R Ramadhan
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard F Webster
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Steffen Cychy
- Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tania M Benedetti
- School of Environment and Science and Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4222, Australia
| | - Christopher E Marjo
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Martin Muhler
- Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Da-Wei Wang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.,Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Poerwoprajitno AR, Cheong S, Gloag L, Gooding JJ, Tilley RD. Synthetic Strategies to Enhance the Electrocatalytic Properties of Branched Metal Nanoparticles. Acc Chem Res 2022; 55:1693-1702. [PMID: 35616935 DOI: 10.1021/acs.accounts.2c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusBranched metal nanoparticles have unique catalytic properties because of their high surface area with multiple branches arranged in an open 3D structure that can interact with reacting species and tailorable branch surfaces that can maximize the exposure of desired catalytically active crystal facets. These exceptional properties have led to the exploration of the roles of branch structural features ranging from the number and dimensions of branches at the larger scales to the atomic-scale arrangement of atoms on precise crystal facets. The fundamental significance of how larger-scale branch structural features and atomic-scale surface faceting influence and control the catalytic properties has been at the forefront of the design of branched nanoparticles for catalysis. Current synthetic advances have enabled the formation of branched nanoparticles with an unprecedented degree of control over structural features down to the atomic scale, which have unlocked opportunities to make improved nanoparticle catalysts. These catalysts have high surface areas with controlled size and surface facets for achieving exceedingly high activity and stability. The synthetic advancement has recently led to the use of branched nanoparticles as ideal substrates that can be decorated with a second active metal in the form of islands and single atoms. These decorated branched nanoparticles have new and highly effective catalytic active sites where both branch metal and decorating metal play essential roles during catalysis.In the opening half of this Account, we critically assess the important structural features of branched nanoparticles that control catalytic properties. We first discuss the role of branch dimensions and the number of branches that can improve the surface area but can also trap gas bubbles. We then investigate the atomic-scale structural features of exposed surface facets, which are critical for enhancing catalytic activity and stability. Well-defined branched nanoparticles have led to a fundamental understanding of how the branch structural features influence the catalytic activity and stability, which we highlight for the oxygen evolution reaction (OER) and biomass oxidation. In discussing recent breakthroughs for branched nanoparticles, we explore the opportunities created by decorated branched nanoparticles and the unique bifunctional active sites that are exposed on the branched nanoparticle surfaces. This class of catalysts is of rapidly growing importance for reactions including the hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR), where two exposed metals are required for efficient catalysis. In the second half of this Account, we explore recent advances in the synthesis of branched nanoparticles and highlight the cubic-core hexagonal-branch growth mechanism that has achieved excellent control of all of the important structural features, including branch dimensions, number of branches, and surface facets. We discuss the slow precursor reduction as an effective strategy for decorating metal islands with controlled loadings on the branched nanoparticle surfaces and the spread of these metal islands to form single-atom active sites. We envisage that the key synthetic and structural advances identified in this Account will guide the development of the next-generation electrocatalysts.
Collapse
Affiliation(s)
| | | | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J. Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D. Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Riaz MA, Chen Y. Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: a review of design strategies. NANOSCALE HORIZONS 2022; 7:463-479. [PMID: 35289828 DOI: 10.1039/d2nh00006g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
H2O2 sensing is required in various biological and industrial applications, for which electrochemical sensing is a promising choice among various sensing technologies. Electrodes and electrocatalysts strongly influence the performance of electrochemical H2O2 sensors. Significant efforts have been devoted to electrode nanostructural designs and nanomaterial-based electrocatalysts. Here, we review the design strategies for electrodes and electrocatalysts used in electrochemical H2O2 sensors. We first summarize electrodes in different structures, including rotation disc electrodes, freestanding electrodes, all-in-one electrodes, and representative commercial H2O2 probes. Next, we discuss the design strategies used in recent studies to increase the number of active sites and intrinsic activities of electrocatalysts for H2O2 redox reactions, including nanoscale pore structuring, conductive supports, reducing the catalyst size, alloying, doping, and tuning the crystal facets. Finally, we provide our perspectives on the future research directions in creating nanoscale structures and nanomaterials to enable advanced electrochemical H2O2 sensors in practical applications.
Collapse
Affiliation(s)
- Muhammad Adil Riaz
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia.
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW, 2006, Australia.
| |
Collapse
|
28
|
Li H, Wei H, Zhang L, Su Z, Gong X. Engineering Ultrafine Ir Nanocrystals for Electrochemical Hydrogen Evolution With Highly Superior Mass Activity. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Liu Y, Naseri A, Li T, Ostovan A, Asadian E, Jia R, Shi L, Huang L, Moshfegh AZ. Shape-Controlled Photochemical Synthesis of Noble Metal Nanocrystals Based on Reduced Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16527-16537. [PMID: 35373562 DOI: 10.1021/acsami.2c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fabrication of supported noble metal nanocrystals (NCs) with well-controlled morphologies have been attracted considerable interests due to their merits in a wide variety of applications. Photodeposition is a facile and effective method to load metals over semiconductors in a simple slurry reactor under irradiation. By optimizing the photodeposition process, the size, chemical states, and the geometrical distribution of metal NCs have been successfully tuned. However, metal NCs with well-controlled shapes through the photodeposition process have not been reported until now. Here, we report our important advances in the controlled photodeposition process to load regular noble metal NCs. Reduced graphene oxide (rGO) is introduced as a reservoir for the fast transfer of photoelectrons to avoid the fast accumulation of photogenerated electrons on the noble metals which makes the growth process uncontrollable. Meanwhile, rGO also provides stable surface for the controlled nucleation and oriented growth. Noble metal NCs with regular morphologies are then evenly deposited on rGO. This strategy has been demonstrated feasible for different precious metals (Pd, Au, and Pt) and semiconductors (TiO2, ZnO, ZrO2, CeO2, and g-C3N4). In the prototype application of electrochemical hydrogen evolution reaction, regular Pd NCs with enclosed {111} facets showed much better performance compared with that of irregular Pd NCs.
Collapse
Affiliation(s)
- Yidan Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Amene Naseri
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
- Nanotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj 3135933151, Iran
| | - Ting Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Azar Ostovan
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Elham Asadian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Rongrong Jia
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Alireza Z Moshfegh
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
30
|
Wu Y, Jamali S, Tilley RD, Gooding JJ. Spiers Memorial Lecture. Next generation nanoelectrochemistry: the fundamental advances needed for applications. Faraday Discuss 2022; 233:10-32. [PMID: 34874385 DOI: 10.1039/d1fd00088h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanoelectrochemistry, where electrochemical processes are controlled and investigated with nanoscale resolution, is gaining more and more attention because of the many potential applications in energy and sensing and the fact that there is much to learn about fundamental electrochemical processes when we explore them at the nanoscale. The development of instrumental methods that can explore the heterogeneity of electrochemistry occurring across an electrode surface, monitoring single molecules or many single nanoparticles on a surface simultaneously, have been pivotal in giving us new insights into nanoscale electrochemistry. Equally important has been the ability to synthesise or fabricate nanoscale entities with a high degree of control that allows us to develop nanoscale devices. Central to the latter has been the incredible advances in nanomaterial synthesis where electrode materials with atomic control over electrochemically active sites can be achieved. After introducing nanoelectrochemistry, this paper focuses on recent developments in two major application areas of nanoelectrochemistry; electrocatalysis and using single entities in sensing. Discussion of the developments in these two application fields highlights some of the advances in the fundamental understanding of nanoelectrochemical systems really driving these applications forward. Looking into our nanocrystal ball, this paper then highlights: the need to understand the impact of nanoconfinement on electrochemical processes, the need to measure many single entities, the need to develop more sophisticated ways of treating the potentially large data sets from measuring such many single entities, the need for more new methods for characterising nanoelectrochemical systems as they operate and the need for material synthesis to become more reproducible as well as possess more nanoscale control.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Sina Jamali
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Richard D Tilley
- School of Chemistry and Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
31
|
Gray DE, Munshi T, Scowen IJ, Brett DJL, He G. Seed-Mediated, Shape-Controlled Synthesis Methods for Platinum-Based Electrocatalysts for the Oxygen Reduction Reaction—A Mini Review. Front Chem 2022; 10:865214. [PMID: 35308784 PMCID: PMC8931037 DOI: 10.3389/fchem.2022.865214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
Overcoming the slow oxygen reduction reaction (ORR) kinetics at the cathode of the hydrogen fuel cells requires the use of electrocatalysts containing expensive and scare platinum to achieve reasonable performance, hampering widespread use of the technology due to high material costs and sustainability issues. One option available to tackle this issue is to use new designs to create nanomaterials which achieve excellent electrocatalytic performances and long-lasting stabilities whilst using less platinum than is currently required. Reliably producing nanomaterials with predictable activities and stabilities using simple, safe, and scalable methods is an important research topic to the advancement of fuel cell technologies. The oxygen reduction reaction occurs at the surface of electrocatalytic materials, and since nanomaterial structures exhibit different catalytic activities, their shapes have a strong relationship to the final performance. Seed-mediated synthesis can be used to control the shape of materials with the aim of obtaining products with the most desirable surface properties for the ORR. This review summarized the current advancement of the synthesis of platinum-based ORR and provided the insights for the future development of this field.
Collapse
Affiliation(s)
- Daisy E. Gray
- Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln, United Kingdom
| | - Tasnim Munshi
- Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln, United Kingdom
| | - Ian J. Scowen
- Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln, United Kingdom
| | - Dan J. L. Brett
- Department of Chemical Engineering, University College London, London, United Kingdom
| | - Guanjie He
- Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Lincoln, United Kingdom
- Department of Chemical Engineering, University College London, London, United Kingdom
- *Correspondence: Guanjie He,
| |
Collapse
|
32
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
33
|
Lee MG, Yang JW, Kwon HR, Jang HW. Crystal facet and phase engineering for advanced water splitting. CrystEngComm 2022. [DOI: 10.1039/d2ce00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the principles and recent advances in facet and phase engineering of catalysts for photocatalytic, photoelectrochemical, and electrochemical water splitting. It suggests the basis of catalyst design for advanced water splitting.
Collapse
Affiliation(s)
- Mi Gyoung Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Jin Wook Yang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Ryeong Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
34
|
An Adversarial Learning Approach for Super-Resolution Enhancement Based on AgCl@Ag Nanoparticles in Scanning Electron Microscopy Images. NANOMATERIALS 2021; 11:nano11123305. [PMID: 34947654 PMCID: PMC8703353 DOI: 10.3390/nano11123305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 02/04/2023]
Abstract
Scanning electron microscopy (SEM) plays a crucial role in the characterization of nanoparticles. Unfortunately, due to the limited resolution, existing imaging techniques are insufficient to display all detailed characteristics at the nanoscale. Hardware-oriented techniques are troubled with costs and material properties. Computational approaches often prefer blurry results or produce a less meaningful high-frequency noise. Therefore, we present a staged loss-driven neural networks model architecture to transform low-resolution SEM images into super-resolved ones. Our approach consists of two stages: first, residual channel attention network (RCAN) with mean absolute error (MAE) loss was used to get a better peak signal-to-noise ratio (PSNR). Then, discriminators with adversarial losses were activated to reconstruct high-frequency texture features. The quantitative and qualitative evaluation results indicate that compared with other advanced approaches, our model achieves satisfactory results. The experiment in AgCl@Ag for photocatalytic degradation confirms that our proposed method can bring realistic high-frequency structural detailed information rather than meaningless noise. With this approach, high-resolution SEM images can be acquired immediately without sample damage. Moreover, it provides an enhanced characterization method for further directing the preparation of nanoparticles.
Collapse
|
35
|
Gao R, Deng M, Yan Q, Fang Z, Li L, Shen H, Chen Z. Structural Variations of Metal Oxide-Based Electrocatalysts for Oxygen Evolution Reaction. SMALL METHODS 2021; 5:e2100834. [PMID: 34928041 DOI: 10.1002/smtd.202100834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxygen evolution reaction (OER), an important electrode reaction in electrocatalytic and photoelectrochemical cells for a carbon-free energy cycle, has attracted considerable attention in the last few years. Metal oxides have been considered as good candidates for electrocatalytic OER because they can be easily synthesized and are relatively stable during the OER process. However, inevitable structural variations still occur to them due to the complex reaction steps and harsh working conditions of OER, thus impending the further insight into the catalytic mechanism and rational design of highly efficient electrocatalysts. The aim of this review is to disclose the current research progress toward the structural variations of metal oxide-based OER electrocatalysts. The origin of structural variations of metal oxides is discussed. Based on some typical oxides performing OER activity, the external and internal factors that influence the structural stability are summarized and then some general approaches to regulate the structural variation process are provided. Some operando methods are also concluded to monitor the structural variation processes and to identify the final active structure. Additionally, the unresolved problems and challenges are presented in an attempt to get further insight into the mechanism of structural variations and establish a rational structure-catalysis relationship.
Collapse
Affiliation(s)
- Ruiqin Gao
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Meng Deng
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Qing Yan
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Zhenxing Fang
- College of Science and Technology, Ningbo University, 521 Wenwei Road, Ningbo, 315100, P. R. China
| | - Lichun Li
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Roady, Hangzhou, 310032, P. R. China
| | - Haoyu Shen
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Zhengfei Chen
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| |
Collapse
|
36
|
Zhao R, Yue X, Li Q, Fu G, Lee JM, Huang S. Recent Advances in Electrocatalysts for Alkaline Hydrogen Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100391. [PMID: 34159714 DOI: 10.1002/smll.202100391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of anion-exchange membrane technology and adequate supply of high-performance non-noble metal oxygen reduction reaction (ORR) catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells (AEMFCs) become possible. However, the kinetics of the anodic hydrogen oxidation reaction (HOR) in AEMFCs is significantly decreased compared to the HOR in proton exchange membrane fuel cells (PEMFCs). Therefore, it is urgent to develop HOR catalysts with low price, high activity, and robust stability. However, comprehensive timely reviews on this specific subject do not exist enough yet and it is necessary to update reported major achievements and to point out future investigation directions. In this review, the current reaction mechanisms on HOR are summarized and deeply understood. The debates between the mechanisms are greatly harmonized. Recent advances in developing highly active and stable electrocatalysts for the HOR are reviewed. Moreover, the side reaction control is for the first time systematically introduced. Finally, the challenges and future opportunities in the field of HOR catalysis are outlined.
Collapse
Affiliation(s)
- Ruopeng Zhao
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- School of Chemical and Biomedical Engineering, Nanyang Technology University, Singapore, 637459, Singapore
| | - Xin Yue
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Qinghua Li
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation, Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technology University, Singapore, 637459, Singapore
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
37
|
Zhang T, Pu H, Dai H, Dong K, Wang K, Zhou L, Wang Y, Deng Y. Electrodeposition of a Three-Dimensional Nanostructure Composed of 2D Maple Leaf-like Rh Nanosheets for Formic Acid Oxidation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Te Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Houkang Pu
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Huizhen Dai
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Kaiyu Dong
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Kuankuan Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Luming Zhou
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| | - Yingying Wang
- Qingdao Hengxing University of Science and Technology, Jiushui East Road 588, Qingdao 266100, China
| | - Yujia Deng
- School of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, China
| |
Collapse
|
38
|
Wu T, Sun M, Huang B. Atomic‐Strain Mapping of High‐Index Facets in Late‐Transition‐Metal Nanoparticles for Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tong Wu
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University, Hung Hom Kowloon Hong Kong SAR China
| |
Collapse
|
39
|
Wu T, Sun M, Huang B. Atomic-Strain Mapping of High-Index Facets in Late-Transition-Metal Nanoparticles for Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:22996-23001. [PMID: 34431602 DOI: 10.1002/anie.202110636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 11/06/2022]
Abstract
Although high-index facets (HIF) endows excellent catalytic activity through undercoordinated sites with strain effect, current characterizations techniques still cannot unravel the detailed strain distributions to understand the origins of electroactivity. Nevertheless, theoretical principles to quantify the structural features and their effects on catalytic activity improvements on HIFs are still lacking, which renders the experimental efforts laborious. In this work, we explore the quantification of surface structural features and establish a database of atomic strain distributions for the late-transition metal HIF nanoparticle models. The surface reactivities of the nanoparticles have been examined by adsorption energy calculations and their correlations with structural features are observed. Our proposed theoretical principles on surface characterizations of high-index facets nanomaterials will promote the design and synthesis of efficient transition metal based electrocatalysts.
Collapse
Affiliation(s)
- Tong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
40
|
Lin WY, Huang R, Li L, Wen YH. Oxygen adsorption on high-index faceted Pt nanoparticles. Phys Chem Chem Phys 2021; 23:17323-17328. [PMID: 34346442 DOI: 10.1039/d1cp02629a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-index faceted Pt nanoparticles with excellent electrocatalytic performances are promising to efficiently accelerate the oxygen reduction reactions in fuel cells. By adopting the hybrid grand canonical Monte Carlo reactive molecular dynamics (GCMC/RMD) simulations, we examined the oxygen adsorption on three 24-facet nanoparticles respectively enclosed by {310}, {311}, and {331} high-index facets. The site-dependent adsorption energies on each open-structure surface are calculated. Meanwhile, the adsorption ratios under various pressures and temperatures are presented. It is revealed that the adsorption capacity of these high-index faceted nanoparticles is considerably higher than that of the ones terminated by low-index facets. Moreover, oxygen adsorption exerts a significant impact on their thermodynamic behaviors.
Collapse
Affiliation(s)
- Wu-Yang Lin
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | | | | | | |
Collapse
|
41
|
Okhokhonin AV, Tokmakova KO, Svalova TS, Matern AI, Kozitsina AN. Electrocatalytic oxidation of glucose in a neutral medium on an electrode modified by carboxylated multi-walled carbon nanotubes and by silver and palladium. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Li J, Liang X, Cai L, Zhao C. Surfactant-Free Synthesis of Three-Dimensional Metallic Nanonetworks via Nanobubble-Assisted Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8323-8330. [PMID: 34210124 DOI: 10.1021/acs.langmuir.1c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional metallic nanonetworks (3D-MNWs) demonstrate unique performances across a wide range of fields, and their facile and green synthetic method is of high significance. Herein, we report a self-generated-nanobubble scaffolding strategy for the fabrication of 3D-MNWs, which employs aqua ammonia (AA) as a nanobubble reservoir and avoids the use of any surfactants or polymeric capping agents. Benefiting from the interaction between ammonia and metallic nanoparticles, finely interlocked nanonetworks (Au, Pt, Ag, and Cu) with curved geometry and abundant pores are obtained by precisely controlling the anisotropic kinetic growth using a strong reducing agent and a high concentration of AA. As a demonstration, the methanol oxidation reaction (MOR) is tested to assess the electrocatalytic performance of the Pt 3D-MNWs. The peak current of Pt 3D-MNWs reaches 152 mA/mgPt, which is 2.5 times higher than that of commercial Pt black. This unique nanobubble-assisted strategy has great potential in the basic synthetic prototype for polyporous nanomaterials.
Collapse
Affiliation(s)
- Jun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Xiaosi Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Liying Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
43
|
Yadav A, Li Y, Liao TW, Hu KJ, Scheerder JE, Safonova OV, Höltzl T, Janssens E, Grandjean D, Lievens P. Enhanced Methanol Electro-Oxidation Activity of Nanoclustered Gold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004541. [PMID: 33554437 DOI: 10.1002/smll.202004541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Size-selected 3 nm gas-phase Au clusters dispersed by cluster beam deposition (CBD) on a conducting fluorine-doped tin oxide template show strong enhancement in mass activity for the methanol electro-oxidation (MEO) reaction compared to previously reported nanostructured gold electrodes. Density functional theory-based modeling on the corresponding Au clusters guided by experiments attributes this high MEO activity to the high density of exposed under-coordinated Au atoms at their faceted surface. In the description of the activity trends, vertices and edges are the most active sites due to their favorable CO and OH adsorption energies. The faceted structures occurring in this size range, partly preserved upon deposition, may also prevent destructive restructuring during the oxidation-reduction cycle. These results highlight the benefits of using CBD in fine-tuning material properties on the nanoscale and designing high-performance fuel cell electrodes with less material usage.
Collapse
Affiliation(s)
- Anupam Yadav
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | - Yejun Li
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Ting-Wei Liao
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | - Kuo-Juei Hu
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | - Jeroen E Scheerder
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | | | - Tibor Höltzl
- Furukawa Electric Institute of Technology, Budapest, 1158, Hungary
- MTA-BME Computation Driven Chemistry Research Group and Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | - Didier Grandjean
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| | - Peter Lievens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Leuven, 3001, Belgium
| |
Collapse
|
44
|
Xue F, Guo X, Min B, Si Y, Huang H, Shi J, Liu M. Unconventional High-Index Facet of Iridium Boosts Oxygen Evolution Reaction: How the Facet Matters. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fei Xue
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Xinyang Guo
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Boya Min
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Yitao Si
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jinwen Shi
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Maochang Liu
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
- Suzhou Academy of Xi’an Jiaotong University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
45
|
Song K, Koo JY, Choi HC. Viscosity effect on the strategic kinetic overgrowth of molecular crystals in various morphologies: concave and octapod fullerene crystals. RSC Adv 2021; 11:20992-20996. [PMID: 35479363 PMCID: PMC9034007 DOI: 10.1039/d1ra02924j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
A kinetic overgrowth allowing organic molecular crystals in various morphologies is induced by temperature-dependent viscosity change of crystallization solution. By this strategy, concave cube and octapod fullerene C70 crystals were successfully obtained by antisolvent crystallization (ASC). The structural analysis of fullerene C70 crystals indicates that the morphological difference is the result of kinetic processes, which reveals that viscosity, the only variable that can change dynamics of solutes, has a significant influence on determining the morphology of crystals. The effect of solvent viscosity in the stage of crystal growth was investigated through time-dependent control experiments, which led to the proposal of a diffusion rate-based mechanism. Our findings suggest morphology control of organic crystals by diffusion rate control, which is scarcely known compared to inorganic crystals. This strategic method will promote the morphology controls of various organic molecular crystals, and boost the morphology-property relationship study.
Collapse
Affiliation(s)
- Kwangjin Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jin Young Koo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Hee Cheul Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
46
|
Wang YL, Huang Q, Sun GQ, Li XY, Chen LH, Su BL, Liu JP. Synergistic zinc doping and defect engineering toward MoS 2 nanosheet arrays for highly efficient electrocatalytic hydrogen evolution. Dalton Trans 2021; 50:5770-5775. [PMID: 33876147 DOI: 10.1039/d0dt04207b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Herein, we have demonstrated synergistic zinc doping and defect engineering toward MoS2 nanosheet arrays assembled on carbon cloth (CC) by a one-pot hydrothermal approach for the first time, which are employed directly as a cathode for the hydrogen evolution reaction (HER). In our strategy, simultaneously doping sufficient Zn atoms and introducing a defect-rich structure into a MoS2 nanosheet can synergistically increase active sites. Additionally, the assembly of such nanosheets on CC can achieve lower charge-transfer resistance for the highly efficient HER.
Collapse
Affiliation(s)
- Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| | - Qing Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| | - Guo-Qi Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| | - Xiao-Yun Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| | - Li-Hua Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jin-Ping Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China. and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China and Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
47
|
Li Z, Li M, Wang X, Fu G, Tang Y. The use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals: a minireview. NANOSCALE ADVANCES 2021; 3:1813-1829. [PMID: 36133100 PMCID: PMC9416890 DOI: 10.1039/d1na00006c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/06/2021] [Indexed: 06/14/2023]
Abstract
Controlling the morphologies and structures of noble-metal nanocrystals has always been a frontier field in electrocatalysis. Functional molecules such as capping agents, surfactants and additives are indispensable in shape-control synthesis. Amino-based functional molecules have strong coordination abilities with metal ions, and they are widely used in the morphology control of nanocrystals. In this minireview, we pay close attention to recent advances in the use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals. The effects of various amino-based molecules on differently shaped noble-metal nanocrystals, including zero-, one-, two-, and three-dimensional nanocrystals, are reviewed and summarized. The roles and mechanisms of amino-based small molecules and long-chain ammonium salts relating to the morphology-control synthesis of noble-metal nanocrystals are highlighted. Relationships between shape and electrocatalytic properties are also described. Finally, some key prospects and challenges relating to the controllable synthesis of noble-metal nanocrystals and their electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
48
|
Iqbal M, Bando Y, Sun Z, Wu KCW, Rowan AE, Na J, Guan BY, Yamauchi Y. In Search of Excellence: Convex versus Concave Noble Metal Nanostructures for Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004554. [PMID: 33615606 DOI: 10.1002/adma.202004554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Controlling the shape of noble metal nanoparticles is a challenging but important task in electrocatalysis. Apart from hollow and nanocage structures, concave noble metal nanoparticles are considered a new class of unconventional electrocatalysts that exhibit superior electrocatalytic properties as compared with those of conventional nanoparticles (including convex and flat ones). Herein, several facile and highly reproducible routes for synthesizing nanostructured concave noble metal materials reported in the literature are discussed, together with their advantages over noble metal nanoparticles with convex shapes. In addition, possible ways of optimizing the synthesis procedure and enhancing the electrocatalytic characteristics of concave metal nanoparticles are suggested. Nanostructured noble metals with concave features are found to show better catalytic activity and stability hence improve their practical applicability in electrocatalysis.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Institute of Molecular Plus, Tianjin University, No. 11 Building, No. 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yoshio Bando
- Institute of Molecular Plus, Tianjin University, No. 11 Building, No. 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, New South Wales, 2500, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bu Yuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Research Center for Future Materials, International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
49
|
Zhao G, Fang C, Hu J, Zhang D. Platinum-Based Electrocatalysts for Direct Alcohol Fuel Cells: Enhanced Performances toward Alcohol Oxidation Reactions. Chempluschem 2021; 86:574-586. [PMID: 33830678 DOI: 10.1002/cplu.202000811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/20/2021] [Indexed: 12/28/2022]
Abstract
In the past few decades, Pt-based electrocatalysts have attracted great interests due to their high catalytic performances toward the direct alcohol fuel cell (DAFC). However, the high cost, poor stability, and the scarcity of Pt have markedly hindered their large-scale utilization in commerce. Therefore, enhancing the activity and durability of Pt-based electrocatalysts, reducing the Pt amount and thus the cost of DAFC have become the keys for their practical applications. In this minireview, we summarized some basic concepts to evaluate the catalytic performances in electrocatalytic alcohol oxidation reaction (AOR) including electrochemical active surface area, activity and stability, the effective approaches for boosting the catalytic AOR performance involving size decrease, structure and morphology modulation, composition effect, catalyst supports, and assistance under other external energies. Furthermore, we also presented the remaining challenges of the Pt-based electrocatalysts to achieve the fabrication of a real DAFC.
Collapse
Affiliation(s)
- Guili Zhao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Caihong Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241000, P. R. China
| | - Jinwu Hu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Deliang Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
50
|
Cogal S, Ramani S, Bhethanabotla VR, Kuhn JN. Unravelling the Origin of Enhanced Electrochemical Performance in CoSe
2
−MoSe
2
Interfaces. ChemCatChem 2021. [DOI: 10.1002/cctc.202001844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sadik Cogal
- Chemical, Biological and Materials Engineering University of South Florida Tampa FL 33620 USA
- Present address: Department of Chemistry Burdur Mehmet Akif Ersoy University Burdur, 15030 Turkey
| | - Swetha Ramani
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Venkat R. Bhethanabotla
- Chemical, Biological and Materials Engineering University of South Florida Tampa FL 33620 USA
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - John N. Kuhn
- Chemical, Biological and Materials Engineering University of South Florida Tampa FL 33620 USA
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| |
Collapse
|