1
|
Osega CE, Bustos FJ, Arriagada G. From Entry to the Nucleus: How Retroviruses Commute. Annu Rev Virol 2024; 11:89-104. [PMID: 38848600 DOI: 10.1146/annurev-virology-100422-023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.
Collapse
Affiliation(s)
- Camila E Osega
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Fernando J Bustos
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| |
Collapse
|
2
|
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol 2024; 122:165-183. [PMID: 38868928 DOI: 10.1111/mmi.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Friedrich
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Wang L, Chen HJ, Wang ZG, Ning D, Zhao W, Rat V, Lamb DC, Pang DW, Liu SL. Mapping Extracellular Space Features of Viral Encephalitis to Evaluate the Proficiency of Anti-Viral Drugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311457. [PMID: 38243660 DOI: 10.1002/adma.202311457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The extracellular space (ECS) is an important barrier against viral attack on brain cells, and dynamic changes in ECS microstructure characteristics are closely related to the progression of viral encephalitis in the brain and the efficacy of antiviral drugs. However, mapping the precise morphological and rheological features of the ECS in viral encephalitis is still challenging so far. Here, a robust approach is developed using single-particle diffusional fingerprinting of quantum dots combined with machine learning to map ECS features in the brain and predict the efficacy of antiviral encephalitis drugs. These results demonstrated that this approach can characterize the microrheology and geometry of the brain ECS at different stages of viral infection and identify subtle changes induced by different drug treatments. This approach provides a potential platform for drug proficiency assessment and is expected to offer a reliable basis for the clinical translation of drugs.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Di Ning
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Virgile Rat
- Physical Chemistry, Department of Chemistry, and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Stephens C, Naghavi MH. The host cytoskeleton: a key regulator of early HIV-1 infection. FEBS J 2024; 291:1835-1848. [PMID: 36527282 PMCID: PMC10272291 DOI: 10.1111/febs.16706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Due to its central role in cell biology, the cytoskeleton is a key regulator of viral infection, influencing nearly every step of the viral life cycle. In this review, we will discuss the role of two key components of the cytoskeleton, namely the actin and microtubule networks in early HIV-1 infection. We will discuss key contributions to processes ranging from the attachment and entry of viral particles at the cell surface to their arrival and import into the nucleus and identify areas where further research into this complex relationship may yield new insights into HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Christopher Stephens
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mojgan H. Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
5
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
6
|
Swain J, Merida P, Rubio K, Bracquemond D, Neyret A, Aguilar-Ordoñez I, Günther S, Barreto G, Muriaux D. F-actin nanostructures rearrangements and regulation are essential for SARS-CoV-2 particle production in host pulmonary cells. iScience 2023; 26:107384. [PMID: 37564698 PMCID: PMC10410521 DOI: 10.1016/j.isci.2023.107384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Our study focused on deciphering the role of F-actin and related regulatory factors during SARS-CoV-2 particle production and transmission in human pulmonary cells. Quantitative high-resolution microscopies revealed that the late phases of SARS-CoV-2 infection induce a strong rearrangement of F-actin nanostructures dependent on the viral M, E, and N structural proteins. Intracellular vesicles containing viral components are labeled with Rab7 and Lamp1 and are surrounded by F-actin ring-shaped structures, suggesting their role in viral trafficking toward the cell membrane for virus release. Furthermore, filopodia-like nanostructures were loaded with viruses, potentially facilitating their egress and transmission between lung cells. Gene expression analysis revealed the involvement of alpha-actinins under the regulation of the protein kinase N (PKN). The use of a PKN inhibitor efficiently reduces virus particle production, restoring endoplasmic reticulum and F-actin cellular shape. Our results highlight an important role of F-actin rearrangements during the productive phases of SARS-CoV-2 particles.
Collapse
Affiliation(s)
- Jitendriya Swain
- Institute of Research in Infectiology of Montpellier (IRIM), CNRS, University of Montpellier, UMR9004 CNRS, Montpellier, France
| | - Peggy Merida
- Institute of Research in Infectiology of Montpellier (IRIM), CNRS, University of Montpellier, UMR9004 CNRS, Montpellier, France
| | - Karla Rubio
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, 54000 Nancy, France
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - David Bracquemond
- Institute of Research in Infectiology of Montpellier (IRIM), CNRS, University of Montpellier, UMR9004 CNRS, Montpellier, France
| | - Aymeric Neyret
- CEMIPAI, CNRS, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, 54000 Nancy, France
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - Delphine Muriaux
- Institute of Research in Infectiology of Montpellier (IRIM), CNRS, University of Montpellier, UMR9004 CNRS, Montpellier, France
- CEMIPAI, CNRS, University of Montpellier, UAR3725 CNRS, Montpellier, France
| |
Collapse
|
7
|
Alvarez-Rivera E, Rodríguez-Valentín M, Boukli NM. The Antiviral Compound PSP Inhibits HIV-1 Entry via PKR-Dependent Activation in Monocytic Cells. Viruses 2023; 15:804. [PMID: 36992512 PMCID: PMC10051440 DOI: 10.3390/v15030804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Actin depolymerization factor (ADF) cofilin-1 is a key cytoskeleton component that serves to lessen cortical actin. HIV-1 manipulates cofilin-1 regulation as a pre- and post-entry requisite. Disruption of ADF signaling is associated with denial of entry. The unfolded protein response (UPR) marker Inositol-Requiring Enzyme-1α (IRE1α) and interferon-induced protein (IFN-IP) double-stranded RNA- activated protein kinase (PKR) are reported to overlap with actin components. In our published findings, Coriolus versicolor bioactive extract polysaccharide peptide (PSP) has demonstrated anti-HIV replicative properties in THP1 monocytic cells. However, its involvement towards viral infectivity has not been elucidated before. In the present study, we examined the roles of PKR and IRE1α in cofilin-1 phosphorylation and its HIV-1 restrictive roles in THP1. HIV-1 p24 antigen was measured through infected supernatant to determine PSP's restrictive potential. Quantitative proteomics was performed to analyze cytoskeletal and UPR regulators. PKR, IRE1α, and cofilin-1 biomarkers were measured through immunoblots. Validation of key proteome markers was done through RT-qPCR. PKR/IRE1α inhibitors were used to validate viral entry and cofilin-1 phosphorylation through Western blots. Our findings show that PSP treatment before infection leads to an overall lower infectivity. Additionally, PKR and IRE1α show to be key regulators in cofilin-1 phosphorylation and viral restriction.
Collapse
Affiliation(s)
- Eduardo Alvarez-Rivera
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, Bayamόn, PR 00960, USA
| | | | - Nawal M. Boukli
- Biomedical Proteomics Facility, Department of Microbiology and Immunology, Universidad Central del Caribe School of Medicine, Bayamόn, PR 00960, USA
| |
Collapse
|
8
|
Zhang X, Li W, Cui Z. Single-Particle Tracking of Virus Entry in Live Cells. Subcell Biochem 2023; 106:153-168. [PMID: 38159226 DOI: 10.1007/978-3-031-40086-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Novel imaging technologies such as single-particle tracking provide tools to study the intricate process of virus infection in host cells. In this chapter, we provide an overview of studies in which single-particle tracking technologies were applied for the analysis of the viral entry pathways in the context of the live host cell. Single-particle tracking techniques have been dependent on advances in the fluorescent labeling microscopy method and image analysis. The mechanistic and kinetic insights offered by this technique will provide a better understanding of virus entry and may lead to a rational design of antiviral interventions.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Mittal D, Ali SA. Use of Nanomaterials for Diagnosis and Treatment: The Advancement of Next-Generation Antiviral Therapy. Microb Drug Resist 2022; 28:670-697. [PMID: 35696335 DOI: 10.1089/mdr.2021.0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Globally, viral illness propagation is the leading cause of morbidity and death, causing wreaking havoc on socioeconomic development and health care systems. The rise of infected individuals has outpaced the existing critical care facilities. Early and sophisticated methods are desperately required in this respect to halt the spread of the infection. Therefore, early detection of infectious agents and an early treatment approach may help minimize viral outbreaks. Conventional point-of-care diagnostic techniques such as computed tomography scan, quantitative real time polymerase chain reaction (qRT-PCR), X-ray, and immunoassay are still deemed valuable. However, the labor demanding, low sensitivity, and complex infrastructure needed for these methods preclude their use in distant areas. Nanotechnology has emerged as a potentially transformative technology due to its promise as an effective theranostic platform for diagnosing and treating viral infection, circumventing the limits of traditional techniques. Their unique physical and chemical characteristics make nanoparticles (NPs) advantageous for drug delivery platforms due to their size, encapsulation efficiency, improved bioavailability, effectiveness, immunogenicity, and antiviral response. This study discusses the recent research on nanotechnology-based treatments designed to combat new viruses.
Collapse
Affiliation(s)
- Deepti Mittal
- Nanosafety Lab, Division of Biochemistry, ICAR-NDRI, Karnal, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal, Haryana, India
| |
Collapse
|
10
|
Tracking the Replication-Competent Zika Virus with Tetracysteine-Tagged Capsid Protein in Living Cells. J Virol 2022; 96:e0184621. [PMID: 35285687 PMCID: PMC9006885 DOI: 10.1128/jvi.01846-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) is the mosquito-borne enveloped flavivirus that causes microcephaly in neonates. While real-time imaging plays a critical role in dissecting viral biology, no fluorescent, genetically engineered ZIKV for single-particle tracking is currently available.
Collapse
|
11
|
Ma Y, Mao G, Wu G, Zhang XE. Single-Particle Tracking Reveals the Interplay between HIV-1 Reverse Transcription and Uncoating. Anal Chem 2022; 94:2648-2654. [PMID: 35080851 DOI: 10.1021/acs.analchem.1c05199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reverse transcription uses the reverse transcriptase enzyme to synthesize deoxyribonucleic acid (DNA) from a ribonucleic acid (RNA) template. This plays an essential role in viral replication. There are still, however, many unknown facts regarding the timing and dynamic processes involved in this life stage. Here, three types of dual-fluorescence human immunodeficiency virus type-1 (HIV-1) particles were constructed with high infectivity, and the sequential process of reverse transcription was observed by real-time imaging of a single HIV-1 particle. Viral uncoating occurred at 60-120 min post infection. Subsequently, at 120-180 min post infection, the viral genome was separated into two parts and reverse-transcribed to generate a DNA product. Nevirapine (NVP), a reverse transcriptase inhibitor, can delay the dynamic process. This study revealed a delicate, sequential, and complex relationship between uncoating and reverse transcription, which may facilitate the development of antiviral drugs.
Collapse
Affiliation(s)
- Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,National Key Laboratory of Biomacromolecules Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Prestimulation of CD2 confers resistance to HIV-1 latent infection in blood resting CD4 T cells. iScience 2021; 24:103305. [PMID: 34765923 PMCID: PMC8571718 DOI: 10.1016/j.isci.2021.103305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
HIV-1 infects blood CD4 T cells through the use of CD4 and CXCR4 or CCR5 receptors, which can be targeted through blocking viral binding to CD4/CXCR4/CCR5 or virus-cell fusion. Here we describe a novel mechanism by which HIV-1 nuclear entry can also be blocked through targeting a non-entry receptor, CD2. Cluster of differentiation 2 (CD2) is an adhesion molecule highly expressed on human blood CD4, particularly, memory CD4 T cells. We found that CD2 ligation with its cell-free ligand LFA-3 or anti-CD2 antibodies rendered blood resting CD4 T cells highly resistant to HIV-1 infection. We further demonstrate that mechanistically, CD2 binding initiates competitive signaling leading to cofilin activation and localized actin polymerization around CD2, which spatially inhibits HIV-1-initiated local actin polymerization needed for viral nuclear migration. Our study identifies CD2 as a novel target to block HIV-1 infection of blood resting T cells. CD2 is highly expressed on human blood CD4 T cells, particularly memory T cells Prestimulation of CD2 rendered resting T cells highly resistant to HIV infection CD2 signaling activates cofilin and actin polymerization blocking HIV nuclear entry CD2 may serve as a novel target to inhibit HIV-1 infection of blood resting T cells
Collapse
|
13
|
Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13111913. [PMID: 34834328 PMCID: PMC8618949 DOI: 10.3390/pharmaceutics13111913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Bacteria-targeting nanomaterials have been widely used in the diagnosis and treatment of bacterial infectious diseases. These nanomaterials show great potential as antimicrobial agents due to their broad-spectrum antibacterial capacity and relatively low toxicity. Recently, nanomaterials have improved the accurate detection of pathogens, provided therapeutic strategies against nosocomial infections and facilitated the delivery of antigenic protein vaccines that induce humoral and cellular immunity. Biomaterial implants, which have traditionally been hindered by bacterial colonization, benefit from their ability to prevent bacteria from forming biofilms and spreading into adjacent tissues. Wound repair is improving in terms of both the function and prevention of bacterial infection, as we tailor nanomaterials to their needs, select encapsulation methods and materials, incorporate activation systems and add immune-activating adjuvants. Recent years have produced numerous advances in their antibacterial applications, but even further expansion in the diagnosis and treatment of infectious diseases is expected in the future.
Collapse
|
14
|
Zeng Y, Wang R, Wang F, Zhang M, Zhang L, Zhu C, Zhao J, Liu H. Interaction of influenza A virus NS1 and cytoskeleton scaffolding protein α-actinin 4. Virus Genes 2021; 58:15-22. [PMID: 34727338 DOI: 10.1007/s11262-021-01876-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
NS1 (Non-structural protein 1) is a non-structural protein that can highly express when the avian influenza virus infects the host cells. NS1 can interact with various proteins to alter the intracellular distribution of host proteins and regulate the virulence and pathogenicity of the avian influenza virus. To further study the role of NS1 protein in replication and pathogenesis of avian influenza virus, Glutathione S-transferase (GST) Pull-down was used for screening more proteins interacting with NS1 in human lung adenocarcinoma cell line A549. By mass spectrometry, a potential interacted protein is identified as α-actinin 4 and its interaction with NS1 has not been reported yet. The interaction between NS1 and α-actinin 4 in vitro was confirmed by enzyme-linked immunosorbent assay experiments, and the results showed that the absorbance value of OD450nm in the experimental group was positively correlated with the concentration of NS1-GST protein compared to the negative control group. The co-immunoprecipitation and immunofluorescence results further confirmed the interaction between NS1 and α-actinin 4 at the cellular level. The interaction between NS1 and α-actinin 4 provided a new target for pathogenic mechanism studying and drug screening.
Collapse
Affiliation(s)
- Yingyue Zeng
- School of Life Sciences, Liaoning University, Shenyang, 110036, China.,Engineering Laboratory of Molecular Modeling and Design for Drug of Liaoning Province, Shenyang, 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning, Shenyang, 110036, China.,Technology Innovation Center for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China
| | - Rui Wang
- School of Life Sciences, Liaoning University, Shenyang, 110036, China
| | - Fengchao Wang
- School of Life Sciences, Liaoning University, Shenyang, 110036, China
| | - Man Zhang
- School of Life Sciences, Liaoning University, Shenyang, 110036, China
| | - Li Zhang
- School of Life Sciences, Liaoning University, Shenyang, 110036, China.,Engineering Laboratory of Molecular Modeling and Design for Drug of Liaoning Province, Shenyang, 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning, Shenyang, 110036, China.,Technology Innovation Center for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China
| | - Chunyu Zhu
- School of Life Sciences, Liaoning University, Shenyang, 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning, Shenyang, 110036, China
| | - Jian Zhao
- School of Life Sciences, Liaoning University, Shenyang, 110036, China.,Engineering Laboratory of Molecular Modeling and Design for Drug of Liaoning Province, Shenyang, 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning, Shenyang, 110036, China.,Technology Innovation Center for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China
| | - Hongsheng Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, China. .,Engineering Laboratory of Molecular Modeling and Design for Drug of Liaoning Province, Shenyang, 110036, China. .,Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning, Shenyang, 110036, China. .,Technology Innovation Center for Computer Simulating and Information Processing of Bio-Macromolecules of Shenyang, Shenyang, 110036, China.
| |
Collapse
|
15
|
Naghavi MH. HIV-1 capsid exploitation of the host microtubule cytoskeleton during early infection. Retrovirology 2021; 18:19. [PMID: 34229718 PMCID: PMC8259435 DOI: 10.1186/s12977-021-00563-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023] Open
Abstract
Microtubules (MTs) form a filamentous array that provide both structural support and a coordinated system for the movement and organization of macromolecular cargos within the cell. As such, they play a critical role in regulating a wide range of cellular processes, from cell shape and motility to cell polarization and division. The array is radial with filament minus-ends anchored at perinuclear MT-organizing centers and filament plus-ends continuously growing and shrinking to explore and adapt to the intracellular environment. In response to environmental cues, a small subset of these highly dynamic MTs can become stabilized, acquire post-translational modifications and act as specialized tracks for cargo trafficking. MT dynamics and stability are regulated by a subset of highly specialized MT plus-end tracking proteins, known as +TIPs. Central to this is the end-binding (EB) family of proteins which specifically recognize and track growing MT plus-ends to both regulate MT polymerization directly and to mediate the accumulation of a diverse array of other +TIPs at MT ends. Moreover, interaction of EB1 and +TIPs with actin-MT cross-linking factors coordinate changes in actin and MT dynamics at the cell periphery, as well as during the transition of cargos from one network to the other. The inherent structural polarity of MTs is sensed by specialized motor proteins. In general, dynein directs trafficking of cargos towards the minus-end while most kinesins direct movement toward the plus-end. As a pathogenic cargo, HIV-1 uses the actin cytoskeleton for short-range transport most frequently at the cell periphery during entry before transiting to MTs for long-range transport to reach the nucleus. While the fundamental importance of MT networks to HIV-1 replication has long been known, recent work has begun to reveal the underlying mechanistic details by which HIV-1 engages MTs after entry into the cell. This includes mimicry of EB1 by capsid (CA) and adaptor-mediated engagement of dynein and kinesin motors to elegantly coordinate early steps in infection that include MT stabilization, uncoating (conical CA disassembly) and virus transport toward the nucleus. This review discusses recent advances in our understanding of how MT regulators and their associated motors are exploited by incoming HIV-1 capsid during early stages of infection.
Collapse
Affiliation(s)
- Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Ma Y, Mao G, Wu G, Chen M, Qin F, Zheng L, Zhang XE. Dual-Fluorescence Labeling Pseudovirus for Real-Time Imaging of Single SARS-CoV-2 Entry in Respiratory Epithelial Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24477-24486. [PMID: 33961399 PMCID: PMC8117782 DOI: 10.1021/acsami.1c03897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/25/2021] [Indexed: 05/12/2023]
Abstract
The pseudovirus strategy makes studies of highly pathogenic viruses feasible without the restriction of high-level biosafety facility, thus greatly contributing to virology and is used in the research studies of SARS-CoV-2. Here, we generated a dual-color pseudo-SARS-CoV-2 virus using a human immunodeficiency virus-1 pseudovirus production system and the SARS-CoV-2 spike (S) glycoprotein, of which the membrane was labeled with a lipophilic dye (DiO) and the genomic RNA-related viral protein R (Vpr) of the viral core was fused with mCherry. With this dual-color labeling strategy, not only the movement of the whole virus but also the fate of the labeled components can be traced. The pseudovirions were applied to track the viral entry at a single-particle level in four types of the human respiratory cells: nasal epithelial cells (HNEpC), pulmonary alveolar epithelial cells (HPAEpiC), bronchial epithelial cells (BEP-2D), and oral epithelial cells (HOEC). Pseudo-SARS-CoV-2 entered into the host cell and released the viral core into the cytoplasm, which clearly indicates that the host entry mainly occurred through endocytosis. The infection efficiency was found to be correlated with the expression of the known receptor of SARS-CoV-2, angiotensin-converting 2 (ACE2) on the host cell surface. We believe that the dual-color fluorescently labeled pseudovirus system created in this study can be applied as a useful tool for many purposes in SARS-CoV-2/COVID-19.
Collapse
Affiliation(s)
- Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055,
China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055,
China
| | - Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055,
China
| | - Minghai Chen
- CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055,
China
| | - Fujun Qin
- CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055,
China
| | - Luping Zheng
- CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055,
China
| | - Xian-En Zhang
- CAS Key Laboratory of Quantitative Engineering
Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055,
China
- National Key Laboratory of Biomacromolecules, CAS
Center for Biological Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing 100101, China
- Faculty of Synthetic Biology, Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences, Shenzhen
518055, China
| |
Collapse
|
17
|
Nie Y, Hui L, Guo M, Yang W, Huang R, Chen J, Wen X, Zhao M, Wu Y. Rearrangement of Actin Cytoskeleton by Zika Virus Infection Facilitates Blood-Testis Barrier Hyperpermeability. Virol Sin 2021; 36:692-705. [PMID: 33534087 PMCID: PMC8379325 DOI: 10.1007/s12250-020-00343-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
In recent years, various serious diseases caused by Zika virus (ZIKV) have made it impossible to be ignored. Confirmed existence of ZIKV in semen and sexually transmission of ZIKV suggested that it can break the blood–testis barrier (BTB), or Sertoli cell barrier (SCB). However, little is known about the underlying mechanism. In this study, interaction between actin, an important component of the SCB, and ZIKV envelope (E) protein domain III (EDIII) was inferred from co-immunoprecipitation (Co-IP) liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. Confocal microscopy confirmed the role of actin filaments (F-actin) in ZIKV infection, during which part of the stress fibers, the bundles that constituted by paralleled actin filaments, were disrupted and presented in the cell periphery. Colocalization of E and reorganized actin filaments in the cell periphery of transfected Sertoli cells suggests a participation of ZIKV E protein in ZIKV-induced F-actin rearrangement. Perturbation of F-actin by cytochalasin D (CytoD) or Jasplakinolide (Jas) enhanced the infection of ZIKV. More importantly, the transepithelial electrical resistance (TEER) of an in vitro mouse SCB (mSCB) model declined with the progression of ZIKV infection or overexpression of E protein. Co-IP and confocal microscopy analyses revealed that the interaction between F-actin and tight junction protein ZO-1 was reduced after ZIKV infection or E protein overexpression, highlighting the role of E protein in ZIKV-induced disruption of the BTB. We conclude that the interaction between ZIKV E and F-actin leads to the reorganization of F-actin network, thereby compromising BTB integrity.
Collapse
Affiliation(s)
- Yiwen Nie
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Lixia Hui
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Moujian Guo
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Yang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Huang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Junsen Chen
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinyue Wen
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Meng Zhao
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Wu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430071, China.
| |
Collapse
|
18
|
Imaging Viral Infection by Fluorescence Microscopy: Focus on HIV-1 Early Stage. Viruses 2021; 13:v13020213. [PMID: 33573241 PMCID: PMC7911428 DOI: 10.3390/v13020213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
During the last two decades, progresses in bioimaging and the development of various strategies to fluorescently label the viral components opened a wide range of possibilities to visualize the early phase of Human Immunodeficiency Virus 1 (HIV-1) life cycle directly in infected cells. After fusion of the viral envelope with the cell membrane, the viral core is released into the cytoplasm and the viral RNA (vRNA) is retro-transcribed into DNA by the reverse transcriptase. During this process, the RNA-based viral complex transforms into a pre-integration complex (PIC), composed of the viral genomic DNA (vDNA) coated with viral and host cellular proteins. The protective capsid shell disassembles during a process called uncoating. The viral genome is transported into the cell nucleus and integrates into the host cell chromatin. Unlike biochemical approaches that provide global data about the whole population of viral particles, imaging techniques enable following individual viruses on a single particle level. In this context, quantitative microscopy has brought original data shedding light on the dynamics of the viral entry into the host cell, the cytoplasmic transport, the nuclear import, and the selection of the integration site. In parallel, multi-color imaging studies have elucidated the mechanism of action of host cell factors implicated in HIV-1 viral cycle progression. In this review, we describe the labeling strategies used for HIV-1 fluorescence imaging and report on the main advancements that imaging studies have brought in the understanding of the infection mechanisms from the viral entry into the host cell until the provirus integration step.
Collapse
|
19
|
Kang J, Tahir A, Wang H, Chang J. Applications of nanotechnology in virus detection, tracking, and infection mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1700. [PMID: 33511770 PMCID: PMC7995016 DOI: 10.1002/wnan.1700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Abstract
Viruses are among the most infectious pathogens, responsible for the highest death toll around the world. Lack of effective clinical drug for most of the viruses emphasizes the rapid and accurate diagnosis at early stages of infection to prevent rapid spread of the pathogens. Nanotechnology is an emerging field with applications in various domains, where nano‐biomedical science has many significant contributions such as effective delivery of drugs/therapeutic molecules to specific organs, imaging, sensitive detection of virus, and their accurate tracking in host cells. The nanomaterials reported for virus detection and tracking mainly include magnetic and gold NPs, ZnO/Pt‐Pd, graphene, and quantum dots (QDs). In addition, the single virus tracking technology (SVT) allowed to track the life cycle stages of an individual virus for better understanding of their dynamics within the living cells. Inorganic as well as non‐metallic fluorescent materials share the advantages of high photochemical stability, a wide range of light absorption curves and polychromatic emission. Hence, are considered as potential fluorescent nano‐probes for SVT. However, there are still some challenges: (i) clinical false positive rate of some detection methods is still high; (ii) in the virus tracking process, less adaptability of QDs owing to larger size, flicker, and possible interference with virus function; and (iii) in vivo tracking of a single virus, in real time needs further refinement. In the future, smaller, non‐toxic, and chemically stable nanomaterials are needed to improve the efficiency and accuracy of detection, and monitoring of virus infections to curb the mortalities. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology‐Inspired Nanomaterials > Protein and Virus‐Based Structures
Collapse
Affiliation(s)
- Jun Kang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Li RH, Feng XY, Zhou J, Yi F, Zhou ZQ, Men D, Sun Y. Rhomboidal Pt(II) Metallacycle-Based Hybrid Viral Nanoparticles for Cell Imaging. Inorg Chem 2020; 60:431-437. [DOI: 10.1021/acs.inorgchem.0c03095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Run-Hao Li
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xia-Yi Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fan Yi
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhong-Qiang Zhou
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
21
|
Liu J, Cui Z. Fluorescent Labeling of Proteins of Interest in Live Cells: Beyond Fluorescent Proteins. Bioconjug Chem 2020; 31:1587-1595. [PMID: 32379972 DOI: 10.1021/acs.bioconjchem.0c00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Live cell imaging brings us into a new era of direct visualization of biological processes and molecular dynamics in real time. To visualize dynamic cellular processes and virus-host interactions, fluorescent labeling of proteins of interest is often necessary. Fluorescent proteins are widely used for protein imaging, but they have some intrinsic deficiencies such as big size, photobleaching, and spectrum restriction. Thus, a variety of labeling strategies have been established and continuously developed. To protect the natural biological function(s) of the protein of interest, especially in viral life cycle, in vivo labeling requires smaller-sized tags, more specificity, and lower cytotoxicity. Here, we briefly summarized the principles, development, and their applications mainly in the virology field of three strategies for fluorescent labeling of proteins of interest including self-labeling enzyme derivatives, stainable peptide tags, and non-canonical amino acid incorporation. These labeling techniques greatly expand the fluorescent labeling toolbox and provide new opportunities for imaging biological processes.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|