1
|
Zhang J, Liu Z, Zhang Z, Yang H, Wang H, Yang Z, Xu Y, Li S, Yang D. Recent Advances in Silica-Based Nanomaterials for Enhanced Tumor Imaging and Therapy. ACS APPLIED BIO MATERIALS 2024. [PMID: 39495482 DOI: 10.1021/acsabm.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cancer remains a formidable challenge, inflicting profound physical, psychological, and financial burdens on patients. In this context, silica-based nanomaterials have garnered significant attention for their potential in tumor imaging and therapy owing to their exceptional properties, such as biocompatibility, customizable porosity, and versatile functionalization capabilities. This review meticulously examines the latest advancements in the application of silica-based nanomaterials for tumor imaging and therapy. It underscores their potential in enhancing various cancer imaging modalities, including fluorescence imaging, magnetic resonance imaging, computed tomography, positron emission tomography, ultrasound imaging, and multimodal imaging approaches. Moreover, the review delves into their therapeutic efficacy in chemotherapy, radiotherapy, phototherapy, immunotherapy, gas therapy, sonodynamic therapy, chemodynamic therapy, starvation therapy, and gene therapy. Critical evaluations of the biosafety profiles and degradation pathways of these nanomaterials within biological environments are also presented. By discussing the current challenges and prospects, this review aims to provide a nuanced perspective on the clinical translation of silica-based nanomaterials, thereby highlighting their promise in revolutionizing cancer diagnostics, enabling real-time monitoring of therapeutic responses, and advancing personalized medicine.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Yunjian Xu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Shengke Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
2
|
Xiang J, Zou R, Wang P, Wang X, He X, Liu F, Xu C, Wu A. Nitroreductase-responsive nanoparticles for in situ fluorescence imaging and synergistic antibacterial therapy of bacterial keratitis. Biomaterials 2024; 308:122565. [PMID: 38603823 DOI: 10.1016/j.biomaterials.2024.122565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
As bacterial keratitis progresses rapidly, prompt intervention is necessary. Current diagnostic processes are time-consuming and invasive, leading to improper antibiotics for treatment. Therefore, innovative strategies for diagnosing and treating bacterial keratitis are urgently needed. In this study, Cu2-xSe@BSA@NTRP nanoparticles were developed by loading nitroreductase-responsive probes (NTRPs) onto Cu2-xSe@BSA. These nanoparticles exhibited integrated fluorescence imaging and antibacterial capabilities. In vitro and in vivo experiments showed that the nanoparticles produced responsive fluorescence signals in bacteria within 30 min due to an interaction between the released NTRP and bacterial endogenous nitroreductase (NTR). When combined with low-temperature photothermal therapy (PTT), the nanoparticles effectively eliminated E. coli and S. aureus, achieved antibacterial efficacy above 95% and facilitated the re-epithelialization process at the corneal wound site in vivo. Overall, the Cu2-xSe@BSA@NTRP nanoparticles demonstrated potential for rapid, noninvasive in situ diagnosis, treatment, and visualization assessment of therapy effectiveness in bacterial keratitis.
Collapse
Affiliation(s)
- Jing Xiang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ruifen Zou
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xinfangzi Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xuefei He
- Ningbo No. 2 Hospital, Ningbo, 315000, China
| | - Fang Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China.
| |
Collapse
|
3
|
Meng YQ, Shi YN, Zhu YP, Liu YQ, Gu LW, Liu DD, Ma A, Xia F, Guo QY, Xu CC, Zhang JZ, Qiu C, Wang JG. Recent trends in preparation and biomedical applications of iron oxide nanoparticles. J Nanobiotechnology 2024; 22:24. [PMID: 38191388 PMCID: PMC10775472 DOI: 10.1186/s12951-023-02235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The iron oxide nanoparticles (IONPs), possessing both magnetic behavior and semiconductor property, have been extensively used in multifunctional biomedical fields due to their biocompatible, biodegradable and low toxicity, such as anticancer, antibacterial, cell labelling activities. Nevertheless, there are few IONPs in clinical use at present. Some IONPs approved for clinical use have been withdrawn due to insufficient understanding of its biomedical applications. Therefore, a systematic summary of IONPs' preparation and biomedical applications is crucial for the next step of entering clinical practice from experimental stage. This review summarized the existing research in the past decade on the biological interaction of IONPs with animal/cells models, and their clinical applications in human. This review aims to provide cutting-edge knowledge involved with IONPs' biological effects in vivo and in vitro, and improve their smarter design and application in biomedical research and clinic trials.
Collapse
Affiliation(s)
- Yu Qing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya Nan Shi
- School of Pharmacy, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai, Shandong, China
| | - Yong Ping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Qing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Wei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dan Dan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Lu Z, Yu D, Nie F, Wang Y, Chong Y. Iron Nanoparticles Open Up New Directions for Promoting Healing in Chronic Wounds in the Context of Bacterial Infection. Pharmaceutics 2023; 15:2327. [PMID: 37765295 PMCID: PMC10537899 DOI: 10.3390/pharmaceutics15092327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Metal nanoparticles play an outstanding role in the field of wound healing due to their excellent properties, and the significance of iron, one of the most widely used metals globally, cannot be overlooked. The purpose of this review is to determine the importance of iron nanoparticles in wound-healing dressings. Prolonged, poorly healing wounds may induce infections; wound infections are a major cause of chronic wound formation. The primary components of iron nanoparticles are iron oxide nanoparticles, which promote wound healing by being antibacterial, releasing metal ions, and overcoming bacterial resistance. The diameter of iron oxide nanoparticles typically ranges between 1 and 100 nm. Magnetic nanoparticles with a diameter of less than 30 nm are superparamagnetic and are referred to as superparamagnetic iron oxide nanoparticles. This subset of iron oxide nanoparticles can use an external magnetic field for novel functions such as magnetization and functionalization. Iron nanoparticles can serve clinical purposes not only to enhance wound healing through the aforementioned means but also to ameliorate anemia and glucose irregularities, capitalizing on iron's properties. Iron nanoparticles positively impact the healing process of chronic wounds, potentially extending beyond wound management.
Collapse
Affiliation(s)
- Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
5
|
Kshirsagar PG, De Matteis V, Pal S, Sangaru SS. Silver-Gold Alloy Nanoparticles (AgAu NPs): Photochemical Synthesis of Novel Biocompatible, Bimetallic Alloy Nanoparticles and Study of Their In Vitro Peroxidase Nanozyme Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2471. [PMID: 37686979 PMCID: PMC10490118 DOI: 10.3390/nano13172471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Facile synthesis of metal nanoparticles with controlled physicochemical properties using environment-friendly reagents can open new avenues in biomedical applications. Nanomaterials with controlled physicochemical properties have opened new prospects for a variety of applications. In the present study, we report a single-step photochemical synthesis of ~5 nm-sized silver (Ag) and gold (Au) nanoparticles (NPs), and Ag-Au alloy nanoparticles using L-tyrosine. The physicochemical and surface properties of both monometallic and bimetallic NPs were investigated by analytical, spectroscopic, and microscopic techniques. Our results also displayed an interaction between L-tyrosine and surface atoms that leads to the formation of AgAu NPs by preventing the growth and aggregation of the NPs. This method efficiently produced monodispersed NPs, with a narrow-sized distribution and good stability in an aqueous solution. The cytotoxicity assessment performed on breast cancer cell lines (MCF-7) revealed that the biofriendly L-tyrosine-capped AgNPs, AuNPs, and bimetallic AgAu NPs were biocompatible. Interestingly, AgAu NPs have also unveiled controlled cytotoxicity, cell viability, and in vitro peroxidase nanozyme activity reliant on metal composition and surface coating.
Collapse
Affiliation(s)
- Prakash G. Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy;
| | - Sudipto Pal
- Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy;
| | | |
Collapse
|
6
|
Maita F, Maiolo L, Lucarini I, Del Rio De Vicente JI, Sciortino A, Ledda M, Mussi V, Lisi A, Convertino A. Revealing Low Amplitude Signals of Neuroendocrine Cells through Disordered Silicon Nanowires-Based Microelectrode Array. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301925. [PMID: 37357140 PMCID: PMC10460871 DOI: 10.1002/advs.202301925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Today, the key methodology to study in vitro or in vivo electrical activity in a population of electrogenic cells, under physiological or pathological conditions, is by using microelectrode array (MEA). While significant efforts have been devoted to develop nanostructured MEAs for improving the electrophysiological investigation in neurons and cardiomyocytes, data on the recording of the electrical activity from neuroendocrine cells with MEA technology are scarce owing to their weaker electrical signals. Disordered silicon nanowires (SiNWs) for developing a MEA that, combined with a customized acquisition board, successfully capture the electrical signals generated by the corticotrope AtT-20 cells as a function of the extracellular calcium (Ca2+ ) concentration are reported. The recorded signals show a shape that clearly resembles the action potential waveform by suggesting a natural membrane penetration of the SiNWs. Additionally, the generation of synchronous signals observed under high Ca2+ content indicates the occurrence of a collective behavior in the AtT-20 cell population. This study extends the usefulness of MEA technology to the investigation of the electrical communication in cells of the pituitary gland, crucial in controlling several essential human functions, and provides new perspectives in recording with MEA the electrical activity of excitable cells.
Collapse
Affiliation(s)
- Francesco Maita
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Luca Maiolo
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Ivano Lucarini
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | | | - Antonio Sciortino
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Mario Ledda
- Institute of Translational PharmacologyNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Valentina Mussi
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Antonella Lisi
- Institute of Translational PharmacologyNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Annalisa Convertino
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| |
Collapse
|
7
|
Colbert CM, Ming Z, Pogosyan A, Finn JP, Nguyen KL. Comparison of Three Ultrasmall, Superparamagnetic Iron Oxide Nanoparticles for MRI at 3.0 T. J Magn Reson Imaging 2023; 57:1819-1829. [PMID: 36250695 PMCID: PMC10106532 DOI: 10.1002/jmri.28457] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The ultrasmall, superparamagnetic iron oxide (USPIO) nanoparticle ferumoxytol has unique applications in cardiac, vascular, and body magnetic resonance imaging (MRI) due to its long intravascular half-life and suitability as a blood pool agent. However, limited availability and high cost have hindered its clinical adoption. A new ferumoxytol generic, and the emergence of MoldayION as an alternative USPIO, represent opportunities to expand the use of USPIO-enhanced MRI techniques. PURPOSE To compare in vitro and in vivo MRI relaxometry and enhancement of Feraheme, generic ferumoxytol, and MoldayION. STUDY TYPE Prospective. ANIMAL MODEL Ten healthy swine and six swine with artificially induced coronary narrowing underwent cardiac MRI. FIELD STRENGTH/SEQUENCE 3.0 T; T1-weighted (4D-MUSIC, 3D-VIBE, 2D-MOLLI) and T2-weighted (2D-HASTE) sequences pre- and post-contrast. ASSESSMENT We compared the MRI relaxometry of Feraheme, generic ferumoxytol, and MoldayION using saline, plasma, and whole blood MRI phantoms with contrast concentrations from 0.26 mM to 2.10 mM. In-vivo contrast effects on T1- and T2-weighted sequences and fractional intravascular contrast distribution volume in myocardium, liver, and spleen were evaluated. STATISTICAL TESTS Analysis of variance and covariance were used for group comparisons. A P value <0.05 was considered statistically significant. RESULTS The r1 relaxivities for Feraheme, generic ferumoxytol, and MoldayION in saline (22 °C) were 7.11 ± 0.13 mM-1 s-1 , 8.30 ± 0.29 mM-1 s-1 , 8.62 ± 0.16 mM-1 s-1 , and the r2 relaxivities were 111.74 ± 3.76 mM-1 s-1 , 105.07 ± 2.20 mM-1 s-1 , and 109.68 ± 2.56 mM-1 s-1 , respectively. The relationship between contrast concentration and longitudinal (R1) and transverse (R2) relaxation rate was highly linear in saline and plasma. The three agents produced similar in vivo contrast effects on T1 and T2 relaxation time-weighted sequences. DATA CONCLUSION Relative to clinically approved ferumoxytol formulations, MoldayION demonstrates minor differences in in vitro relaxometry and comparable in vivo MRI characteristics. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Caroline M. Colbert
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Zhengyang Ming
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Arutyun Pogosyan
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
| | - J. Paul Finn
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| |
Collapse
|
8
|
Gu H, Shi R, Xu C, Lv W, Hu X, Xu C, Pan Y, He X, Wu A, Li J. EGFR-Targeted Liposomes Combined with Ginsenoside Rh2 Inhibit Triple-Negative Breast Cancer Growth and Metastasis. Bioconjug Chem 2023. [PMID: 37235785 DOI: 10.1021/acs.bioconjchem.3c00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Triple-negative breast cancer (TNBC) remains the most challenging breast cancer subtype due to its lack of targeted therapies and poor prognosis. In order to treat patients with these tumors, efforts have been made to explore feasible targets. Epidermal growth factor receptor (EGFR)-targeted therapy is currently in clinical trials and regarded to be a promising treatment strategy. In this study, an EGFR-targeting nanoliposome (LTL@Rh2@Lipo-GE11) using ginsenoside Rh2 as a wall material was developed, in which GE11 was used as the EGFR-binding peptide to deliver more ginsenoside Rh2 and luteolin into TNBC. In comparison to non-targeted liposomes (Rh2@Lipo and LTL@Rh2@Lipo), the nanoliposomes LTL@Rh2@Lipo-GE11 demonstrated a high specificity to MDA-MB-231 cells that expressed a high level of EGFR both in vitro and in vivo, contributing to the strong inhibitory effects on the growth and migration of TNBC. These results suggest that LTL@Rh2@Lipo-GE11 is a prospective candidate for targeted therapy of TNBC, with a remarkable capability to inhibit tumor development and metastasis.
Collapse
Affiliation(s)
- Haiyan Gu
- Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Rui Shi
- Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China
| | - Chen Xu
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Wenhao Lv
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Xueyin Hu
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Canxin Xu
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Yuanbo Pan
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Xiahong He
- Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| |
Collapse
|
9
|
Boruah H, Tyagi N, Gupta SK, Chabukdhara M, Malik T. Understanding the adsorption of iron oxide nanomaterials in magnetite and bimetallic form for the removal of arsenic from water. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Arsenic decontamination is a major worldwide concern as prolonged exposure to arsenic (>10 µg L-1) through drinking water causes serious health hazards in human beings. The selection of significant, cost-effective, and affordable processes for arsenic removal is the need of the hour. For the last decades, iron-oxide nanomaterials (either in the magnetite or bimetallic form) based adsorptive process gained attention owing to their high arsenic removal efficiency and high regenerative capacity as well as low yield of harmful by-products. In the current state-of-the-art, a comprehensive literature review was conducted focused on the applicability of iron-based nanomaterials for arsenic removal by considering three main factors: (a) compilation of arsenic removal efficiency, (b) identifying factors that are majorly affecting the process of arsenic adsorption and needs further investigation, and (c) regeneration capacity of adsorbents without affecting the removal process. The results revealed that magnetite and bimetallic nanomaterials are more effective for removing Arsenic (III) and Arsenic (V). Further, magnetite-based nanomaterials could be used up to five to six reuse cycles, whereas this value varied from three to six reuse cycles for bimetallic ones. However, most of the literature was based on laboratory findings using decided protocols and sophisticated instruments. It cannot be replicated under natural aquatic settings in the occurrence of organic contents, fluctuating pH and temperature, and interfering compounds. The primary rationale behind this study is to provide a comparative picture of arsenic removal through different iron-oxide nanomaterials (last twelve yearsof published literature) and insights into future research directions.
Collapse
|
10
|
Asad S, Jacobsen AC, Teleki A. Inorganic nanoparticles for oral drug delivery: opportunities, barriers, and future perspectives. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Bruckmann FDS, Nunes FB, Salles TDR, Franco C, Cadoná FC, Bohn Rhoden CR. Biological Applications of Silica-Based Nanoparticles. MAGNETOCHEMISTRY 2022; 8:131. [DOI: 10.3390/magnetochemistry8100131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Silica nanoparticles have been widely explored in biomedical applications, mainly related to drug delivery and cancer treatment. These nanoparticles have excellent properties, high biocompatibility, chemical and thermal stability, and ease of functionalization. Moreover, silica is used to coat magnetic nanoparticles protecting against acid leaching and aggregation as well as increasing cytocompatibility. This review reports the recent advances of silica-based magnetic nanoparticles focusing on drug delivery, drug target systems, and their use in magnetohyperthermia and magnetic resonance imaging. Notwithstanding, the application in other biomedical fields is also reported and discussed. Finally, this work provides an overview of the challenges and perspectives related to the use of silica-based magnetic nanoparticles in the biomedical field.
Collapse
|
12
|
Preparation and in vivo imaging of a novel potential αvβ3 targeting PET/MRI dual-modal imaging agent. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Fluorescent Single-Core and Multi-Core Nanoprobes as Cell Trackers and Magnetic Nanoheaters. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8080083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Iron oxide magnetic nanoparticles (MNPs) have been widely studied due to their versatility for diagnosis, tracking (magnetic resonance imaging (MRI)) and therapeutic (magnetic hyperthermia and drug delivery) applications. In this work, iron oxide MNPs with different single-core (8–40 nm) and multi-core (140–200 nm) structures were synthesized and functionalized by organic and inorganic coating materials, highlighting their ability as magnetic nanotools to boost cell biotechnological procedures. Single core Fe3O4@PDA, Fe3O4@SiO2-FITC-SiO2 and Fe3O4@SiO2-RITC-SiO2 MNPs were functionalized with fluorescent components with emission at different wavelengths, 424 nm (polydopamine), 515 (fluorescein) and 583 nm (rhodamine), and their ability as transfection and imaging agents was explored with HeLa cells. Moreover, different multi-core iron oxide MNPs (Fe3O4@CS, Fe3O4@SiO2 and Fe3O4@Citrate) coated with organic (citrate and chitosan, CS) and inorganic (silica, SiO2) shells were tested as efficient nanoheaters for magnetic hyperthermia applications for mild thermal heating procedures as an alternative to simple structures based on single-core MNPs. This work highlights the multiple abilities offered by the synergy of the use of external magnetic fields applied on MNPs and their application in different biomedical approaches.
Collapse
|
14
|
Lacerda S, Zhang W, T. M. de Rosales R, Da Silva I, Sobilo J, Lerondel S, Tóth É, Djanashvili K. On the Versatility of Nanozeolite Linde Type L for Biomedical Applications: Zirconium-89 Radiolabeling and In Vivo Positron Emission Tomography Study. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32788-32798. [PMID: 35830285 PMCID: PMC9335405 DOI: 10.1021/acsami.2c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Porous materials, such as zeolites, have great potential for biomedical applications, thanks to their ability to accommodate positively charged metal-ions and their facile surface functionalization. Although the latter aspect is important to endow the nanoparticles with chemical/colloidal stability and desired biological properties, the possibility for simple ion-exchange enables easy switching between imaging modalities and/or combination with therapy, depending on the envisioned application. In this study, the nanozeolite Linde type L (LTL) with already confirmed magnetic resonance imaging properties, generated by the paramagnetic gadolinium (GdIII) in the inner cavities, was successfully radiolabeled with a positron emission tomography (PET)-tracer zirconium-89 (89Zr). Thereby, exploiting 89Zr-chloride resulted in a slightly higher radiolabeling in the inner cavities compared to the commonly used 89Zr-oxalate, which apparently remained on the surface of LTL. Intravenous injection of PEGylated 89Zr/GdIII-LTL in healthy mice allowed for PET-computed tomography evaluation, revealing initial lung uptake followed by gradual migration of LTL to the liver and spleen. Ex vivo biodistribution confirmed the in vivo stability and integrity of the proposed multimodal probe by demonstrating the original metal/Si ratio being preserved in the organs. These findings reveal beneficial biological behavior of the nanozeolite LTL and hence open the door for follow-up theranostic studies by exploiting the immense variety of metal-based radioisotopes.
Collapse
Affiliation(s)
- Sara Lacerda
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, Orléans 45071 Cedex 2, France
| | - Wuyuan Zhang
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, St Thomas’
Hospital, King’s College London, London SE1 7EH, U.K.
| | - Isidro Da Silva
- CEMHTI,
CNRS UPR3079, Université d’Orléans, Orléans 45071, France
| | - Julien Sobilo
- Centre
d’Imagerie du petit Animal, PHENOMIN-TAAM, CNRS UAR44, Orléans F-45071, France
| | - Stéphanie Lerondel
- Centre
d’Imagerie du petit Animal, PHENOMIN-TAAM, CNRS UAR44, Orléans F-45071, France
| | - Éva Tóth
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, Orléans 45071 Cedex 2, France
| | - Kristina Djanashvili
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, Orléans 45071 Cedex 2, France
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
- Le Studium,
Loire Valley Institute for Advanced Studies, 1 Rue Dupanloup, Orléans 45000, France
| |
Collapse
|
15
|
Jiang Y, Kang Y, Liu J, Yin S, Huang Z, Shao L. Nanomaterials alleviating redox stress in neurological diseases: mechanisms and applications. J Nanobiotechnology 2022; 20:265. [PMID: 35672765 PMCID: PMC9171999 DOI: 10.1186/s12951-022-01434-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Overproduced reactive oxygen and reactive nitrogen species (RONS) in the brain are involved in the pathogenesis of several neurological diseases, such as Alzheimer's disease, Parkinson's disease, traumatic brain injury, and stroke, as they attack neurons and glial cells, triggering cellular redox stress. Neutralizing RONS, and, thus, alleviating redox stress, can slow down or stop the progression of neurological diseases. Currently, an increasing number of studies are applying nanomaterials (NMs) with anti-redox activity and exploring the potential mechanisms involved in redox stress-related neurological diseases. In this review, we summarize the anti-redox mechanisms of NMs, including mimicking natural oxidoreductase activity and inhibiting RONS generation at the source. In addition, we propose several strategies to enhance the anti-redox ability of NMs and highlight the challenges that need to be resolved in their application. In-depth knowledge of the mechanisms and potential application of NMs in alleviating redox stress will help in the exploration of the therapeutic potential of anti-redox stress NMs in neurological diseases.
Collapse
Affiliation(s)
- Yanping Jiang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Suhan Yin
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Zhendong Huang
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Zhao Z, Li M, Zeng J, Huo L, Liu K, Wei R, Ni K, Gao J. Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioact Mater 2022; 12:214-245. [PMID: 35310380 PMCID: PMC8897217 DOI: 10.1016/j.bioactmat.2021.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 02/09/2023] Open
Abstract
Iron oxide nanoparticle (IONP) with unique magnetic property and high biocompatibility have been widely used as magnetic resonance imaging (MRI) contrast agent (CA) for long time. However, a review which comprehensively summarizes the recent development of IONP as traditional T2 CA and its new application for different modality of MRI, such as T1 imaging, simultaneous T2/T1 or MRI/other imaging modality, and as environment responsive CA is rare. This review starts with an investigation of direction on the development of high-performance MRI CA in both T2 and T1 modal based on quantum mechanical outer sphere and Solomon–Bloembergen–Morgan (SBM) theory. Recent rational attempts to increase the MRI contrast of IONP by adjusting the key parameters, including magnetization, size, effective radius, inhomogeneity of surrounding generated magnetic field, crystal phase, coordination number of water, electronic relaxation time, and surface modification are summarized. Besides the strategies to improve r2 or r1 values, strategies to increase the in vivo contrast efficiency of IONP have been reviewed from three different aspects, those are introducing second imaging modality to increase the imaging accuracy, endowing IONP with environment response capacity to elevate the signal difference between lesion and normal tissue, and optimizing the interface structure to improve the accumulation amount of IONP in lesion. This detailed review provides a deep understanding of recent researches on the development of high-performance IONP based MRI CAs. It is hoped to trigger deep thinking for design of next generation MRI CAs for early and accurate diagnosis. T2 contrast capacity of iron oxide nanoparticles (IONPs) could be improved based on quantum mechanical outer sphere theory. IONPs could be expand to be used as effective T1 CAs by improving q value, extending τs, and optimizing interface structure. Environment responsive MRI CAs have been developed to improve the diagnosis accuracy. Introducing other imaging contrast moiety into IONPs could increase the contrast efficiency. Optimizing in vivo behavior of IONPs have been proved to enlarge the signal difference between normal tissue and lesion.
Collapse
|
17
|
Zhang C, Huang W, Huang C, Zhou C, Tang Y, Wei W, Li Y, Tang Y, Luo Y, Zhou Q, Chen W. VHPKQHR Peptide Modified Ultrasmall Paramagnetic Iron Oxide Nanoparticles Targeting Rheumatoid Arthritis for T1-Weighted Magnetic Resonance Imaging. Front Bioeng Biotechnol 2022; 10:821256. [PMID: 35295653 PMCID: PMC8918785 DOI: 10.3389/fbioe.2022.821256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) could be the ideal diagnostic modality for early rheumatoid arthritis (RA). Vascular cell adhesion molecule-1 (VCAM-1) is highly expressed in synovial locations in patients with RA, which could be a potential target protein for RA diagnosis. The peptide VHPKQHR (VHP) has a high affinity to VCAM-1. To make the contrast agent to target RA at an early stage, we used VHP and ultrasmall paramagnetic iron oxide (USPIO) to synthesize UVHP (U stands for USPIO) through a chemical reaction with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. The size of UVHP was 6.7 nm; the potential was −27.7 mV, and the r2/r1 value was 1.73. Cytotoxicity assay exhibited that the cell survival rate was higher than 80% at even high concentrations of UVHP (Fe concentration 200 µg/mL), which showed the UVHP has low toxicity. Compared with no TNF-α stimulation, VCAM-1 expression was increased nearly 3-fold when mouse aortic endothelial cells (MAECs) were stimulated with 50 ng/mL TNF-α; cellular Fe uptake was increased very significantly with increasing UVHP concentration under TNF-α treatment; cellular Fe content was 17 times higher under UVHP with Fe concentration 200 µg/mL treating MAECs. These results indicate that UVHP can target overexpression of VCAM-1 at the cellular level. RA mice models were constructed with adjuvant-induced arthritis. In vivo MRI and biodistribution results show that the signal intensity of knee joints was increased significantly and Fe accumulation in RA model mice compared with normal wild-type mice after injecting UVHP 24 h. These results suggest that we have synthesized a simple, low-cost, and less toxic contrast agent UVHP, which targeted VCAM-1 for early-stage RA diagnosis and generates high contrast in T1-weighted MRI.
Collapse
Affiliation(s)
- Chunyu Zhang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wei Wei
- Institution of GuangDong Cord Blood Bank, Guangzhou, China
| | - Yongsheng Li
- Institution of GuangDong Cord Blood Bank, Guangzhou, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| | - Yu Luo
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
- *Correspondence: Yukuan Tang, ; Yu Luo, ; Quan Zhou, ; Wenli Chen,
| |
Collapse
|
18
|
Dasari A, Xue J, Deb S. Magnetic Nanoparticles in Bone Tissue Engineering. NANOMATERIALS 2022; 12:nano12050757. [PMID: 35269245 PMCID: PMC8911835 DOI: 10.3390/nano12050757] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022]
Abstract
Large bone defects with limited intrinsic regenerative potential represent a major surgical challenge and are associated with a high socio-economic burden and severe reduction in the quality of life. Tissue engineering approaches offer the possibility to induce new functional bone regeneration, with the biomimetic scaffold serving as a bridge to create a microenvironment that enables a regenerative niche at the site of damage. Magnetic nanoparticles have emerged as a potential tool in bone tissue engineering that leverages the inherent magnetism of magnetic nano particles in cellular microenvironments providing direction in enhancing the osteoinductive, osteoconductive and angiogenic properties in the design of scaffolds. There are conflicting opinions and reports on the role of MNPs on these scaffolds, such as the true role of magnetism, the application of external magnetic fields in combination with MNPs, remote delivery of biomechanical stimuli in-vivo and magnetically controlled cell retention or bioactive agent delivery in promoting osteogenesis and angiogenesis. In this review, we focus on the role of magnetic nanoparticles for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease. We highlight the materials-design pathway from implementation strategy through the selection of materials and fabrication methods to evaluation. We discuss the advances in this field and unmet needs, current challenges in the development of ideal materials for bone-tissue regeneration and emerging strategies in the field.
Collapse
Affiliation(s)
- Akshith Dasari
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE11UL, UK
| | - Jingyi Xue
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
| | - Sanjukta Deb
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, Floor 17 Tower Wing, Guy’s Hospital, London Bridge, London SE19RT, UK; (A.D.); (J.X.)
- Correspondence:
| |
Collapse
|
19
|
Li D, Hu Y, Wei H, Chen W, Liu Y, Yan X, Guo L, Liao M, Chen B, Chai R, Tang M. Superparamagnetic Iron Oxide Nanoparticles and Static Magnetic Field Regulate Neural Stem Cell Proliferation. Front Cell Neurosci 2022; 15:815280. [PMID: 35185472 PMCID: PMC8854213 DOI: 10.3389/fncel.2021.815280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022] Open
Abstract
Neural stem cells (NSCs) transplantation is a promising approach for the treatment of various neurodegenerative diseases. Superparamagnetic iron oxide nanoparticles (SPIOs) are reported to modulate stem cell behaviors and are used for medical imaging. However, the detailed effects of SPIOs under the presence of static magnetic field (SMF) on NSCs are not well elucidated. In this study, it was found that SPIOs could enter the cells within 24 h, while they were mainly distributed in the lysosomes. SPIO exhibited good adhesion and excellent biocompatibility at concentrations below 500 μg/ml. In addition, SPIOs were able to promote NSC proliferation in the absence of SMF. In contrast, the high intensity of SMF (145 ± 10 mT) inhibited the expansion ability of NSCs. Our results demonstrate that SPIOs with SMF could promote NSC proliferation, which could have profound significance for tissue engineering and regenerative medicine for SPIO applications.
Collapse
Affiliation(s)
- Dan Li
- School of Biology, Food and Environment, Hefei University, Hefei, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yangnan Hu
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Hao Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yun Liu
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xiaoqian Yan
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Lingna Guo
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Menghui Liao
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, Suzhou, China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
- *Correspondence: Renjie Chai,
| | - Mingliang Tang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
- Mingliang Tang,
| |
Collapse
|
20
|
Kulkarni A, Nehe A. Fundamentals of superparamagnetic iron oxide nanoparticles: Recent update. J Microsc Ultrastruct 2022. [DOI: 10.4103/jmau.jmau_17_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
21
|
Iron, Copper, and Zinc Homeostasis: Physiology, Physiopathology, and Nanomediated Applications. NANOMATERIALS 2021; 11:nano11112958. [PMID: 34835722 PMCID: PMC8620808 DOI: 10.3390/nano11112958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Understanding of how the human organism functions has preoccupied researchers in medicine for a very long time. While most of the mechanisms are well understood and detailed thoroughly, medicine has yet much to discover. Iron (Fe), Copper (Cu), and Zinc (Zn) are elements on which organisms, ranging from simple bacteria all the way to complex ones such as mammals, rely on these divalent ions. Compounded by the continuously evolving biotechnologies, these ions are still relevant today. This review article aims at recapping the mechanisms involved in Fe, Cu, and Zn homeostasis. By applying the knowledge and expanding on future research areas, this article aims to shine new light of existing illness. Thanks to the expanding field of nanotechnology, genetic disorders such as hemochromatosis and thalassemia can be managed today. Nanoparticles (NPs) improve delivery of ions and confer targeting capabilities, with the potential for use in treatment and diagnosis. Iron deficiency, cancer, and sepsis are persisting major issues. While targeted delivery using Fe NPs can be used as food fortifiers, chemotherapeutic agents against cancer cells and microbes have been developed using both Fe and Cu NPs. A fast and accurate means of diagnosis is a major impacting factor on outcome of patients, especially when critically ill. Good quality imaging and bed side diagnostic tools are possible using NPs, which may positively impact outcome.
Collapse
|
22
|
Wei H, Hu Y, Wang J, Gao X, Qian X, Tang M. Superparamagnetic Iron Oxide Nanoparticles: Cytotoxicity, Metabolism, and Cellular Behavior in Biomedicine Applications. Int J Nanomedicine 2021; 16:6097-6113. [PMID: 34511908 PMCID: PMC8418330 DOI: 10.2147/ijn.s321984] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely investigated and applied in the field of biomedicine due to their excellent superparamagnetic properties and reliable traceability. However, with the optimization of core composition, shell types and transfection agents, the cytotoxicity and metabolism of different SPIONs have great differences, and the labeled cells also show different cellular behaviors. Therefore, a holistic review of the construction and application of SPIONs is desired. This review focuses the advances of SPIONs in the field of biomedicine in recent years. After summarizing the toxicity of different SPIONs, the uptake, distribution and metabolism of SPIONs in vitro were discussed. Then, the regulation of labeled-cells behavior is outlined. Furthermore, the major challenges in the optimization process of SPIONs and insights on its future developments are proposed.
Collapse
Affiliation(s)
- Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, People's Republic of China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Junguo Wang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, People's Republic of China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, People's Republic of China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, People's Republic of China
| | - Mingliang Tang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.,Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, 215000, People's Republic of China
| |
Collapse
|
23
|
Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1740. [PMID: 34296533 DOI: 10.1002/wnan.1740] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
As a research hotspot, the development of magnetic resonance imaging (MRI) contrast agents has attracted great attention over the past decades for improving the accuracy of diagnosis. Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with core diameter smaller than 5.0 nm are expected to become a next generation of contrast agents owing to their excellent MRI performance, long blood circulation time upon proper surface modification, renal clearance capacity, and remarkable biosafety profile. On top of these merits, USPIO nanoparticles are used for developing not only T1 contrast agents, but also T2 /T1 switchable contrast agents via assembly/disassembly approaches. In recent years, as a new type of contrast agents, USPIO nanoparticles have shown considerable applications in the diagnosis of various diseases such as vascular pathological changes and inflammations apart from malignant tumors. In this review, we are focusing on the state-of-the-art developments and the latest applications of USPIO nanoparticles as MRI contrast agents to discuss their advantages and future prospects. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jiabin Cui
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China.,Shanghai University of Medicine and Health Sciences (SUMHS), Shanghai, China
| |
Collapse
|
24
|
Crețu BEB, Dodi G, Shavandi A, Gardikiotis I, Șerban IL, Balan V. Imaging Constructs: The Rise of Iron Oxide Nanoparticles. Molecules 2021; 26:3437. [PMID: 34198906 PMCID: PMC8201099 DOI: 10.3390/molecules26113437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, an important challenge in nanomedicine imaging has been the work to design multifunctional agents that can be detected by single and/or multimodal techniques. Among the broad spectrum of nanoscale materials being investigated for imaging use, iron oxide nanoparticles have gained significant attention due to their intrinsic magnetic properties, low toxicity, large magnetic moments, superparamagnetic behaviour and large surface area-the latter being a particular advantage in its conjunction with specific moieties, dye molecules, and imaging probes. Tracers-based nanoparticles are promising candidates, since they combine synergistic advantages for non-invasive, highly sensitive, high-resolution, and quantitative imaging on different modalities. This study represents an overview of current advancements in magnetic materials with clinical potential that will hopefully provide an effective system for diagnosis in the near future. Further exploration is still needed to reveal their potential as promising candidates from simple functionalization of metal oxide nanomaterials up to medical imaging.
Collapse
Affiliation(s)
- Bianca Elena-Beatrice Crețu
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Amin Shavandi
- BioMatter-Biomass Transformation Lab, École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Ionela Lăcrămioara Șerban
- Physiology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| | - Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| |
Collapse
|
25
|
Mansouri H, Gholibegloo E, Mortezazadeh T, Yazdi MH, Ashouri F, Malekzadeh R, Najafi A, Foroumadi A, Khoobi M. A biocompatible theranostic nanoplatform based on magnetic gadolinium-chelated polycyclodextrin: in vitro and in vivo studies. Carbohydr Polym 2020; 254:117262. [PMID: 33357850 DOI: 10.1016/j.carbpol.2020.117262] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023]
Abstract
A novel theranostic nanoplatform was prepared based on Fe3O4 nanoparticles (NPs) coated with gadolinium ions decorated-polycyclodextrin (PCD) layer (Fe3O4@PCD-Gd) and employed for Curcumin (CUR) loading. The dissolution profile of CUR indicated a pH sensitive release manner. Fe3O4@PCD-Gd NPs exhibited no significant toxicity against both normal and cancerous cell lines (MCF 10A and 4T1, respectively); while the CUR-free NPs showed more toxicity against 4T1 than MCF 10A cells. In vivo anticancer study revealed appropriate capability of the system in tumor shrinking with no tissue toxicity and adverse effect on body weight. In vivo MR imaging of BALB/c mouse showed both T1 and T2 contrast enhancement on the tumor cells. Fe3O4@PCD-Gd/CUR NPs showed significant features as a promising multifunctional system having appropriate T1-T2 dual contrast enhancement and therapeutic efficacy in cancer theranostics.
Collapse
Affiliation(s)
- Hedieh Mansouri
- Active Pharmaceutical Ingredients Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Gholibegloo
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Najafi
- Department of Immunology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Mehdi Khoobi
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14176, Iran.
| |
Collapse
|
26
|
Park JH, Jackman JA, Ferhan AR, Belling JN, Mokrzecka N, Weiss PS, Cho NJ. Cloaking Silica Nanoparticles with Functional Protein Coatings for Reduced Complement Activation and Cellular Uptake. ACS NANO 2020; 14:11950-11961. [PMID: 32845615 DOI: 10.1021/acsnano.0c05097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Silica-coated nanoparticles are widely used in biomedical applications such as theranostics, imaging, and drug delivery. While silica-coated nanoparticles are biocompatible, experimental evidence shows that they can trigger innate immune reactions, and a broader understanding of what types of reactions are caused and how to mitigate them is needed. Herein, we investigated how the noncovalent surface functionalization of silica nanoparticles with purified proteins can inhibit nanoparticle-induced complement activation and macrophage uptake, two of the most clinically relevant innate immune reactions related to nanomedicines. Silica nanoparticles were tested alone and after coating with bovine serum albumin, human serum albumin, fibrinogen, complement factor H (FH), or immunoglobulin G (IgG) proteins. Enzyme-linked immunosorbent assays measuring the generation of various complement activation products indicated that silica nanoparticles induce complement activation via the alternative pathway. All protein coatings other than IgG protected against complement activation to varying extents. Most proteins acted as steric blockers to inhibit complement protein deposition on the nanoparticle surface, while FH coatings were biologically active and inhibited a key step in the amplification loop of complement activation, as confirmed by Western blot analysis. Flow cytometry and fluorescence microscopy experiments further revealed that complement activation-inhibiting protein coatings blunted macrophage uptake as well. Taken together, our findings demonstrate a simple and effective way to coat silica nanoparticles with purified protein coatings in order to mitigate innate immune reactions. Such methods are readily scalable and might constitute a useful strategy for improving the immunological safety profile of silica and silica-coated nanoparticles as well as other types of inorganic nanoparticles.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Jason N Belling
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Natalia Mokrzecka
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
| | - Paul S Weiss
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Bioengineering and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 639798, Singapore
- SKKU-UCLA-NTU Precision Biology Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|