1
|
Zhu RR, Hou XQ, Du DM. Squaramide-Catalyzed Asymmetric Mannich/Hemiketalization Retro-Henry Cascade Reaction of o-Hydroxy-α-Aminosulfones with α-Nitroketones. J Org Chem 2025; 90:1877-1888. [PMID: 39879666 DOI: 10.1021/acs.joc.4c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
A concise and efficient asymmetric Mannich/hemiketalization/retro-Henry cascade reaction between o-hydroxy-α-aminosulfones and α-nitroketones was developed by utilizing a cinchona-derived bifunctional squaramide catalyst. This methodology provided access to β-nitro-substituted amino compounds with up to 95% yield and >99% ee. The practicality was demonstrated by scale-up and diverse derivatizations, including the synthesis of imidazolidinone and amino acid analogs. This is the first report of α-nitroketones in such a cascade reaction, offering a valuable approach for the synthesis of chiral β-nitro amino compounds.
Collapse
Affiliation(s)
- Rong-Rong Zhu
- Key Laboratory of Medicinal Molecule Science & Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xi-Qiang Hou
- Key Laboratory of Medicinal Molecule Science & Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Da-Ming Du
- Key Laboratory of Medicinal Molecule Science & Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Sun H, Xu L, Ruan S, Ratovelomanana-Vidal V, Chen GQ, Zhang X. Rhodium-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of α-Nitro Ketones. Org Lett 2024. [PMID: 39538111 DOI: 10.1021/acs.orglett.4c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A catalytic protocol for the enantioselective hydrogenation and transfer hydrogenation of α-nitro ketones was developed, providing a wide range of β-nitro-α-phenylethanols with high yields and excellent enantioselectivities (up to 98% yield and up to >99.9% ee). Compatibility with a wide range of solvents and bases demonstrates the robustness of this reaction. The synthetic potential of the protocol was demonstrated by the high TON experiment as well as the application in the synthesis of key intermediates of mirabegron (S/C = 10,000, 95% yield, 99% ee).
Collapse
Affiliation(s)
- Hao Sun
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Liren Xu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Sai Ruan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Virginie Ratovelomanana-Vidal
- PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D Team, 75005 Paris, France
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
3
|
Rana S, Chatterjee A, Kumar Padhi S. A Single Enzyme in Enantiocomplementary Synthesis of β-Nitroalcohols: Bidirectional Catalysis by Hydroxynitrile Lyase. Chembiochem 2024; 25:e202400618. [PMID: 39073741 DOI: 10.1002/cbic.202400618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
A single enzyme, Baliospermum montanum hydroxynitrile lyase (BmHNL), without alteration, enabled bidirectional catalysis in enantiocomplementary synthesis of chiral β-nitroalcohols. BmHNL catalyzed promiscuous Henry (24 examples) and retro-Henry reaction (22 examples) provided up to >99 % and 50 % conversion to (S)- and (R)-β-nitroalcohols respectively, while both cases displayed up to >99 % ee. The broad substrate scope and high stereoselectivity of BmHNL represents its synthetic applications in sustainable production of diverse chiral β-nitroalcohols. Kinetic parameters of BmHNL was determined for Henry and retro-Henry reaction, which reveals poor catalytic efficiency for both the promiscuous transformations, however, the former has better efficiency than the latter. Practical applicability of the biocatalyst and transformation was illustrated by preparative scale synthesis of chiral intermediates of (S)-Tembamide, and (S)-Micanozole.
Collapse
Affiliation(s)
- Sukadev Rana
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| |
Collapse
|
4
|
Arutiunov NA, Edvall C, Aksenov AV, Aksenov DA, Kurenkov IA, Aksenova IV, Zatsepilina AM, Aksenov NA, Mallik S, Kornienko A. Syntheses of 3-(2-Nitrovinyl)-indoles, Benzo[ a]carbazoles, Naphtho[2,1- a]carbazoles, and 1-Hydroxy-β-carbolines Lead to Identification of Antiproliferative Compounds Active under Hypoxia. J Org Chem 2024; 89:13923-13936. [PMID: 39284576 DOI: 10.1021/acs.joc.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, we describe a novel reaction between C-2-substituted indoles and 2-nitroacetophenones leading to a variety of indole-containing heterocyclic scaffolds. At 60 °C in AcOH with H2SO4 as catalyst, C-2 aryl indoles give 3-(2-nitrovinyl)-indoles with high Z or E geometric selectivity depending on the type of substrate utilized. These compounds undergo an electrocyclization process in a sealed vial in a microwave apparatus in DMF at 250 °C to give benzo[a]carbazoles and naphtho[2,1-a]carbazoles depending on whether the C-2 aromatic moiety is phenyl or naphthyl. Utilization of 2-methylindoles in the reaction with 2-nitroacetophenones and performing the reaction in a sealed vial in a microwave apparatus in AcOH at 200 °C leads to 1-hydroxy-β-carbolines. Selected compounds from each scaffold were tested for antiproliferative activities against MDA-MB-231 triple-negative breast cancer cells under normoxic and hypoxic conditions, and three compounds belonging to the 3-(2-nitrovinyl)-indole and 1-hydroxy-β-carboline series were identified to have single-digit micromolar IC50 values.
Collapse
Affiliation(s)
- Nikolai A Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Connor Edvall
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Dmitrii A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Igor A Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Inna V Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Anna M Zatsepilina
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Nicolai A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, Texas 78666, United States
| |
Collapse
|
5
|
Li Y, Liu G, Zhou L, Ma L, He Y, Gao J, Jiang Y, Ren L, Liu Y. Resin-Immobilized Palladium Acetate and Alcohol Dehydrogenase for Chemoenzymatic Enantioselective Synthesis of Chiral Diarylmethanols. J Org Chem 2024; 89:4818-4825. [PMID: 38536102 DOI: 10.1021/acs.joc.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The enantioselective synthesis of chiral diarylmethanols is highly desirable in synthetic chemistry and the pharmaceutical industry, but it remains challenging, especially in terms of green and sustainable production. Herein, a resin-immobilized palladium acetate catalyst was fabricated with high activity, stability, and reusability in Suzuki cross-coupling reaction of acyl halides with boronic acids, and the coimmobilization of alcohol dehydrogenase and glucose dehydrogenase on resin supports was also conducted for asymmetric bioreduction of diaryl ketones. Experimental results revealed that the physicochemical properties of the resins and the immobilization modes played important roles in affecting their catalytic performances. These two catalysts enabled the construction of a chemoenzymatic cascade for the enantioselective synthesis of a series of chiral diarylmethanols in high yields (83-90%) and enantioselectivities (87-98% ee). In addition, the asymmetric synthesis of the antihistaminic and anticholinergic drugs (S)-neobenodine and (S)-carbinoxamine was also achieved from the chiral diarylmethanol precursors, demonstrating the synthetic utility of the chemoenzymatic cascade.
Collapse
Affiliation(s)
- Yanyan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Limei Ren
- Department of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
6
|
Priya BV, Rao DHS, Chatterjee A, Padhi SK. Hydroxynitrile lyase engineering for promiscuous asymmetric Henry reaction with enhanced conversion, enantioselectivity and catalytic efficiency. Chem Commun (Camb) 2023; 59:12274-12277. [PMID: 37750925 DOI: 10.1039/d3cc02837b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Arabidopsis thaliana hydroxynitrile lyase (AtHNL) engineering has uncovered variants that showed up to 12-fold improved catalytic efficiency than the wild-type towards asymmetric Henry reaction. The AtHNL variants have displayed excellent enantioselectivity, up to >99%, and higher conversion in the synthesis of 13 different (R)-β-nitroalcohols from their corresponding aldehydes. Using cell lysates of Y14M/F179W, we demonstrated a preparative scale synthesis of (R)-1-(4-methoxyphenyl)-2-nitroethanol, a tembamide chiral intermediate, in >99% ee and 52% yield.
Collapse
Affiliation(s)
- Badipatla Vishnu Priya
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Hyderabad, India.
| |
Collapse
|
7
|
Wang HH, Wan NW, Da XY, Mou XQ, Wang ZX, Chen YZ, Liu ZQ, Zheng YG. Enantiocomplementary synthesis of β-adrenergic blocker precursors via biocatalytic nitration of phenyl glycidyl ethers. Bioorg Chem 2023; 138:106640. [PMID: 37320911 DOI: 10.1016/j.bioorg.2023.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Enantiopure β-nitroalcohols, as an important class of nitro-containing compounds, are essential building blocks in pharmaceutical and organic chemistry, particularly for the synthesis of β-adrenergic blockers. In this study, we present the successful protein engineering of halohydrin dehalogenase HHDHamb for the enantioselective bio-nitration of various phenyl glycidyl ethers to the corresponding chiral β-nitroalcohols, using the inexpensive, commercially available, and safer nitrite as a nitrating agent. The chiral (R)- and (S)-1-nitro-3-phenoxypropan-2-ols were synthesized by the several enantiocomplementary HHDHamb variants through the whole-cell biotransformation, which showed good catalytic efficiency (up to 43% isolated yields) and high optical purity (up to >99% ee). In addition, we also demonstrated that the bio-nitration method was able to tolerate the substrate at a high concentration of 1000 mM (150 g/L). Furthermore, representative synthesis of two optically active enantiomers of the β-adrenergic blocker metoprolol was successfully achieved by utilizing the corresponding chiral β-nitroalcohols as precursors.
Collapse
Affiliation(s)
- Hui-Hui Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xin-Yu Da
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhu-Xiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
8
|
Wang J, Peng Y, Xu J, Wu Q. Deracemization of racemic alcohols combining photooxidation and biocatalytic reduction. Org Biomol Chem 2022; 20:7765-7769. [PMID: 36165209 DOI: 10.1039/d2ob01386j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We described a cascade reaction for deracemization of racemic alcohols combining photooxidation and enzymatic reduction under mild conditions without the isolation of intermediate ketones. Using different ketoreductases, a variety of racemic alcohols can be successfully converted into (R)- or (S)-enantiomers in high yields (up to 95%) and stereoselectivity (up to 99%).
Collapse
Affiliation(s)
- Jianfeng Wang
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China. .,Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yongzhen Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
9
|
Wang H, Wan N, Miao R, He C, Chen Y, Liu Z, Zheng Y. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022; 61:e202205790. [DOI: 10.1002/anie.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Hui‐Hui Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Run‐Ping Miao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Cheng‐Li He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Zhi‐Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
10
|
Wang HH, Wan NW, Miao RP, He CL, Chen YZ, Liu ZQ, Zheng YG. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui-Hui Wang
- Zunyi Medical University School of Pharmacy CHINA
| | - Nan-Wei Wan
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Cheng-Li He
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Zhi-Qiang Liu
- Zhejiang University of Technology College of Biotechnology and Bioengineering Chaowang Rd. 18# 3100114 Hangzhou CHINA
| | - Yu-Guo Zheng
- Zhejiang University of Technology College of Biotechnology and Bioengineering CHINA
| |
Collapse
|
11
|
Zhang J, Zhou J, Xu G, Ni Y. Stereodivergent evolution of KpADH for the asymmetric reduction of diaryl ketones with para-substituents. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Development of an engineered ketoreductase with improved activity, stereoselectivity and relieved substrate inhibition for enantioselective synthesis of a key (R)-α-lipoic acid precursor. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Batch and Flow Nitroaldol Synthesis Catalysed by Granulicella tundricola Hydroxynitrile Lyase Immobilised on Celite R-633. Catalysts 2022. [DOI: 10.3390/catal12020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Granulicella tundricola hydroxynitrile lyase (GtHNL) catalyses the synthesis of chiral (R)-cyanohydrins and (R)-β-nitro alcohols. The triple variant GtHNL-A40H/V42T/Q110H (GtHNL-3V) was immobilised on Celite R-633 and used in monophasic MTBE saturated with 100 mM KPi buffer pH 7 for the synthesis of (R)-2-nitro-1-phenylethanol (NPE) in batch and continuous flow systems. Nitromethane was used as a nucleophile. A total of 82% of (R)-NPE and excellent enantioselectivity (>99%) were achieved in the batch system after 24 hours of reaction time. GtHNL-3V on Celite R-633 was successfully recycled five times. During more recycling steps a significant decrease in yield was observed while the enantioselectivity remained excellent over eight cycles. The use of a flow system enabled the continuous synthesis of (R)-NPE. A total of 15% formation of (R)-NPE was reached using a flow rate of 0.1 mL min−1; unfortunately, the enzyme was not stable, and the yield decreased to 4% after 4 hours on stream. A similar yield was observed during 15 hours at a rate of 0.01 mL min−1. Surprisingly the use of a continuous flow system did not facilitate the process intensification. In fact, the batch system displayed a space-time-yield (STY/mgenzyme) of 0.10 g L−1 h−1 mgenzyme−1 whereas the flow system displayed 0.02 and 0.003 g L−1 h−1 mgenzyme−1 at 0.1 and 0.01 mL min−1, respectively. In general, the addition of 1 M nitromethane potentially changed the polarity of the reaction mixture affecting the stability of Celite-GtHNL-3V. The nature of the batch system maintained the reaction conditions better than the flow system. The higher yield and productivity observed for the batch system show that it is a superior system for the synthesis of (R)-NPE compared with the flow approach.
Collapse
|
14
|
Alammari AS, Al-Majid AM, Barakat A, Alshahrani S, Ali M, Islam MS. Asymmetric Henry Reaction of Nitromethane with Substituted Aldehydes Catalyzed by Novel In Situ Generated Chiral Bis(β-Amino Alcohol-Cu(OAc)2·H2O Complex. Catalysts 2021; 11:1208. [DOI: 10.3390/catal11101208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Novel chiral thiophene-2,5-bis(β-amino alcohol) ligands (L1–L5) were designed and synthesized from thiophene-2,5-dicarbaldehyde (3) with chiral β-amino alcohols (4a–e) in 4 steps with overall 23% yields. An in situ generated L-Cu(OAc)2·H2O catalyst system was found to be highly capable catalyst for the asymmetric Henry reaction of nitromethane (7) with various substituted aromatic aldehydes (6a–m) producing chiral nitroaldols product (8a–m) with excellent enantiomeric purity (up to 94.6% ee) and up to >99% chemical yields. 20 mol% of L4-Cu(OAc)2 catalyst complex in EtOH was effective for the asymmetric Henry transformation in 24 h, at ambient temperature. Ease of ligand synthesis, use of green solvent, base free reaction, mild reaction conditions, high yields and excellent enantioselectivity are all key factors that make this catalytic system robust and highly desirable for the access of versatile building block β-nitro alcohol in practical catalytic usage via asymmetric Henry reaction.
Collapse
Affiliation(s)
- Abdullah Saleh Alammari
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Chatterjee A, Rao DHS, Kumar Padhi S. One‐Pot Enzyme Cascade Catalyzed Asymmetrization of Primary Alcohols: Synthesis of Enantiocomplementary Chiral β‐Nitroalcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory Department of Biochemistry School of Life Sciences University of Hyderabad 500 046 Hyderabad India
| | - D. H. Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory Department of Biochemistry School of Life Sciences University of Hyderabad 500 046 Hyderabad India
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory Department of Biochemistry School of Life Sciences University of Hyderabad 500 046 Hyderabad India
| |
Collapse
|
16
|
Zhang Q, Lu Z, Hu C, Zhu K, Jiang M, Huang Z, Chen F. Enantio‐ and Diastereoselective Synthesis of Chiral
Syn
‐Aryl β‐Hydroxy α‐Amino Esters via Biocatalytic Dynamic Reductive Kinetic Resolution. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qing‐Chun Zhang
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Zuo‐Lin Lu
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chen Hu
- Department of Chemistry Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Kejie Zhu
- Department of Chemistry Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Meifen Jiang
- Department of Chemistry Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Zedu Huang
- Department of Chemistry Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 P. R. China
- Department of Chemistry Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs 220 Handan Road Shanghai 200433 P. R. China
| |
Collapse
|
17
|
Zheng C, Wang Z, Wang Q, Wang S, Lao S, He J, Chen Z. Efficient preparation of the chiral intermediate of luliconazole with Lactobacillus kefir alcohol dehydrogenase through rational rearrangement of the substrate binding pocket. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Li Z, Yang H, Liu J, Huang Z, Chen F. Application of Ketoreductase in Asymmetric Synthesis of Pharmaceuticals and Bioactive Molecules: An Update (2018-2020). CHEM REC 2021; 21:1611-1630. [PMID: 33835705 DOI: 10.1002/tcr.202100062] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023]
Abstract
With the rapid development of genomic DNA sequencing, recombinant DNA expression, and protein engineering, biocatalysis has been increasingly and widely adopted in the synthesis of pharmaceuticals, bioactive molecules, fine chemicals, and agrochemicals. In this review, we have summarized the most recent advances achieved (2018-2020) in the research area of ketoreductase (KRED)-catalyzed asymmetric synthesis of chiral secondary alcohol intermediates to pharmaceuticals and bioactive molecules. In the first part, synthesis of chiral alcohols with one stereocenter through the bioreduction of four different ketone classes, namely acyclic aliphatic ketones, benzyl or phenylethyl ketones, cyclic aliphatic ketones, and aryl ketones, is discussed. In the second part, KRED-catalyzed dynamic reductive kinetic resolution and reductive desymmetrization are presented for the synthesis of chiral alcohols with two contiguous stereocenters.
Collapse
Affiliation(s)
- Zhining Li
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Haidi Yang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Jinyao Liu
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Zedu Huang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Fener Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| |
Collapse
|
19
|
Rao DHS, Chatterjee A, Padhi SK. Biocatalytic approaches for enantio and diastereoselective synthesis of chiral β-nitroalcohols. Org Biomol Chem 2021; 19:322-337. [PMID: 33325956 DOI: 10.1039/d0ob02019b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral β-nitroalcohols find significant application in organic synthesis due to the versatile reactivity of hydroxyl and nitro functionalities attached to one or two vicinal asymmetric centers. They are key building blocks of several important pharmaceuticals, bioactive molecules, and fine chemicals. With the growing demand to develop clean and green methods for their synthesis, biocatalytic methods have gained tremendous importance among the existing asymmetric synthesis routes. Over the years, different biocatalytic strategies for the asymmetric synthesis of β-nitroalcohol stereoisomers have been developed. They can be majorly classified as (a) kinetic resolution, (b) dynamic kinetic resolution, (c) Henry reaction, (d) retro-Henry reaction, (e) asymmetric reduction, and (f) enantioselective epoxide ring-opening. This review aims to provide an overview of the above biocatalytic strategies, and their comparison along with future prospects. Essentially, it presents an enzyme-toolbox for the asymmetric synthesis of β-nitroalcohol enantiomers and diastereomers.
Collapse
Affiliation(s)
- D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| | - Ayon Chatterjee
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad - 500 046, India.
| |
Collapse
|
20
|
Aksenov AV, Aksenov NA, Kirilov NK, Skomorokhov AA, Aksenov DA, Kurenkov IA, Sorokina EA, Nobi MA, Rubin M. Does electrophilic activation of nitroalkanes in polyphosphoric acid involve formation of nitrile oxides? RSC Adv 2021; 11:35937-35945. [PMID: 35492804 PMCID: PMC9043268 DOI: 10.1039/d1ra06503c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
The mechanistic rationale involving activation of nitroalkanes towards interaction with nucleophilic reagents in the presence of polyphosphoric acid (PPA) was re-evaluated. Could nitrile oxide moieties be formed during this process? This experiment demonstrates that at least in some cases this could happen, as generated nitrile oxides were successfully intercepted as adducts of [3 + 2] cycloadditions. The mechanistic rationale involving activation of nitroalkanes towards interaction with nucleophilic reagents in the presence of polyphosphoric acid (PPA) was re-evaluated. Could nitrile oxide moieties be formed during this process?![]()
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Nikita K. Kirilov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anton A. Skomorokhov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Igor A. Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Elena A. Sorokina
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation
| | - Mezvah A. Nobi
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA
| | - Michael Rubin
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA
| |
Collapse
|
21
|
Hu C, Liu M, Yue X, Huang Z, Chen F. Development of a Practical, Biocatalytic Synthesis of tert-Butyl (R)-3-Hydroxyl-5-hexenoate: A Key Intermediate to the Statin Side Chain. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chen Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P. R. China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P. R. China
| | - Xiaoping Yue
- West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Zedu Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, P. R. China
| |
Collapse
|
22
|
Wang Z, Zeng Y, Wu X, Li Z, Tao Y, Yu X, Huang Z, Chen F. Access to chiral α-substituted-β-hydroxy arylphosphonates enabled by biocatalytic dynamic reductive kinetic resolution. Org Biomol Chem 2020; 18:2672-2677. [PMID: 32202289 DOI: 10.1039/d0ob00379d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ketoreductase (KRED)-catalyzed dynamic reductive kinetic resolution (DYRKR) of α-substituted-β-keto arylphosphonates was developed as a generic and stereoselective approach to synthesize chiral α-substituted-β-hydroxy arylphosphonates, with moderate-to-excellent isolated yield (up to 96%), good-to-excellent diastereoselectivity (up to >99 : <1 dr), and excellent enantioselectivity (up to >99% ee) being achieved.
Collapse
Affiliation(s)
- Zexu Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| | - Yiping Zeng
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Xiaofan Wu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Zihan Li
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| | - Yuan Tao
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Zedu Huang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| | - Fener Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| |
Collapse
|
23
|
Bandeira PT, Gotor-Fernández V, Piovan L. Stereoselective Bioreduction of Telluro-Acetophenones to Optically Active Hydroxy Tellurides. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Pamela Taisline Bandeira
- Department of Chemistry; Federal University of Paraná; Avenida Coronel Francisco H. dos Santos 100 81531991 Curitiba Brazil
- Department of Organic and Inorganic Chemistry; University of Oviedo; Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor-Fernández
- Department of Organic and Inorganic Chemistry; University of Oviedo; Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Leandro Piovan
- Department of Chemistry; Federal University of Paraná; Avenida Coronel Francisco H. dos Santos 100 81531991 Curitiba Brazil
| |
Collapse
|