1
|
Baidya R, Khamarui S, Molla SA, Pratihar P, Das P, Pati TK, Maiti DK. Ru II-Catalyzed C-H Activated Diverse Cyclization with Transformation of Substrate-DG to Functional Groups: Synthesis of Functionalized Indoles and Indenones. J Org Chem 2024; 89:14183-14196. [PMID: 39283992 DOI: 10.1021/acs.joc.4c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We present an elegant and efficient method for Ru(II)-catalyzed C-H activation, followed by a diverse range of intermolecular cross-dehydrogenative coupling reactions. This process is facilitated by an intrinsic directing group (DG) and includes the in situ transformation of the DG into common and useful functional groups. Notably, this method avoids the installation and deinstallation of the directing group. Our approach enables the selective functionalization of benzimidate, coupled with the cyclization of o-alkynyl-aniline, resulting in the high-yield synthesis of diverse compounds such as indoles, and indenones. The sequential formation of C-N, C-C, and C-O bonds, followed by hydrolysis, underscores the versatile in situ transformation of the directing group. This work not only broadens the synthetic toolbox for constructing complex heterocyclic structures but also highlights the potential for sustainable and selective synthesis of valuable compounds.
Collapse
Affiliation(s)
- Ramlal Baidya
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Saikat Khamarui
- Department of Chemistry, Government General Degree College, Kalna-1, Burdwan 713405, India
| | - Sabir A Molla
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Pintu Pratihar
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Prasenjit Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Tanmay K Pati
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3522, United States
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
2
|
E J, Wang L, Zeng J, Tian H, Bu X, Yang X, Zhao Z. Tunable Rh(III)-Catalyzed C(sp 2)-H Bond Functionalization of Aryl Imidates with Cyclic 1,3-Diones: Strategic Use of Directing Groups. Org Lett 2024; 26:7885-7890. [PMID: 39241179 DOI: 10.1021/acs.orglett.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
A tunable Rh(III)-catalyzed C(sp2)-H bond functionalization of aryl imidates with cyclic 1,3-diones was developed. With suitable and straightforward reaction condition adjustments, the C-H bond functionalization of diverse aryl imidates with cyclic 1,3-diones occurred smoothly and precisely at room temperature. Accompanied by different directing group transformations, a series of corresponding aryl nitriles, hydrophenanthridin-1(2H)-ones, spiro isoindoles, or hydrophenanthridine-1,6(2H,5H)-diones were synthesized in good yields to provide a rational directing group utilization strategy for the Rh(III)-catalyzed C(sp2)-H bond activation. Control experiments and primary mechanistic studies revealed that solvent effects and functional group electronic effects might influence the reaction's selectivity.
Collapse
Affiliation(s)
- Junnan E
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Jing Zeng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
3
|
Wang J, Zhao X, Wang Y, Wang Z, Zhang C, Zong L, Li W, Li T, Chen M. Electrochemically chalcogenative annulation enabled construction of functionalized saturated N-heterocycles. Chem Commun (Camb) 2024; 60:10156-10159. [PMID: 39189692 DOI: 10.1039/d4cc03432e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
An efficient chalcogenative annulation strategy for constructing functionalized saturated N-heterocycles from unactivated alkenes with dichalcogenides under electrochemical conditions has been presented. This protocol is applicable to mono-, di- or tri-substituted alkenes, providing a straightforward pathway to aziridines, azetidines, pyrrolidines, and piperidines with high regioselectivity. Moreover, the strategy is qualified to realize the oxychalcogenation of alkenes as well.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Xinxin Zhao
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Yijia Wang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Zhihui Wang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Chunyan Zhang
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Luyi Zong
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
- Henan Tianguan Group Co., Ltd., Nanyang, China, 473061
| | - Wenguang Li
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Ting Li
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Ming Chen
- School of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
4
|
Manna AS, Nandi R, Ghosh T, Pal S, Rahaman R, Maiti DK. Organic Base-Promoted C-N- and C-O-Coupled Domino Cyclization Strategy: Syntheses of Oxazine-6-ones and 4-Pyrimidinols. J Org Chem 2024; 89:5650-5664. [PMID: 38577786 DOI: 10.1021/acs.joc.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Oxazine-6-one and 4-pyrimidinol are two important frameworks in pharmaceutical production. Herein, we disclosed a simple, efficient, inexpensive organic base-promoted and additive-stimulated protocol for the syntheses of variably functionalized oxazine-6-ones and 4-pyrimidinols employing acetonitrile solvent under conventional heating conditions using an oil bath through C-N and C-O coupled domino steps. This simple practicable productive protocol utilizes easily producible cheap precursors, namely, benzimidates or benzamidines, with differently substituted dicyano-olefins, and it comprises step economy, robustness, and moisture insensitive conditions affording high yield that avoids the use of transition-metal catalysts, multistep with multicomponent strategy, and harsh reaction conditions involving hazardous chemicals. This method is scalable into gram-scale production with good yield.
Collapse
Affiliation(s)
- Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tanmoy Ghosh
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
5
|
Acharya SS, Patra S, Maharana R, Dash M, Barad LM, Parida BB. Recent advances in spirocyclization of maleimides via transition-metal catalyzed C-H activation. Org Biomol Chem 2024; 22:2916-2947. [PMID: 38497106 DOI: 10.1039/d3ob01904g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In recent years, the maleimide scaffold has received a great deal of attention in C-H activation. Several types of products can be constructed using maleimides as a coupling partner. Alkylation, alkenylation, annulation, dehydrogenative annulation and spirocyclization are various reactions shown by maleimides in C-H activation. Thus, the maleimide scaffold has been extensively studied in the last few years in C-H activation owing to its unique reactivity. Among the diverse class of reactions of maleimides, spirocyclization is a less explored reaction. The spirocycles, in particular the spirosuccinimides are interesting candidates in drug discovery and materials chemistry. Therefore the method of spirocyclization of maleimides via C-H activation becomes an important strategy for the synthesis of a diverse array of spirosuccinimides. This review summarizes the reports available in this field from 2015-2023 and also highlights the scopes and prospects of this method.
Collapse
Affiliation(s)
| | - Sagarika Patra
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | - Rojalini Maharana
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | - Manaswini Dash
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | - Liza Mama Barad
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | | |
Collapse
|
6
|
Pal S, Nandi R, Manna AS, Aich S, Maiti DK. Cu I-Catalyzed Radical Reaction of Benzimidates to Form Valuable 4,5-Dihydrooxazoles through Regioselective Aerobic Oxidative Cross-Coupling. J Org Chem 2024; 89:2703-2717. [PMID: 38295826 DOI: 10.1021/acs.joc.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A straightforward Cu(I)-catalyzed oxidative cross-coupled organic transformation has been developed under mild conditions for the construction of functionalized 4,5-dihydrooxazoles through a four-bond-forming regiocontrolled C-C/C-N/C-O coupling strategy emerging benzimidates, paraformaldehyde, and 1,3-diketo analogues using eco-friendly O2 as the sole oxidant. The fundamental features of these designed approaches involve operational simplicity, selectivity, generality, and a broad substrate scope with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
7
|
Vogel JA, Miller KF, Shin E, Krussman JM, Melvin PR. A modified Beckmann rearrangement for the facile synthesis of amidines and imidates via imidoyl fluoride intermediates. RSC Adv 2023; 13:30129-30132. [PMID: 37842679 PMCID: PMC10573916 DOI: 10.1039/d3ra06561h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Herein, we report a modified Beckmann rearrangement using sulfone iminium fluoride (SIF) reagents to rapidly synthesize imidoyl fluoride intermediates. Subsequently, amidine and imidate products can be formed following the introduction of amine and alcohol nucleophiles, respectively. Overall, approximately 50 amidine and imidate products have been isolated in high yields utilizing mild conditions.
Collapse
Affiliation(s)
- James A Vogel
- Department of Chemistry, Bryn Mawr College Bryn Mawr Pennsylvania 19010 USA
| | - Kirya F Miller
- Department of Chemistry, Bryn Mawr College Bryn Mawr Pennsylvania 19010 USA
| | - Eunjeong Shin
- Department of Chemistry, Bryn Mawr College Bryn Mawr Pennsylvania 19010 USA
| | - Jenna M Krussman
- Department of Chemistry, Bryn Mawr College Bryn Mawr Pennsylvania 19010 USA
| | - Patrick R Melvin
- Department of Chemistry, Bryn Mawr College Bryn Mawr Pennsylvania 19010 USA
| |
Collapse
|
8
|
Chaidali AG, Lykakis IN. Simple Synthetic Approach to N-(Pyridin-2-yl)imidates from Nitrostyrenes and 2-Aminopyridines via the N-(Pyridin-2-yl)iminonitriles as Intermediates. Molecules 2023; 28:molecules28083321. [PMID: 37110555 PMCID: PMC10147006 DOI: 10.3390/molecules28083321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A facile, green, synthetic protocol of several substituted N-(pyridin-2-yl)imidates from nitrostyrenes and 2-aminopyridines via the corresponding N-(pyridin-2-yl)iminonitriles as intermediates is reported. The reaction process involved the in situ formation of the corresponding α-iminontriles under heterogeneous Lewis acid catalysis in the presence of Al2O3. Subsequently, α-iminonitriles were selectively transformed into the desired N-(pyridin-2-yl)imidates under ambient conditions and in the presence of Cs2CO3 in alcoholic media. Under these conditions, 1,2- and 1,3-propanediols also led to the corresponding mono-substituted imidates at room temperature. The present synthetic protocol was also developed on one mmol scale, providing access to this important scaffold. A preliminary synthetic application of the present N-(pyridin-2-yl)imidates was carried out for their facile conversion into the N-heterocycles 2-(4-chlorophenyl)-4,5-dihydro-1H-imidazole and 2-(4-chlorophenyl)-1,4,5,6-tetrahydropyrimidine in the presence of the corresponding ethylenediamine and 1,3-diaminopropane.
Collapse
Affiliation(s)
- Andriani G Chaidali
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis N Lykakis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Aich S, Nandi R, Chatterjee N, Gayen KS, Pal S, Maiti DK. Catalytic I 2-moist DMSO-mediated synthesis of valuable α-amidohydroxyketones and unsymmetrical gem-bisamides from benzimidates. Org Biomol Chem 2023; 21:2524-2530. [PMID: 36876635 DOI: 10.1039/d3ob00165b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We developed an efficient and straightforward I2-catalyzed strategy for the synthesis of functionalized α-amidohydroxyketones and symmetrical and unsymmetrical bisamides using incipient benzimidate scaffolds as starting materials and moist-DMSO as a reagent and solvent. The developed method proceeds through chemoselective intermolecular N-C-bond formation of benzimidates and the α-C(sp3)-H bond of acetophenone moieties. The key advantages of these design approaches include broad substrate scope and moderate yields. High-resolution mass spectrometry of the reaction progress and labeling experiments provided suitable evidence regarding the possible mechanism. 1H nuclear magnetic resonance titration revealed notable interaction between the synthesized α-amidohydroxyketones and some anions as well as biologically important molecules, which revealed a promising recognition property of these valuable motifs.
Collapse
Affiliation(s)
- Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Nirbhik Chatterjee
- Department of Chemistry, Kanchrapara College, North 24 parganas-743145, India
| | | | - Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
10
|
Substrate-Dependent Selectivity in Sc(OTf)3-Catalyzed Cyclization of Alkenoic Acids and N-Protected Alkenamides. Catalysts 2022. [DOI: 10.3390/catal12111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Five- and six-membered ring lactones and lactams are ubiquitous frameworks in various natural and synthetic molecules and are key building blocks in organic synthesis. Catalytic addition of an O-H or N-H bond across an unactivated C–C double bond is an appealing approach to rapidly access such highly valuable N- and O-containing skeletons in a waste-free and 100% atom efficient process. Herein, we report, for the first time, the efficient and high-yield cyclization of δ/ε-alkenoic acids and N-protected δ-alkenamides catalyzedby practical and easily accessible Lewis acid scandium(III) triflate under thermal and microwave conditions. The selectivity outcome of the reaction of δ/ε-alkenoic acids was dependent on the substitution patterns of the backbone chain and alkene moiety, leading to the exclusive formation of either the corresponding γ/δ-lactones via an O-selective cyclization or the Friedel–Crafts-type product by C-selective cyclization. An uncommon and rarely disclosed O-selective cyclization occurred preferentially or exclusively when N-protected δ-alkenamides were engaged in the reaction. The atom selectivity of the cyclization was unambiguously confirmed by single crystal X-ray crystallography.
Collapse
|
11
|
Tan Z, Zhang X, Xu M, Fu Y, Zhuang W, Li M, Wu X, Ying H, Ouyang P, Zhu C. Cooperative chemoenzymatic synthesis of N-heterocycles via synergizing bio- with organocatalysis. SCIENCE ADVANCES 2022; 8:eadd1912. [PMID: 36070374 PMCID: PMC9451157 DOI: 10.1126/sciadv.add1912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Inspired by Nature's ingenuity, considerable progress has been made in recent years to develop chemoenzymatic processes by the integration of environmentally friendly feature of biocatalysis with versatile reactivity of chemocatalysis. However, the current types of chemoenzymatic processes are relatively few and mostly rely on metal catalysts. Here, we report a previously unexplored cooperative chemoenzymatic system for the synthesis of N-heterocycles. Starting from alcohols and amines, benzimidazole, pyrazine, quinazoline, indole, and quinoline can be obtained in excellent yields in water with O2 as the terminal oxidant. Synthetic bridged flavin analog is served as a bifunctional organocatalyst for the regeneration of cofactor nicotinamide adenine dinucleotide in the bioprocess and oxidative cyclodehydrogenation in the chemoprocess. Compared to the classical acceptorless dehydrogenative coupling strategy, being metal and base free, requiring only water as solvent, and not needing atmosphere protection were observed for the present method, exhibiting a favorable green and sustainable alternative.
Collapse
Affiliation(s)
- Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Xiaowang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Mengjiao Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yaping Fu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ming Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaojin Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| |
Collapse
|
12
|
Pavale G, Acharya P, Korgavkar N, Ramana MMV. Design, Synthesis, and Biological Evaluation of quinoxaline bearing tetrahydropyridine derivatives as anticancer, antioxidant, and anti-tubercular agents. Curr Comput Aided Drug Des 2022; 18:CAD-EPUB-125341. [PMID: 35927819 DOI: 10.2174/1573409918666220804142753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinoxaline and Tetrahydropyridine derivatives showed various biological properties. The combination of these two scaffolds may contribute to good biological activity and may give novel and efficacious bioactive candidates. OBJECTIVE The present study aimed to identify bioactive agents with quinoxaline bearing tetrahydropyridine derivatives possessing anticancer, antioxidant, and anti-tubercular agents. METHOD A series of novel quinoxaline bearing tetrahydropyridine derivatives have been designed and synthesized in good yields. The synthetic protocol involves three-component Povarov reactions of 6-amino quinoxaline, propenyl guaethol, and substituted aldehydes using BF3•OEt2 as catalyst. The newly synthesized molecules were evaluated for their anticancer activity against four cell lines, i.e. A-549, MCF-7, PC-3, and HepG2. RESULTS The results from in vitro assay indicated that compound 4a proved to be as potent as the standard drug adriamycin against all cell lines with GI50 values <10 μg/ml. Compounds 4b, 4f, and 4i exhibited good cytotoxicity against A-549 cell line. All synthesized molecules were evaluated for their antioxidant activity and the results revealed that the compounds 4a, 4b, and 4i showed promising antioxidant activities against DPPH and H2O2 scavenging. In addition, the anti-mycobacterial activity of the synthesized compounds against MTB H37Rv strain was determined using MABA method. The results indicate that the compounds 4a, 4b, 4g, and 4i showed better anti-mycobacterial activity than the standard drugs pyrazinamide, ciprofloxacin and streptomycin with MIC value 1.6 μg/ml. Furthermore, molecular docking studies and ADME properties showed good pharmacokinetic profile and drug-likeness properties. CONCLUSION These studies showed that a series of novel quinoxaline bearing tetrahydropyridine derivatives exhibit anticancer, anti-mycobacterial, and antioxidant activities.
Collapse
Affiliation(s)
- Ganesh Pavale
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400 098, India
| | - Poornima Acharya
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400 098, India
| | - Nilesh Korgavkar
- Department of Chemistry, Mithibai College, University of Mumbai, Mumbai, India
| | - M M V Ramana
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai-400 098, India
| |
Collapse
|
13
|
Tian Y, Wu F, Jia S, Gong X, Mao H, Wang P, Qin W, Yan H. Organocatalytic Asymmetric Construction of Tetrasubstituted Carbon Stereocenters Bearing Three Heteroatoms via Intramolecular Cyclization of Vinylidene ortho-Quinone Methide with Imidates. Org Lett 2022; 24:5073-5077. [PMID: 35819168 DOI: 10.1021/acs.orglett.2c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein an organocatalytic asymmetric protocol for the construction of tetrasubstituted carbon stereocenters bearing three heteroatoms. The reaction proceeded via the enantioselective intramolecular cyclization reaction of vinylidene ortho-quinone methide (VQM) with imidates to form pentacyclic heterocycles. The formed tetrasubstituted carbon center was stable under a high temperature and the conditions for further transformations.
Collapse
Affiliation(s)
- Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Fengdi Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shiqi Jia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiangnan Gong
- Analytical and Testing Center of Chongqing University, Chongqing University, Chongqing 401331, P. R. China
| | - Hui Mao
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang 321007, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
14
|
Ragno D, De Risi C, Massi A, Di Carmine G, Toldo S, Leonardi C, Bortolini O. Regiodivergent Synthesis of Benzothiazole‐based Isosorbide Imidates by Oxidative N‐Heterocyclic Carbene Catalysis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniele Ragno
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Carmela De Risi
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Alessandro Massi
- University of Ferrara: Universita degli Studi di Ferrara DepartmentEnvironmental and Prevention Sciences ITALY
| | - Graziano Di Carmine
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Sofia Toldo
- University of Ferrara: Universita degli Studi di Ferrara Environmental and Prevention Sciences ITALY
| | - Costanza Leonardi
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Olga Bortolini
- Universita of Ferrara DepartmentEnvironmental and Prevention Sciences Via Borsari 46 44121 Ferrara ITALY
| |
Collapse
|
15
|
Fischer D, Balkenhohl M, Carreira EM. Cobalt-Catalyzed Cyclization of Unsaturated N-Acyl Sulfonamides: a Diverted Mukaiyama Hydration Reaction. JACS AU 2022; 2:1071-1077. [PMID: 35647594 PMCID: PMC9131372 DOI: 10.1021/jacsau.2c00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The cycloisomerization of β-, γ-, and δ-unsaturated N-acyl sulfonamides to N-sulfonyl lactams and imidates is reported. This transformation is effected in the presence of a CoIII(salen) catalyst using t-BuOOH or air as the oxidant. The method shows good functional group tolerance (alkyl, aryl, heteroaryl, ether, N-Boc) and furnishes an underexplored class of cyclic building blocks. The strong solvent dependence of the transformation is investigated, and the synthetic versatility of the N-sulfonyl imidate product class is highlighted.
Collapse
|
16
|
Zhao H, Wu Y, Zhang D, Huang H. Mild, metal-free synthesis of 2-substituted quinazolinones from imidates and methyl 2-aminobenzoates or 2-aminobenzamides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Borah G, Dam B, Patel BK. Ortho
‐Functionalization of Benzimidates and Benzamidines. ChemistrySelect 2022. [DOI: 10.1002/slct.202104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gongutri Borah
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| | - Binoyargha Dam
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| | - Bhisma K. Patel
- Department of Chemistry Indian Institute of Technology Guwahati, North Guwahati Guwahati 781039 Assam India
| |
Collapse
|
18
|
Mou XQ, Ren LC, Zhang M, Wang M, Jin YF, Guan QX, Cai A, Zhang SM, Ren H, Zhang Y, Chen YZ. Complementary Copper-Catalyzed and Electrochemical Aminosulfonylation of O-Homoallyl Benzimidates and N-Alkenyl Amidines with Sodium Sulfinates. Org Lett 2022; 24:1405-1411. [PMID: 35138858 DOI: 10.1021/acs.orglett.2c00287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A complementary copper-catalyzed and electrochemical aminosulfonylation of O-homoallyl benzimidates and N-alkenyl amidines with sodium sulfinates was developed. The terminal alkene substrate produced sulfone-containing 1,3-oxazines and tetrahydropyrimidines in the presence of Cu(OAc)2, Ag2CO3, and DPP, and under similar reaction conditions, sulfonylated tetrahydro-1,3-oxazepines were prepared from 1-aryl-substituted O-homoallyl benzimidates in moderate to good yields. For certain electron-rich 1,1-diaryl-substituted alkene substrates, the corresponding tetrahydro-1,3-oxazepines could also be obtained in similar or even higher yields via a green electrochemical technique.
Collapse
Affiliation(s)
- Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Liang-Chen Ren
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Mei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Min Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yu-Fan Jin
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Qing-Xin Guan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Ang Cai
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Shi-Min Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
19
|
Thakur R, Jaiswal Y, Kumar A. Primary amides: Sustainable weakly coordinating groups in transition metal-catalyzed C–H bond functionalization reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Khomenko DM, Doroshchuk RO, Ivanova HV, Zakharchenko BV, Raspertova IV, Vaschenko OV, Shova S, Dobrydnev AV, Moroz YS, Grygorenko OO, Lampeka RD. Synthesis of α-substituted 2-(1 H-1,2,4-triazol-3-yl)acetates and 5-amino-2,4-dihydro-3 H-pyrazol-3-ones via the Pinner strategy. Tetrahedron Lett 2021; 69:152956. [PMID: 35875055 PMCID: PMC9302905 DOI: 10.1016/j.tetlet.2021.152956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A series of 2-(1H-1,2,4-triazol-3-yl)acetates, as well as 4-mono- and 4,4-disubstituted 5-amino-2,4-dihydro-3H-pyrazol-3-ones (including spirocyclic derivatives) have been synthesized using the Pinner reaction strategy. α-Mono- and α,α-disubstituted ethyl cyanoacetates were converted into the corresponding carboxyimidate salts that served as the key intermediates. Their further reaction with formylhydrazide or hydrazine hydrate provided triazolylacetates or aminopyrazolones (including spirocyclic derivatives), depending on the structure of the starting Pinner salt and the nature of the nucleophile. The scope and limitations of the developed synthetic method have been established.
Collapse
Affiliation(s)
- Dmytro M. Khomenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Roman O. Doroshchuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Hanna V. Ivanova
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Borys V. Zakharchenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Ilona V. Raspertova
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Oleksandr V. Vaschenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Alexey V. Dobrydnev
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Yurii S. Moroz
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
- Chemspace, Ilukstes iela 38-5, Riga LV-1082, Latvia
| | - Oleksandr O. Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Rostyslav D. Lampeka
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
21
|
Ptiček L, Hok L, Grbčić P, Topić F, Cetina M, Rissanen K, Pavelić SK, Vianello R, Racané L. Amidino substituted 2-aminophenols: biologically important building blocks for the amidino-functionalization of 2-substituted benzoxazoles. Org Biomol Chem 2021; 19:2784-2793. [PMID: 33704342 DOI: 10.1039/d1ob00235j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike the closely related and widely investigated amidino-substituted benzimidazoles and benzothiazoles with a range of demonstrated biological activities, the matching benzoxazole analogues still remain a largely understudied and not systematically evaluated class of compounds. To address this challenge, we utilized the Pinner reaction to convert isomeric cyano-substituted 2-aminophenols into their amidine derivatives, which were isolated as hydrochlorides and/or zwitterions, and whose structure was confirmed by single crystal X-ray diffraction. The key step during the Pinner synthesis of the crucial carboximidate intermediates was characterized through mechanistic DFT calculations, with the obtained kinetic and thermodynamic parameters indicating full agreement with the experimental observations. The obtained amidines were subjected to a condensation reaction with aryl carboxylic acids that allowed the synthesis of a new library of 5- and 6-amidino substituted 2-arylbenzoxazoles. Their antiproliferative features against four human tumour cell lines (SW620, HepG2, CFPAC-1, HeLa) revealed sub-micromolar activities on SW620 for several cyclic amidino 2-naphthyl benzoxazoles, thus demonstrating the usefulness of the proposed synthetic strategy and promoting amidino substituted 2-aminophenols as important building blocks towards biologically active systems.
Collapse
Affiliation(s)
- Lucija Ptiček
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Du W, Huang H, Xiao T, Jiang Y. Metal‐Free, Visible‐Light Promoted Intramolecular Azole C−H Bond Amination Using Catalytic Amount of I
2
: A Route to 1,2,3‐Triazolo[1,5‐
a
]quinazolin‐5(4
H
)‐ones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Weigen Du
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| | - Hongtai Huang
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| | - Tiebo Xiao
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| | - Yubo Jiang
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| |
Collapse
|
23
|
Nandi R, Mandal PK, Kayet A, Bhattachariya T, Ghosh S, Maiti DK. Benzimidates as gem-Diamidation and Amidoindolyzation Cascade Synthons with a Hydrated Ni II Catalyst. Org Lett 2020; 22:3474-3478. [PMID: 32275155 DOI: 10.1021/acs.orglett.0c00928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We contributed a new benzimidate chemistry through moisture-insensitive NiII/NiII-FeIII combo-catalysis for a simultaneous 2-3 bond-forming gem-diamidation and amidoindolyzation cascade reaction to construct symmetrical and unsymmetrical gem-(arylmethylene)amides and indolo(arylmethylene)amides, using emerging benzimidate synthons. The operational simplicity, mild nature, generality, and robustness of the strategy were validated through syntheses of a wide range of new molecules, labile sugar-based chiral compounds, and pharmaceuticals with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
| | - Prakash K Mandal
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
| | - Anirban Kayet
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
| | - Tamalika Bhattachariya
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
| | - Sukla Ghosh
- Department of Chemistry, Women's College, Calcutta, Kolkata - 700003, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata - 700009, India
| |
Collapse
|