1
|
Zhang X, Wei C, Zong K, Zhong Q, Yan H. Tetraasteranes as homologues of cubanes: effective scaffolds for drug discovery. Org Biomol Chem 2024; 22:8037-8047. [PMID: 39263808 DOI: 10.1039/d4ob01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Classical hydrocarbon scaffolds have long assisted in bringing new molecules to the market for a variety of applications, but one notable omission is that of tetraasteranes, which are homologues of cubanes belonging to a class of polycyclic hydrocarbon cage compounds. Tetraasteranes exhibit potential as scaffolds in drug discovery due to their identical cyclobutane structures and rigid conformation resembling cubanes. Based on the studies of the physical and chemical properties of tetraasteranes by density functional theory, three series of compounds were designed as homologues of cubanes by the substitution of cubane scaffolds in pharmaceuticals with tetraasteranes. Their potential for pharmaceutical applications was evaluated in silico by molecular docking and dynamics simulations. Their pharmacokinetic and physicochemical properties were studied by the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The results indicate that tetraasteranes may be scaffolds as novel bioisosteres of cubanes, as well as hydrogen bond donors or acceptors, which enhance the affinity between ligands and receptors with more stable binding behavior and feasible tolerability in ADMET. All these findings provide new opportunities for tetraasteranes to serve as effective pharmaceutical scaffolds for drug discovery and to accelerate the drug discovery process by repurposing both new and old commercial compounds.
Collapse
Affiliation(s)
- Xiaokun Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, P. R. China.
| | - Chaochun Wei
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, P. R. China.
| | - Keli Zong
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, P. R. China.
| | - Qidi Zhong
- School of Pharmacy, North China University of Science and Technology, Tangshan, P. R. China
| | - Hong Yan
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, P. R. China.
| |
Collapse
|
2
|
Krstenansky JL. Simplified Nomenclature and Projection Diagrams of Chiral Cubane Analogs. ACS OMEGA 2024; 9:38629-38632. [PMID: 39310194 PMCID: PMC11411652 DOI: 10.1021/acsomega.4c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
A simplified nomenclature for chiral cubane analogs is proposed where analogs with a clockwise systematic continuous numbering of the cubane core are designated as (C)-, and analogs with an anticlockwise continuous numbering of the cubane core are designated as (A)-. This method is accurate, allows for the rapid conversion of the chemical name to a structure, and it eliminates the need to designate the stereochemistry of each of the 8 carbons of cubane.
Collapse
Affiliation(s)
- John L. Krstenansky
- Keck Graduate Institute, School of Pharmacy, 535 Watson Drive, Claremont, California 91711, United States
| |
Collapse
|
3
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Ma X, Beard AM, Burgess SA, Darlak M, Newman JA, Nogle LM, Pietrafitta MJ, Smith DA, Wang X, Yue L. General Synthesis of Conformationally Constrained Noncanonical Amino Acids with C( sp3)-Rich Benzene Bioisosteres. J Org Chem 2024; 89:5010-5018. [PMID: 38532573 DOI: 10.1021/acs.joc.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Recent years have seen novel modalities emerge for the treatment of human diseases resulting in an increase in beyond rule of 5 (bRo5) chemical matter. As a result, synthetic innovations aiming to enable rapid access to complex bRo5 molecular entities have become increasingly valuable for medicinal chemists' toolkits. Herein, we report the general synthesis of a new class of noncanonical amino acids (ncAA) with a cyclopropyl backbone to achieve conformational constraint and bearing C(sp3)-rich benzene bioisosteres. We also demonstrate preliminary studies toward utilities of these ncAA as building blocks for medicinal chemistry research.
Collapse
Affiliation(s)
- Xiaoshen Ma
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Adam M Beard
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Samantha A Burgess
- Analytical Research & Development, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Miroslawa Darlak
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Justin A Newman
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Lisa M Nogle
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Mark J Pietrafitta
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - David A Smith
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| | - Xiao Wang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Lei Yue
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Ave. Louis Pasteur, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Prysiazhniuk K, Datsenko OP, Polishchuk O, Shulha S, Shablykin O, Nikandrova Y, Horbatok K, Bodenchuk I, Borysko P, Shepilov D, Pishel I, Kubyshkin V, Mykhailiuk PK. Spiro[3.3]heptane as a Saturated Benzene Bioisostere. Angew Chem Int Ed Engl 2024; 63:e202316557. [PMID: 38251921 DOI: 10.1002/anie.202316557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The spiro[3.3]heptane core, with the non-coplanar exit vectors, was shown to be a saturated benzene bioisostere. This scaffold was incorporated into the anticancer drug sonidegib (instead of the meta-benzene), the anticancer drug vorinostat (instead of the phenyl ring), and the anesthetic drug benzocaine (instead of the para-benzene). The patent-free saturated analogs obtained showed a high potency in the corresponding biological assays.
Collapse
Affiliation(s)
| | | | | | | | - Oleh Shablykin
- Enamine Ltd., Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094, Kyiv, Ukraine
| | | | | | | | - Petro Borysko
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Iryna Pishel
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | | |
Collapse
|
6
|
Fujiwara K, Nagasawa S, Maeyama R, Segawa R, Hirasawa N, Hirokawa T, Iwabuchi Y. Biological Evaluation of Isosteric Applicability of 1,3-Substituted Cuneanes as m-Substituted Benzenes Enabled by Selective Isomerization of 1,4-Substituted Cubanes. Chemistry 2024; 30:e202303548. [PMID: 38012076 DOI: 10.1002/chem.202303548] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
We herein evaluate a biological applicability of 1,3-substituted cuneanes as an isostere of m-substituted benzenes based on its structural similarity. An investigation of a method to obtain 1,3-substituted cuneanes by selective isomerization of 1,4-substituted cubanes enables this attempt by giving a key synthetic step to obtain a cuneane analogs of pharmaceuticals having m-substituted benzene moiety. Biological evaluation of the synthesized analogs and in silico study of the obtained result revealed a potential usage of cuneane skeleton in medicinal chemistry.
Collapse
Affiliation(s)
- Kan Fujiwara
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Ryusei Maeyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Ryosuke Segawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| |
Collapse
|
7
|
Hosaka M, Nagasawa S, Iwabuchi Y. C-H Alkylation of Cubanes via Catalytic Generation of Cubyl Radicals. Org Lett 2024; 26:658-663. [PMID: 38236029 DOI: 10.1021/acs.orglett.3c04019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A catalytic method for the C-H alkylation of cubanes is described. Some hydrogen atom transfer catalysts enable the direct abstraction of a hydrogen atom from the C-H bond of cubanes, followed by conjugate addition of the generated cubyl radicals to electron-deficient alkenes. Synthetic applications of the functionalization method developed are also described.
Collapse
Affiliation(s)
- Masaki Hosaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
8
|
Takebe H, Matsubara S. Scaffold Editing of Cubanes into Homocubanes, Homocuneanes via Cuneanes. Chemistry 2023:e202303063. [PMID: 38058115 DOI: 10.1002/chem.202303063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
The selective synthesis of cage-type hydrocarbons through the editing of the highly symmetric molecule cubane can be anticipated as one of the efficient approaches. In this paper, we identify a catalyst that facilitates the efficient scaffold isomerization of cubanes into homocubanes. This approach, which involves the direct synthesis of homocubanol esters, is promising as a novel method for the synthesis of phenoxy bioisosteres. Additionally, we observed that the isomerization of 1,4-bis(acyloxymethl)cubane results in the generation of both D2 - and C2 -symmetrical bishomocubanes. The same catalyst was also applied to the isomerization of acyloxymethylcuneanes, producing homocuneanol esters.
Collapse
Affiliation(s)
- Hiyori Takebe
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyotodaigaku-Katsura, Kyoto, Nishikyo, 615-8510, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyotodaigaku-Katsura, Kyoto, Nishikyo, 615-8510, Japan
| |
Collapse
|
9
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
10
|
Donnier-Valentin L, Kassamba S, Legros J, Fressigné C, Vuluga D, Brown RCD, Linclau B, De Paolis M. Photoinduced Formation of Cubyl Aryl Thioethers and Synthesis of Monocubyl Analogue of Dapsone. Org Lett 2023. [PMID: 37991751 DOI: 10.1021/acs.orglett.3c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
1,4-Disubstituted cubyl aryl thioethers were generated from the corresponding iodocubanes and aryl thiolates upon UV irradiation in dimethyl sulfoxide at room temperature. This simple procedure was found to be compatible with a variety of substituted aryl thiolates. This finding paved the way to a synthesis of the monocubyl analogue of dapsone, a key molecule in the treatment of leprosy, also known as Hansen's disease, and of acne.
Collapse
Affiliation(s)
| | - Seydou Kassamba
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| | - Julien Legros
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| | | | - Daniela Vuluga
- INSA Rouen, PBS, UMR 6270, CNRS, 76801 Saint-Etienne-du-Rouvray, France
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Bruno Linclau
- Department of Organic and Molecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Michaël De Paolis
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| |
Collapse
|
11
|
Levterov VV, Panasiuk Y, Sahun K, Stashkevych O, Badlo V, Shablykin O, Sadkova I, Bortnichuk L, Klymenko-Ulianov O, Holota Y, Lachmann L, Borysko P, Horbatok K, Bodenchuk I, Bas Y, Dudenko D, Mykhailiuk PK. 2-Oxabicyclo[2.2.2]octane as a new bioisostere of the phenyl ring. Nat Commun 2023; 14:5608. [PMID: 37783681 PMCID: PMC10545790 DOI: 10.1038/s41467-023-41298-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
The phenyl ring is a basic structural element in chemistry. Here, we show the design, synthesis, and validation of its new saturated bioisostere with improved physicochemical properties - 2-oxabicyclo[2.2.2]octane. The design of the structure is based on the analysis of the advantages and disadvantages of the previously used bioisosteres: bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane, and cubane. The key synthesis step is the iodocyclization of cyclohexane-containing alkenyl alcohols with molecular iodine in acetonitrile. 2-Oxabicyclo[2.2.2]octane core is incorporated into the structure of Imatinib and Vorinostat (SAHA) drugs instead of the phenyl ring. In Imatinib, such replacement leads to improvement of physicochemical properties: increased water solubility, enhanced metabolic stability, and reduced lipophilicity. In Vorinostat, such replacement results in a new bioactive analog of the drug. This study enhances the repertoire of available saturated bioisosteres of (hetero)aromatic rings for the use in drug discovery projects.
Collapse
Affiliation(s)
| | | | - Kateryna Sahun
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Valentyn Badlo
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | - Oleh Shablykin
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
- V. P. Kukhar IBOPC of the NASciences of Ukraine, Academician Kukhar Str. 1, 02094, Kyiv, Ukraine
| | - Iryna Sadkova
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | - Lina Bortnichuk
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Yuliia Holota
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Petro Borysko
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | | - Iryna Bodenchuk
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | - Yuliia Bas
- Taras Shevchenko National University of Kyiv, Chemistry Department, Volodymyrska 64, 01601, Kyiv, Ukraine
| | - Dmytro Dudenko
- Enamine Ltd., Winston Churchill street 78, 02094, Kyiv, Ukraine
| | | |
Collapse
|
12
|
Reinhold M, Steinebach J, Golz C, Walker JCL. Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space. Chem Sci 2023; 14:9885-9891. [PMID: 37736652 PMCID: PMC10510755 DOI: 10.1039/d3sc03083k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Saturated bridged-bicyclic compounds are currently under intense investigation as building blocks for pharmaceutical drug design. However, the most common methods for their preparation only provide access to bridgehead-substituted structures. The synthesis of bridge-functionalised species is highly challenging but would open up many new opportunities for molecular design. We describe a photocatalytic cycloaddition reaction that provides unified access to bicyclo[2.1.1]hexanes with 11 distinct substitution patterns. Bridge-substituted structures that represent ortho-, meta-, and polysubstituted benzene bioisosteres, as well as those that enable the investigation of chemical space inaccessible to aromatic motifs can all be prepared using this operationally simple protocol. Proof-of-concept examples of the application of the method to the synthesis of saturated analogues of biorelevant trisubstituted benzenes are also presented.
Collapse
Affiliation(s)
- Marius Reinhold
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Justin Steinebach
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| |
Collapse
|
13
|
Krafft MP, Riess JG. About Perfluoropolyhedranes, Their Electron-Accepting Ability and Questionable Supramolecular Hosting Capacity. Angew Chem Int Ed Engl 2023; 62:e202302942. [PMID: 37208990 DOI: 10.1002/anie.202302942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Polyhedral molecules are appealing for their eye-catching architecture and distinctive chemistry. Perfluorination of such, often greatly strained, compounds is a momentous challenge. It drastically changes the electron distribution, structure and properties. Notably, small high-symmetry perfluoropolyhedranes feature a centrally located, star-shaped low-energy unoccupied molecular orbital that can host an extra electron within the polyhedral frame, thus producing a radical anion, without loss of symmetry. This predicted electron-hosting capacity was definitively established for perfluorocubane, the first perfluorinated Platonic polyhedrane to be isolated pure. Hosting atoms, molecules, or ions in such "cage" structures is, however, all but forthright, if not illusionary, offering no easy access to supramolecular constructs. While adamantane and cubane have fostered numerous applications in materials science, medicine, and biology, specific uses for their perfluorinated counterparts remain to be established. Some aspects of highly fluorinated carbon allotropes, such as fullerenes and graphite, are briefly mentioned for context.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess., 67034, Strasbourg Cedex, France
| | - Jean G Riess
- Harangoutte Institute, 68160, Ste-Croix-aux-Mines, France
| |
Collapse
|
14
|
Wiesenfeldt MP, Rossi-Ashton JA, Perry IB, Diesel J, Garry OL, Bartels F, Coote SC, Ma X, Yeung CS, Bennett DJ, MacMillan DWC. General access to cubanes as benzene bioisosteres. Nature 2023; 618:513-518. [PMID: 37015289 PMCID: PMC10680098 DOI: 10.1038/s41586-023-06021-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
The replacement of benzene rings with sp3-hybridized bioisosteres in drug candidates generally improves pharmacokinetic properties while retaining biological activity1-5. Rigid, strained frameworks such as bicyclo[1.1.1]pentane and cubane are particularly well suited as the ring strain imparts high bond strength and thus metabolic stability on their C-H bonds. Cubane is the ideal bioisostere as it provides the closest geometric match to benzene6,7. At present, however, all cubanes in drug design, like almost all benzene bioisosteres, act solely as substitutes for mono- or para-substituted benzene rings1-7. This is owing to the difficulty of accessing 1,3- and 1,2-disubstituted cubane precursors. The adoption of cubane in drug design has been further hindered by the poor compatibility of cross-coupling reactions with the cubane scaffold, owing to a competing metal-catalysed valence isomerization8-11. Here we report expedient routes to 1,3- and 1,2-disubstituted cubane building blocks using a convenient cyclobutadiene precursor and a photolytic C-H carboxylation reaction, respectively. Moreover, we leverage the slow oxidative addition and rapid reductive elimination of copper to develop C-N, C-C(sp3), C-C(sp2) and C-CF3 cross-coupling protocols12,13. Our research enables facile elaboration of all cubane isomers into drug candidates, thus enabling ideal bioisosteric replacement of ortho-, meta- and para-substituted benzenes.
Collapse
Affiliation(s)
| | | | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Johannes Diesel
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Florian Bartels
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | | - Xiaoshen Ma
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Charles S Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - David J Bennett
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | | |
Collapse
|
15
|
Levitre G, Keess S, Molander GA. Photoinduced Diastereoselective Aminoalkylation of Cubanes. Org Lett 2023. [PMID: 37216214 DOI: 10.1021/acs.orglett.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The unique properties of rigid, nonconjugated hydrocarbons provide many opportunities to design molecular building blocks for a variety of applications, but the development of suitable conditions for alkylation of cubanes is quite challenging. Herein, a photoinduced method for aminoalkylation of cubanes is reported. The benign conditions reported allow the incorporation of a wide variety of (hetero)arylimine reaction partners with broad functional group tolerance and high diastereoselectivity.
Collapse
Affiliation(s)
- Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
16
|
Levitre G, Granados A, Molander GA. Sustainable Photoinduced Decarboxylative Chlorination Mediated by Halogen Atom Transfer. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:560-565. [PMID: 37588672 PMCID: PMC10427136 DOI: 10.1039/d2gc04578h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Chlorinated organic backbones constitute important components in existing biologically active chemicals, and they are extraordinary useful intermediates in organic synthesis. Herein, an operationally simple and sustainable halodecarboxylation protocol via halogen-atom transfer (XAT) as a key step is presented. The method merges a metal-free photoredox system with (diacetoxyiodo)benzene (PIDA) as a hypervalent iodine reagent using 1,2-dihaloethanes as halogen sources to afford haloalkanes in an efficient manner. The sustainability of this protocol is highlighted by an important waste recovery protocol as well as by atom economy and carbon efficiency parameters.
Collapse
Affiliation(s)
- Guillaume Levitre
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories 231 S. 34th Street, Philadelphia, PA 19104-6323 (USA)
| | - Albert Granados
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories 231 S. 34th Street, Philadelphia, PA 19104-6323 (USA)
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories 231 S. 34th Street, Philadelphia, PA 19104-6323 (USA)
| |
Collapse
|
17
|
Vujcic B, Wyllie J, Tania, Burns J, White KF, Cromwell S, Lupton DW, Dutton JL, Soares da Costa TP, Houston SD. Cage hydrocarbons as linkers in dimeric drug design: Case studies with trimethoprim and tedizolid. Bioorg Med Chem Lett 2023; 80:129086. [PMID: 36423825 DOI: 10.1016/j.bmcl.2022.129086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The looming threat of a "post-antibiotic era" has been caused by a rapid rise in antibacterial resistance and subsequent depletion of effective antibiotic agents in the clinic. An efficient strategy to address this shortfall lies in the reengineering of pre-existing and commercially available antibiotic drugs. This is exemplified by dimerization, a design concept in which two pharmacophores are covalently linked to form a new chemical entity. The cage hydrocarbons cubane (1), bicyclo[2.2.2]octane (BCO) (2), adamantane (3), and bicyclo[1.1.1]pentane (BCP) (4) present themselves as an attractive family of linkers in this regard. In this report, all four hydrocarbon cages were employed as linkers in a series of dimers based on the commercially available antibiotics trimethoprim and tedizolid. A detailed synthetic roadmap for the protection and deprotection of each pharmacophore is outlined. Several members of the trimethoprim series showed activity on par with that of their trimethoprim progenitor, although this was not the case for the tedizolid series. The design strategy outlined herein highlights the utility of the group as a platform for the rapid and modular construction of future novel antibiotics.
Collapse
Affiliation(s)
- Biljana Vujcic
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jessica Wyllie
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide 5063, South Australia, Australia
| | - Tania
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jed Burns
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Keith F White
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Simon Cromwell
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Jason L Dutton
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide 5063, South Australia, Australia
| | - Sevan D Houston
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia; Almac Sciences Ltd, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, United Kingdom.
| |
Collapse
|
18
|
Takebe H, Yoshino N, Shimada Y, Williams CM, Matsubara S. Chiral Auxiliary-Directed Site-Selective Deprotonation of the Cubane Skeleton. Org Lett 2023; 25:27-30. [PMID: 36594869 DOI: 10.1021/acs.orglett.2c03659] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The first diastereoselective synthesis of trisubstituted cubanes was achieved using a chiral auxiliary. To establish chirality within the cubane skeleton, at least three substituents must be introduced at the appropriate positions. Ready conversion of cubane carboxylic acid to a chiral amide followed by sequential ortho-selective deprotonations and electrophilic trapping afforded the corresponding 1,2,3-trisubstituted cubanes with high diastereoselectivity. This route opens new possibilities for the preparation of enantio-enriched cubanes.
Collapse
Affiliation(s)
- Hiyori Takebe
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto615-8510, Japan
| | - Nana Yoshino
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto615-8510, Japan
| | - Yukako Shimada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto615-8510, Japan
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane4072, Queensland, Australia
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto615-8510, Japan
| |
Collapse
|
19
|
Advances in nonclassical phenyl bioisosteres for drug structural optimization. Future Med Chem 2022; 14:1681-1692. [PMID: 36317661 DOI: 10.4155/fmc-2022-0188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phenyl group is the most prevalent ring system and plays an essential role as a pharmacophore or scaffold in marketed drugs. However, the indiscriminate employment of phenyl is also a major cause of poor physicochemical properties of active molecules. Nonclassical phenyl bioisosteres (NPBs) have emerged as effective replacements for phenyl in structural optimization due to their unique steric structures and physicochemical properties. Herein, the effects of widely reported NPBs on physicochemical properties and biological activities, including bicyclo[1.1.1]pentane (BCP), bicyclo[2.1.1]hexanes (BCH), bicyclo[2.2.2]octane (BCO), cubane (CUB) and closo-carboborane, are reviewed. Issues that require consideration while using NPBs and practical solutions to problems frequently encountered in structural optimization using NPBs are also discussed.
Collapse
|
20
|
Abstract
Perfluorination gives cubane the capacity to host an extra electron in its inner structure.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 67034 Strasbourg, France
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste-Croix-aux-Mines, France
| |
Collapse
|
21
|
Sugiyama M, Akiyama M, Yonezawa Y, Komaguchi K, Higashi M, Nozaki K, Okazoe T. Electron in a cube: Synthesis and characterization of perfluorocubane as an electron acceptor. Science 2022; 377:756-759. [PMID: 35951682 DOI: 10.1126/science.abq0516] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fluorinated analogs of polyhedral hydrocarbons have been predicted to localize an electron within their cages upon reduction. Here, we report the synthesis and characterization of perfluorocubane, a stable polyhedral fluorocarbon. The key to the successful synthesis was the efficient introduction of multiple fluorine atoms to cubane by liquid-phase reaction with fluorine gas. The solid-state structure of perfluorocubane was confirmed using x-ray crystallography, and its electron-accepting character was corroborated electrochemically and spectroscopically. The radical anion of perfluorocubane was examined by matrix-isolation electron spin resonance spectroscopy, which revealed that the unpaired electron accepted by perfluorocubane is located predominantly inside the cage.
Collapse
Affiliation(s)
- Masafumi Sugiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Midori Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Yonezawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenji Komaguchi
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.,AGC Inc., Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
22
|
Galiakhmetova LK, Pavlov IS, Bayazitov AM, Kosarev IV, Dmitriev SV. Mechanical Properties of Cubene Crystals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4871. [PMID: 35888336 PMCID: PMC9315743 DOI: 10.3390/ma15144871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023]
Abstract
The fullerene family, whose most popular members are the spherical C60 and C70 molecules, has recently added a new member, the cube-shaped carbon molecule C8 called a cubene. A molecular crystal based on fullerenes is called fullerite. In this work, based on relaxational molecular dynamics, two fullerites based on cubenes are described for the first time, one of which belongs to the cubic system, and the other to the triclinic system. Potential energy per atom, elastic constants, and mechanical stress components are calculated as functions of lattice strain. It has been established that the cubic cubene crystal is metastable, while the triclinic crystal is presumably the crystalline phase in the ground state (the potential energies per atom for these two structures are -0.0452 and -0.0480 eV, respectively).The cubic phase has a lower density than the monoclinic one (volumes per cubene are 101 and 97.7 Å3). The elastic constants for the monoclinic phase are approximately 4% higher than those for the cubic phase. The presented results are the first step in studying the physical and mechanical properties of C8 fullerite, which may have potential for hydrogen storage and other applications. In the future, the influence of temperature on the properties of cubenes will be analyzed.
Collapse
Affiliation(s)
| | - Igor S. Pavlov
- Mechanical Engineering Research Institute of the Russian Academy of Sciences—Branch of Federal Research Center “Institute of Applied Physics of RAS”, 603024 Nizhny Novgorod, Russia; (I.S.P.); (A.M.B.)
| | - Ayrat M. Bayazitov
- Mechanical Engineering Research Institute of the Russian Academy of Sciences—Branch of Federal Research Center “Institute of Applied Physics of RAS”, 603024 Nizhny Novgorod, Russia; (I.S.P.); (A.M.B.)
- Institute of Molecule and Crystal Physics, UFRC of RAS, 450075 Ufa, Russia;
| | - Igor V. Kosarev
- Institute of Molecule and Crystal Physics, UFRC of RAS, 450075 Ufa, Russia;
| | - Sergey V. Dmitriev
- Mechanical Engineering Research Institute of the Russian Academy of Sciences—Branch of Federal Research Center “Institute of Applied Physics of RAS”, 603024 Nizhny Novgorod, Russia; (I.S.P.); (A.M.B.)
- Institute of Molecule and Crystal Physics, UFRC of RAS, 450075 Ufa, Russia;
| |
Collapse
|
23
|
Design, Synthesis and Evaluation of Alpha Lipoic Acid Derivatives to Treat Multiple Sclerosis-Associated Central Neuropathic Pain. Bioorg Med Chem 2022; 69:116889. [DOI: 10.1016/j.bmc.2022.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
|
24
|
Takebe H, Matsubara S. Catalytic Asymmetric Synthesis of 2,6‐Disubstituted Cuneanes via Enantioselective Constitutional Isomerization of 1,4‐Disubstituted Cubanes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiyori Takebe
- Kyoto University Faculty of Engineering Graduate School of Engineering: Kyoto Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Material Chemistry JAPAN
| | - Seijiro Matsubara
- Kyoto University Faculty of Engineering Graduate School of Engineering: Kyoto Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Material Chemistry Kyotodaigaku-katsura, Nishikyo 615-8510 Kyoto JAPAN
| |
Collapse
|
25
|
Homon AA, Hryshchuk OV, Mykhailenko OV, Vashchenko BV, Melnykov KP, Michurin OM, Daniliuc CG, Gerus II, Kovtunenko VO, Kondratov IS, Grygorenko OO. 4‐(Di‐/Trifluoromethyl)‐2‐heterabicyclo[2.1.1]hexanes: Advanced Fluorinated Phenyl Isosteres and Proline analogues. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anton A. Homon
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry NAS of Ukraine Murmanska Street 1 Kyiv 02660 Ukraine
| | - Oleksandr V. Hryshchuk
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Olha V. Mykhailenko
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Kostiantyn P. Melnykov
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleg M. Michurin
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Igor I. Gerus
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry NAS of Ukraine Murmanska Street 1 Kyiv 02660 Ukraine
| | | | - Ivan S. Kondratov
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry NAS of Ukraine Murmanska Street 1 Kyiv 02660 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
26
|
Nagasawa S, Hosaka M, Iwabuchi Y. ortho-C-H Acetoxylation of Cubane Enabling Access to Cubane Analogues of Pharmaceutically Relevant Scaffolds. Org Lett 2021; 23:8717-8721. [PMID: 34672601 DOI: 10.1021/acs.orglett.1c03144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel method of introducing an oxygen functionality into a cubane core was developed using a transition-metal-catalyzed directed acetoxylation methodology via C-H activation. The obtained compounds were derivatized into cubane analogues of pharmaceutically relevant structural motifs, namely, acetylsalicylic acid and coumarin motifs, which could potentially act as bioisosteres of these scaffolds.
Collapse
Affiliation(s)
- Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masaki Hosaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
27
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
28
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
29
|
Prakoso NI, Matsuda F, Umezawa T. Efficient synthesis of α,β-dichlorinated ketones from α,β-dichlorinated Weinreb amides through a simple work-up procedure. Org Biomol Chem 2021; 19:7822-7826. [PMID: 34549216 DOI: 10.1039/d1ob01379c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An efficient synthesis of α,β-dichlorinated ketones from α,β-dichlorinated Weinreb amides is described. Quenching with nonaqueous HCl avoided side reactions associated with typical work-up procedures. The amide reacted with various nucleophiles to give the corresponding ketones in high yields. A novel reactivity of the Weinreb amide is also discussed.
Collapse
Affiliation(s)
- Nurcahyo Iman Prakoso
- Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan. .,Chemistry Department, Universitas Islam Indonesia, Sleman, Yogyakarta, Indonesia
| | - Fuyuhiko Matsuda
- Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan.
| | - Taiki Umezawa
- Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, N10W5 Sapporo 060-0810, Japan.
| |
Collapse
|
30
|
Yoshino N, Kato Y, Shimada Y, Williams CM, Matsubara S. Unmasking Inherent Chirality within the Cubane Skeleton. Isr J Chem 2021. [DOI: 10.1002/ijch.202100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nana Yoshino
- Department of Material Chemistry Graduate School of Engineering Kyoto University Kyotodaigaku-Katsura, Nishikyo Kyoto 615-8510 Japan
| | - Yumi Kato
- Department of Material Chemistry Graduate School of Engineering Kyoto University Kyotodaigaku-Katsura, Nishikyo Kyoto 615-8510 Japan
| | - Yukako Shimada
- Department of Material Chemistry Graduate School of Engineering Kyoto University Kyotodaigaku-Katsura, Nishikyo Kyoto 615-8510 Japan
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane 4072 Queensland Australia
| | - Seijiro Matsubara
- Department of Material Chemistry Graduate School of Engineering Kyoto University Kyotodaigaku-Katsura, Nishikyo Kyoto 615-8510 Japan
| |
Collapse
|
31
|
Collin DE, Kovacic K, Light ME, Linclau B. Synthesis of Ortho-Functionalized 1,4-Cubanedicarboxylate Derivatives through Photochemical Chlorocarbonylation. Org Lett 2021; 23:5164-5169. [PMID: 34133174 DOI: 10.1021/acs.orglett.1c01702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cubane ring has received intense attention as a 3D benzene isostere and scaffold. Mono- and 1,4-disubstituted cubanes are well-described. Here we report a practical procedure for a direct radical-mediated chlorocarbonylation process initially reported by Bashir-Hashemi, to access a range of 2-substituted 1,4-cubanedicarboxylic ester derivatives. A subsequent regioselective ester hydrolysis to give fully differentiated 1,2,4-trisubstituted cubanes is demonstrated.
Collapse
Affiliation(s)
- Diego E Collin
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Kristina Kovacic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Mark E Light
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
32
|
Fan Q, Zhu L, Ren H, Lin H, Wu G. A new metal-organic framework of 3,9-diazatetraasterane-1,5,7,11-tetracarboxylic acid-3,6,9,12-tetraphenyl with sodium ion: Synthesis, characterization and DFT calculations. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
McNamee RE, Haugland MM, Nugent J, Chan R, Christensen KE, Anderson EA. Synthesis of 1,3-disubstituted bicyclo[1.1.0]butanes via directed bridgehead functionalization. Chem Sci 2021; 12:7480-7485. [PMID: 34163838 PMCID: PMC8171340 DOI: 10.1039/d1sc01836a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bicyclo[1.1.0]butanes (BCBs) are increasingly valued as intermediates in ‘strain release’ chemistry for the synthesis of substituted four membered rings and bicyclo[1.1.1]pentanes, with applications including bioconjugation processes. Variation of the BCB bridgehead substituents can be challenging due to the inherent strain of the bicyclic scaffold, often necessitating linear syntheses of specific BCB targets. Here we report the first palladium catalyzed cross-coupling on pre-formed BCBs which enables a ‘late stage’ diversification of the bridgehead position, and the conversion of the resultant products into a range of useful small ring building blocks. Bicyclo[1.1.0]butanes (BCBs) are valuable precursors to four-membered rings and bicyclo[1.1.1]pentanes, and useful bioconjugation agents. We describe a versatile approach to access 1,3-disubstituted BCBs, which are otherwise challenging to prepare.![]()
Collapse
Affiliation(s)
- Ryan E McNamee
- Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | | - Jeremy Nugent
- Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Rachel Chan
- Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | | | |
Collapse
|
34
|
Chen X, Liu Y, Furukawa N, Jin DY, Savage GP, Stafford DW, Suhara Y, Williams CM, Tie JK. A novel vitamin K derived anticoagulant tolerant to genetic variations of vitamin K epoxide reductase. J Thromb Haemost 2021; 19:689-700. [PMID: 33314621 PMCID: PMC7925372 DOI: 10.1111/jth.15209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Vitamin K antagonists (VKAs), such as warfarin, have remained the cornerstone of oral anticoagulation therapy in the prevention and treatment of thromboembolism for more than half a century. They function by impairing the biosynthesis of vitamin K-dependent (VKD) clotting factors through the inhibition of vitamin K epoxide reductase (VKOR). The challenge of VKAs therapy is their narrow therapeutic index and highly variable dosing requirements, which are partially the result of genetic variations of VKOR. OBJECTIVES The goal of this study was to search for an improved VKA that is tolerant to the genetic variations of its target enzyme. METHODS A series of vitamin K derivatives with benzyl and related side-chain substitutions at the 3-position of 1,4-naphthoquinone were synthesized. The role of these compounds in VKD carboxylation was evaluated by mammalian cell-based assays and conventional in vitro activity assays. RESULTS Our results showed that replacing the phytyl side-chain with a methylene cyclooctatetraene (COT) moiety at the 3-position of vitamin K1 converted it from a substrate to an inhibitor for VKD carboxylation. Strikingly, this COT-vitamin K derivative displayed a similar inhibition potency in warfarin-resistant VKOR mutations whose warfarin resistance varied more than 400-fold. Further characterization of COT-vitamin K for the inhibition of VKD carboxylation suggested that this compound targets multiple enzymes in the vitamin K redox cycle. Importantly, the anticoagulation effect of COT-vitamin K can be rescued with high doses of vitamin K1 . CONCLUSION We discovered a vitamin K analogue that functions as a VKA and is tolerant to genetic variations in the target enzyme.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yizhou Liu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Natsuko Furukawa
- Laboratory of Organic Synthesis and Medicinal Chemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Da-Yun Jin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - G. Paul Savage
- CSIRO Manufacturing, Ian Wark Laboratory, Melbourne 3168, Victoria, Australia
| | - Darrel W. Stafford
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yoshitomo Suhara
- Laboratory of Organic Synthesis and Medicinal Chemistry, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Queensland, Australia
| | - Jian-Ke Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
35
|
Linclau B, Collin DE, Jackman EH, Jouandon N, Sun W, Light ME, Harrowven DC. Decagram Synthesis of Dimethyl 1,4-Cubanedicarboxylate Using Continuous-Flow Photochemistry. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe highly strained cubane system is of great interest as a scaffold and rigid linker in both pharmaceutical and materials chemistry. A straightforward approach is reported for the scale-up of a [2+2] photocycloaddition step using convenient home-made flow photoreactors to access dimethyl 1,4-cubanedicarboxylate on decagram-scale in 33–40% yield over 8 steps. The process is demonstrated on 3.4 g·h–1 input with 30 minutes residence time, enabling to reduce the process time and to avoid the use of batch photoreactors. Completion of the characterisation of the photocycloadduct and its hydrates is reported.
Collapse
|
36
|
Tse EG, Houston SD, Williams CM, Savage GP, Rendina LM, Hallyburton I, Anderson M, Sharma R, Walker GS, Obach RS, Todd MH. Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials. J Med Chem 2020; 63:11585-11601. [PMID: 32678591 DOI: 10.1021/acs.jmedchem.0c00746] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The replacement of one chemical motif with another that is broadly similar is a common method in medicinal chemistry to modulate the physical and biological properties of a molecule (i.e., bioisosterism). In recent years, bioisosteres such as cubane and bicyclo[1.1.1]pentane (BCP) have been used as highly effective phenyl mimics. Herein, we show the successful incorporation of a range of phenyl bioisosteres during the open-source optimization of an antimalarial series. Cubane (19) and closo-carborane (23) analogues exhibited improved in vitro potency against Plasmodium falciparum compared to the parent phenyl compound; however, these changes resulted in a reduction in metabolic stability; unusually, enzyme-mediated oxidation was found to take place on the cubane core. A BCP analogue (22) was found to be equipotent to its parent phenyl compound and showed significantly improved metabolic properties. While these results demonstrate the utility of these atypical bioisosteres when used in a medicinal chemistry program, the search to find a suitable bioisostere may well require the preparation of many candidates, in our case, 32 compounds.
Collapse
Affiliation(s)
- Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - G Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, Victoria 3168, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Mark Anderson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Raman Sharma
- Pfizer Inc., Groton, Connecticut 06340, United States
| | | | - R Scott Obach
- Pfizer Inc., Groton, Connecticut 06340, United States
| | - Matthew H Todd
- School of Pharmacy, University College London, London WC1N 1AX, U.K
| |
Collapse
|
37
|
Dallaston MA, Houston SD, Williams CM. Cubane, Bicyclo[1.1.1]pentane and Bicyclo[2.2.2]octane: Impact and Thermal Sensitiveness of Carboxyl-, Hydroxymethyl- and Iodo-substituents. Chemistry 2020; 26:11966-11970. [PMID: 32820575 DOI: 10.1002/chem.202001658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Indexed: 12/21/2022]
Abstract
With the burgeoning interest in cage motifs for bioactive molecule discovery, and the recent disclosure of 1,4-cubane-dicarboxylic acid impact sensitivity, more research into the safety profiles of cage scaffolds is required. Therefore, the impact sensitivity and thermal decomposition behavior of judiciously selected starting materials and synthetic intermediates of cubane, bicyclo[1.1.1]pentane (BCP), and bicyclo[2.2.2]octane (BCO) were evaluated via hammer test and sealed cell differential scanning calorimetry, respectively. Iodo-substituted systems were found to be more impact sensitive, whereas hydroxymethyl substitution led to more rapid thermodecomposition. Cubane was more likely to be impact sensitive with these substituents, followed by BCP, whereas all BCOs were unresponsive. The majority of derivatives were placed substantially above Yoshida thresholds-a computational indicator of sensitivity.
Collapse
Affiliation(s)
- Madeleine A Dallaston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Sevan D Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
38
|
Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc Natl Acad Sci U S A 2020; 117:16790-16798. [PMID: 32631977 DOI: 10.1073/pnas.2003267117] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid aptamers selected through systematic evolution of ligands by exponential enrichment (SELEX) fold into exquisite globular structures in complex with protein targets with diverse translational applications. Varying the chemistry of nucleotides allows evolution of nonnatural nucleic acids, but the extent to which exotic chemistries can be integrated into a SELEX selection to evolve nonnatural macromolecular binding interfaces is unclear. Here, we report the identification of a cubane-modified aptamer (cubamer) against the malaria biomarker Plasmodium vivax lactate dehydrogenase (PvLDH). The crystal structure of the complex reveals an unprecedented binding mechanism involving a multicubane cluster within a hydrophobic pocket. The binding interaction is further stabilized through hydrogen bonding via cubyl hydrogens, previously unobserved in macromolecular binding interfaces. This binding mechanism allows discriminatory recognition of P. vivax over Plasmodium falciparum lactate dehydrogenase, thereby distinguishing these highly conserved malaria biomarkers for diagnostic applications. Together, our data demonstrate that SELEX can be used to evolve exotic nucleic acids bearing chemical functional groups which enable remarkable binding mechanisms which have never been observed in biology. Extending to other exotic chemistries will open a myriad of possibilities for functional nucleic acids.
Collapse
|
39
|
Yoshino N, Kato Y, Mabit T, Nagata Y, Williams CM, Harada M, Muranaka A, Uchiyama M, Matsubara S. Cubane Chirality via Substitution of a “Hidden” Regular Tetrahedron. Org Lett 2020; 22:4083-4087. [DOI: 10.1021/acs.orglett.0c01142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nana Yoshino
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Yumi Kato
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Thibaud Mabit
- JSPS International Fellowship for Research, Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8530, Japan
| | - Yuuya Nagata
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Nishi 10, Kita, Sapporo 001-0021, Japan
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsuya Muranaka
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
40
|
Okude R, Mori G, Yagi A, Itami K. Programmable synthesis of multiply arylated cubanes through C-H metalation and arylation. Chem Sci 2020; 11:7672-7675. [PMID: 34094145 PMCID: PMC8159448 DOI: 10.1039/d0sc01909g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cubane (C8H8), a cubic alkane, has long attracted attention owing to its unique 3D structure. In order to utilize the cubane scaffold widely in science and technology, a powerful method for synthesizing diverse cubane derivatives is required. Herein, we report the synthesis of mono-, di-, tri-, and tetra-arylated cubanes. Directed ortho-metalation with lithium base/alkyl zinc and subsequent palladium-catalyzed arylation enabled C–H metalation and arylation of cubane. This reaction allows the late-stage and regioselective installation of a wide range of aryl groups, realizing the first programmable synthesis of diverse multiply arylated cubanes. Cubane has attracted attention due to its unique 3D structure. Herein, we report the programmable synthesis of multiply arylated cubanes. The developed reaction allows the late-stage and regioselective installation of aryl groups.![]()
Collapse
Affiliation(s)
- Ryo Okude
- Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Genki Mori
- Central Pharmaceutical Research Institute, Japan Tobacco Inc. 1-1 Murasaki-cho, Takatsuki Osaka 569-1125 Japan
| | - Akiko Yagi
- Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan .,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
41
|
Collin DE, Folgueiras‐Amador AA, Pletcher D, Light ME, Linclau B, Brown RCD. Cubane Electrochemistry: Direct Conversion of Cubane Carboxylic Acids to Alkoxy Cubanes Using the Hofer-Moest Reaction under Flow Conditions. Chemistry 2020; 26:374-378. [PMID: 31593312 PMCID: PMC6973092 DOI: 10.1002/chem.201904479] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 12/12/2022]
Abstract
The highly strained cubane system is of great interest as a scaffold and rigid linker in both pharmaceutical and materials chemistry. The first electrochemical functionalisation of cubane by oxidative decarboxylative ether formation (Hofer-Moest reaction) was demonstrated. The mild conditions are compatible with the presence of other oxidisable functional groups, and the use of flow electrochemical conditions allows straightforward upscaling.
Collapse
Affiliation(s)
- Diego E. Collin
- School of ChemistryUniversity of SouthamptonHighfield, SouthamptonSO17 1BJUK
| | | | - Derek Pletcher
- School of ChemistryUniversity of SouthamptonHighfield, SouthamptonSO17 1BJUK
| | - Mark E. Light
- School of ChemistryUniversity of SouthamptonHighfield, SouthamptonSO17 1BJUK
| | - Bruno Linclau
- School of ChemistryUniversity of SouthamptonHighfield, SouthamptonSO17 1BJUK
| | - Richard C. D. Brown
- School of ChemistryUniversity of SouthamptonHighfield, SouthamptonSO17 1BJUK
| |
Collapse
|
42
|
Sarkar MR, Houston SD, Savage GP, Williams CM, Krenske EH, Bell SG, De Voss JJ. Rearrangement-Free Hydroxylation of Methylcubanes by a Cytochrome P450: The Case for Dynamical Coupling of C–H Abstraction and Rebound. J Am Chem Soc 2019; 141:19688-19699. [DOI: 10.1021/jacs.9b08064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Md. Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sevan D. Houston
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - G. Paul Savage
- Ian Wark Laboratory, CSIRO Manufacturing, Melbourne, VIC 3168, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
43
|
Arachchige KSA, Fahrenhorst-Jones T, Burns JM, Al-Fayaad HA, Behera JN, Rao CNR, Clegg JK, Williams CM. 1,4-Diazacubane crystal structure rectified as piperazinium. Chem Commun (Camb) 2019; 55:11751-11753. [PMID: 31513198 DOI: 10.1039/c9cc06272f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All 21 [n]-azacubanes are proposed by theoreticians to be stable, however, to-date only the synthesis of 1,4-diazacubane has been reported - as a Ni2+ templated Kagome metal organic framework (MOF). Described herein is the structural reassignment of this Kagome MOF on the basis of deducing the precise experimental procedure, and demonstrating that rather than the formation of 1,4-diazacubane, charge is balanced by disordered piperazinium cations across a twelve-fold symmetry site. Furthermore, quantum chemical calculations reveal that 1,4-diazacubane is unlikely to form under the reported conditions due to unfavorable enthalpies for select hypothetical reactions leading to such a product. This significant structure correction upholds the unconquered synthesis status quo of azacubane.
Collapse
Affiliation(s)
| | - Tyler Fahrenhorst-Jones
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Jed M Burns
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Jogendra N Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India and School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752 050, India
| | - C N R Rao
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India and Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Queensland, Australia.
| |
Collapse
|